JP2918138B2 - Vibrating fluidized bed equipment - Google Patents
Vibrating fluidized bed equipmentInfo
- Publication number
- JP2918138B2 JP2918138B2 JP11328093A JP11328093A JP2918138B2 JP 2918138 B2 JP2918138 B2 JP 2918138B2 JP 11328093 A JP11328093 A JP 11328093A JP 11328093 A JP11328093 A JP 11328093A JP 2918138 B2 JP2918138 B2 JP 2918138B2
- Authority
- JP
- Japan
- Prior art keywords
- particles
- fluidized bed
- heat transfer
- flow
- drying
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Drying Of Solid Materials (AREA)
Description
【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION
【0001】[0001]
【産業上の利用分野】本発明は振動流動層装置に係り、
粒子のショートパスを効果的に防いで製品粒子に未乾燥
又は未反応粒子の混入がなく効率の良い乾燥又は分解反
応が行え、かつ、装置能力にかかわらず最適な粒子移動
速度と装置の細長比を維持できる等した振動流動層乾燥
装置又は振動流動層分解装置等の振動流動層装置に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vibrating fluidized bed apparatus,
Effectively prevent short path of particles, do not mix undried or unreacted particles in product particles, perform efficient drying or decomposition reaction, and optimize particle movement speed and equipment slenderness ratio regardless of equipment capacity The present invention relates to a vibrating fluidized bed device such as a vibrating fluidized bed drying device or a vibrating fluidized bed decomposing device capable of maintaining the above conditions.
【0002】[0002]
【従来の技術】振動流動層装置としての振動流動層乾燥
装置は、振動により流動室内の粉粒体を流動化させると
共に粉粒体の供給口から排出口へ向けて移動させて、こ
の間に熱ガス等の熱源と熱交換させて粉粒体を乾燥させ
るものである。このような振動流動層乾燥装置は気泡流
動層のように流動層表面における噴水状の粒子の飛び散
りがないため振動によって移動される粒子の前後左右の
混合が少なく、従って粒子のショートパスが少なく、乾
燥ムラが生じにくく均一乾燥が可能になるという利点が
ある。また、気泡流動層に比べて流動化ガス量が少ない
か零でよいため、動力低減が図れることと、凝集性の強
い100μm以下の流動化に適している。このように振
動流動層装置は凝集性のある微粒子や湿った粒子を均一
に流動化させ、伝熱を促進して効率の良い乾燥や分解反
応を行わせるのに適している。2. Description of the Related Art A vibrating fluidized bed drying apparatus as a vibrating fluidized bed apparatus fluidizes and granulates particles in a fluidized chamber by vibration and moves the particles from a supply port to a discharge port of the granular material. The powder is dried by heat exchange with a heat source such as a gas. Such a oscillating fluidized bed dryer has no fountain-like particles scattered on the surface of the fluidized bed as in a bubble fluidized bed. There is an advantage that drying unevenness hardly occurs and uniform drying becomes possible. Further, since the amount of the fluidizing gas may be small or zero as compared with the bubble fluidized bed, it is suitable for fluidization of 100 μm or less in which power can be reduced and cohesiveness is strong. As described above, the vibrating fluidized bed apparatus is suitable for uniformly fluidizing coherent fine particles and wet particles, promoting heat transfer, and performing efficient drying and decomposition reactions.
【0003】このような振動流動層装置として例えば特
開昭56-133577 号公報に示されるような振動流動層乾燥
装置がある。この乾燥装置は粒子の流れ方向に上下交互
に開口する隔壁を一定間隔で設けて隔室を構成し粒子を
隔壁の下と上の開口を交互に通して各隔室を通過させて
乾燥させる。このやり方は隔壁前後の粒子の混合を防い
でより粒子のショートパスを防止しようとするものであ
る。[0003] As such a vibrating fluidized bed apparatus, for example, there is a vibrating fluidized bed drying apparatus as disclosed in JP-A-56-133577. In this drying apparatus, partitions are formed at regular intervals with partitions that open alternately in the upper and lower directions in the flow direction of the particles, and the particles pass through the respective compartments alternately through openings below and above the partitions to dry. This method is intended to prevent mixing of the particles before and after the partition wall, thereby preventing a short path of the particles.
【0004】[0004]
【発明が解決しようとする課題】しかし、前記公報に示
される振動流動層乾燥装置は、粒子の入口から出口に向
かって一方向流れであるため、装置が非常に細長いもの
になり、層面積が増えて放熱量(熱損失)が増えるし、
装置コストも高くなる。また、横幅を広くすると粒子の
移動速度が遅くなり、上記公報のように粒子の流れ方向
に上下交互に開口する隔壁を一定間隔で設けて隔室を構
成し粒子を隔壁の下と上の開口を交互に通して各隔室を
通過させて乾燥させるという工夫をしても粒子の混合が
進み、ショートパスが起こることは避けられない。ま
た、装置能力に応じて最適な粒子移動速度と装置の細長
比を維持することはこのような一方向流れでは困難であ
る。However, the vibrating fluidized bed dryer disclosed in the above publication has a one-way flow from the inlet to the outlet of the particles. And the amount of heat radiation (heat loss) increases,
Equipment costs also increase. Further, when the width is widened, the moving speed of the particles becomes slow, and as described in the above-mentioned publication, partitions are formed at regular intervals with partitions that open alternately in the upper and lower directions in the flow direction of the particles. However, it is inevitable that the mixing of particles progresses and a short path occurs even if a method is adopted in which the particles are alternately passed through each compartment and dried. In addition, it is difficult to maintain the optimum particle movement speed and the slenderness ratio of the device according to the device capability in such a one-way flow.
【0005】また、振動流動層の場合には安定した流動
状態を得るためには流動層の深さが例えば100mm前後
というように所定の浅い深さを保つことが好ましいが、
処理量を多くするためには層面積が大きくなるという問
題がある。さらに、乾燥装置や加熱分解装置では、処理
物の品質を保つための制約条件から加熱源の温度を高く
とれない場合がある。この場合、伝熱面積を多くする必
要がある。このためにも層面積が大きくなる。例えば振
動流動層装置としての乾燥装置では、処理物の制約条
件、例えば処理物の結晶水(内部水)を飛ばせない等の
制約条件から加熱源の温度を高くとれないため、処理物
との温度差が小さくなり伝熱面積が大きくなって層面積
が大きくなる場合がある。In the case of a vibrating fluidized bed, in order to obtain a stable fluidized state, it is preferable to maintain a predetermined shallow depth such as a depth of the fluidized bed of, for example, about 100 mm.
In order to increase the processing amount, there is a problem that the layer area becomes large. Furthermore, in a drying apparatus or a thermal decomposition apparatus, the temperature of the heating source may not be able to be increased due to constraints for maintaining the quality of the processed product. In this case, it is necessary to increase the heat transfer area. This also increases the layer area. For example, in the case of a drying apparatus as a vibrating fluidized bed apparatus, the temperature of the heating source cannot be set high due to constraints on the processing object, for example, restrictions such as not allowing crystallization water (internal water) of the processing object to fly. In some cases, the difference becomes smaller, the heat transfer area becomes larger, and the layer area becomes larger.
【0006】本発明はこのような問題に鑑みてなされた
ものであり、粒子のショートパスを効果的に防いで未乾
燥又は未反応粒子の混入がなく、かつ、装置能力にかか
わらず最適な粒子移動速度と装置の細長比を維持できる
等した振動流動層装置を得ることを目的としている。The present invention has been made in view of such a problem, and effectively prevents a short path of particles so that undried or unreacted particles are not mixed. It is an object of the present invention to obtain a vibrating fluidized bed device capable of maintaining a moving speed and a slender ratio of the device.
【0007】[0007]
【課題を解決するための手段】上記の目的を達成するた
めに、本発明の振動流動層装置は、流動室を振動発生装
置により振動させて粉粒体を流動化させ粉粒体を流動室
の一端側の供給口から他端側の排出口に向けて流すよう
にした振動流動層装置において、該流動室内に流動室底
板に所定間隔おいて複数の仕切板を立設して複数の隔室
を形成し、該各々の仕切板に流動室の相対向する側壁と
の間に所定幅の開口を交互に設けて各隔室を互いに連通
させてジグザグ状の粉粒体流路を形成し、各隔室に粉粒
体の流れ方向に延在させて伝熱管を上下および左右方向
に複数本、流動層内に位置するように配設し、左右方向
に隣合う伝熱管の間にスペーサを伝熱管の延在方向に間
隔をおいて取付け、スペーサは上下の伝熱管への取付け
位置を1ピッチずらして取付けた構成とした。In order to achieve the above object, a vibrating fluidized bed apparatus according to the present invention is characterized in that a fluidizing chamber is vibrated by a vibration generating device to fluidize the granular material, and the granular material is fluidized. In a vibrating fluidized bed apparatus which flows from a supply port on one end side to a discharge port on the other end side, a plurality of partition plates are erected at predetermined intervals on a bottom plate of a fluid chamber in the fluid chamber, and a plurality of partitions are provided. Chambers, and each partition plate is provided with openings of a predetermined width alternately between opposing side walls of the flow chamber to communicate the compartments with each other to form a zigzag-like powdery material flow path. A plurality of heat transfer tubes extending vertically and horizontally in each compartment so as to be positioned in the fluidized bed, and a spacer is provided between adjacent heat transfer tubes in the left and right direction. Are attached at intervals in the direction in which the heat transfer tubes extend. It was to the mounting configuration.
【0008】[0008]
【作用】流動室に供給口から供給された粉粒体は振動発
生装置によって振動室が振動されることにより流動化さ
れて流動層が形成されると共に複数の仕切板により構成
された隔室が連通されてなるジグザグ状の粉粒体流路を
通って排出口に向けて流される。この間に粉粒体は流動
層内に上下、左右方向に複数本配設された加熱管(伝熱
管)によって加熱されると共に、左右の伝熱管の間に取
付けられた複数のスペーサから熱を受けて加熱される。
層内の伝熱管とスペーサにより伝熱面積が大きくされて
おり粉粒体は効率良く加熱される。なお、スペーサは伝
熱面積をより増大させると共に伝熱フィンとして作用す
る。従って、処理物の品質を保つための制約条件から加
熱源の温度を高くとれない場合でも伝熱面積が充分大き
く確保されることにより層面積、即ち装置を小さくして
乾燥が効率良く行われる。The granular material supplied from the supply port to the fluidizing chamber is fluidized by vibrating the vibration chamber by the vibration generating device to form a fluidized bed, and the partition composed of a plurality of partition plates is formed. It flows toward the discharge port through a zigzag-shaped powdery material flow path that is communicated. During this time, the powder is heated by a plurality of heating tubes (heat transfer tubes) arranged vertically and horizontally in the fluidized bed and receives heat from a plurality of spacers attached between the left and right heat transfer tubes. Is heated.
The heat transfer area is increased by the heat transfer tubes and spacers in the layer, so that the granular material is efficiently heated. The spacers increase the heat transfer area and also act as heat transfer fins. Therefore, even when the temperature of the heating source cannot be increased due to the constraint conditions for maintaining the quality of the processed material, the heat transfer area is ensured to be sufficiently large, and the layer area, that is, the apparatus is reduced, and drying is efficiently performed.
【0009】また、各隔室において伝熱管は粒子の流れ
方向に延在されて配設されているこにより伝熱管により
粒子の流れが阻害されることなく円滑に流される。そし
て、流路がジグザグ流路とされていることから流路を乾
燥に必要な最適の粒子移動速度および長さを持つ流路に
選ぶことができ粒子のショートパスが極力防止されると
共に、適切な細長比を選ぶことにより、層面積を小さく
して装置を適切な大きさのものとすることができる。In each compartment, the heat transfer tubes extend in the flow direction of the particles, so that the flow of the particles is smoothly flowed without being hindered by the heat transfer tubes. And since the flow path is a zigzag flow path, the flow path can be selected as a flow path having an optimum particle movement speed and length necessary for drying, and a short path of particles is prevented as much as possible and appropriate. By choosing an appropriate slenderness ratio, the layer area can be reduced and the device can be of an appropriate size.
【0010】一方、左右方向に隣合う伝熱管の間には所
定長さのスペーサが伝熱管の延在方向(軸方向)に所定
の間隔をおいて取付けられ、各スペーサは上下の伝熱管
への取付け位置を1ピッチずらして取付けられているこ
とにより、粉粒体が流動室を移動するときにおいて上下
方向のスペーサの間に流動層が形成されることになり、
処理量が多くなり全体的に流動層の深さが深くなっても
スペーサで分割された浅い流動層として流動化を良好に
保つことができる。また、同時に粉粒体の粒子の移動に
伴って伝熱管の軸方向に段違いで隣接するスペーサ上に
落ち込むようにして移動するため流動化が層全体で均等
に行われる。なお、装置を停止したとき、即ち、流動層
が静止したときにスペーサ下面の下部に粒子の存在しな
い空間が形成されることにより、上下のスペーサ間の圧
密が避けられ、再起動時に粒子の流動化がスムーズに行
われる。On the other hand, spacers of a predetermined length are attached at predetermined intervals in the extending direction (axial direction) of the heat transfer tubes between the adjacent heat transfer tubes in the left-right direction, and each spacer is connected to the upper and lower heat transfer tubes. The mounting position is shifted by one pitch so that a fluidized bed is formed between the spacers in the vertical direction when the granular material moves in the flowing chamber,
Even if the processing amount is increased and the depth of the fluidized bed is increased as a whole, the fluidization can be favorably maintained as a shallow fluidized bed divided by spacers. Simultaneously, the fluidization is performed evenly over the entire bed because the particles of the granular material move so as to fall on adjacent spacers in steps in the axial direction of the heat transfer tube with the movement of the particles. In addition, when the apparatus is stopped, that is, when the fluidized bed is stopped, a space where no particles are present is formed at the lower portion of the lower surface of the spacer. Conversion is performed smoothly.
【0011】なお、スペーサを上下面に粉粒体の流れ方
向に先細りの傾きをつけたスペーサとした場合には、振
動により上下方向に運動する粒子を斜面に当てて前方に
移動させる力を与えて粒子を確実に前方へ移動させるこ
とができ、粒子のショートパスをより確実に防ぐことが
可能になる。この場合ジグザグ流路により確保された所
定の送り速度と兼ね合わせて粒子のショートパス防止効
果が一層発揮される。なお、スペーサの下面の勾配を安
息角未満とすることによりスペーサ下面の下部に空間を
より確実に形成させることができる。In the case where the spacers are tapered on the upper and lower surfaces in the direction of the flow of the granular material, a force is applied to move the particles moving in the vertical direction to the slope by vibration to move the particles forward. As a result, the particles can be reliably moved forward, and the short path of the particles can be more reliably prevented. In this case, the effect of preventing a short path of particles is further exhibited in combination with the predetermined feed speed secured by the zigzag flow path. By setting the slope of the lower surface of the spacer to be less than the angle of repose, a space can be more reliably formed below the lower surface of the spacer.
【0012】[0012]
【実施例】次に、図面に示した実施例により本発明を詳
細に説明する。図1は本発明に係る振動流動層乾燥装置
の一実施例を示す概略正断面図、図2は図1のA〜A線
矢視平断面図、図3は図1のB線矢視側断面図である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail with reference to the embodiments shown in the drawings. 1 is a schematic front sectional view showing one embodiment of a vibrating fluidized bed drying apparatus according to the present invention, FIG. 2 is a plan sectional view taken along line A-A of FIG. 1, and FIG. It is sectional drawing.
【0013】図1及び図2に示すように、乾燥装置本体
1は断面矩形状の箱型に形成されると共に乾燥装置本体
1は底板1a部を支持バネ15を介して基礎20によっ
て支持されている。乾燥装置本体1の一端側の左側側部
には被乾燥物(本実施例では平均粒子径30μmの結晶
水を含む2水石膏)が供給される供給口2が設けられて
いると共に、他端側の右側側部下面には乾燥された2水
石膏が排出される排出口3が設けられている。本体1の
上部中央には排気口12が設けられている。また、乾燥
装置本体1の両側の側壁1a、1bの中央部にはそれぞ
れバイブレータ等の振動発生装置(加振装置ともいう)
4が取付けられており、本実施例では加振装置4は両振
幅10mm前後、振動数10Hz前後のものが使用されると
共に、これにより乾燥装置本体1が垂直振動される。As shown in FIGS. 1 and 2, the drying apparatus main body 1 is formed in a box shape having a rectangular cross section, and the drying apparatus main body 1 has a bottom plate 1a supported by a foundation 20 via a support spring 15. I have. A supply port 2 for supplying a material to be dried (in this embodiment, gypsum containing crystallization water having an average particle diameter of 30 μm) is provided on the left side of one end of the drying apparatus main body 1. An outlet 3 from which dried gypsum is discharged is provided on the lower surface on the right side of the side. An exhaust port 12 is provided at the upper center of the main body 1. In addition, vibration generating devices such as vibrators (also referred to as vibrating devices) are provided at the central portions of the side walls 1a and 1b on both sides of the drying device main body 1, respectively.
In this embodiment, the vibration device 4 has a double amplitude of about 10 mm and a vibration frequency of about 10 Hz, whereby the drying apparatus main body 1 is vertically vibrated.
【0014】乾燥装置本体1の内部の底板1a上部分は
流動室6とされ、流動室6は複数(本実施例では4枚)
の仕切板5が被乾燥物の供給口2から排出口3の方向に
略一定間隔で乾燥装置本体1の底板1aに垂直に立設さ
れて区画され複数(本実施例では5室)の隔室7が形成
されている。また、各々の仕切板5には流動室6の相対
向する側壁1b、1cとの間に所定幅の開口6が交互に
形成され、各隔室7は互いに連通されてジグザグ状の被
乾燥物(粉粒体)流路が形成されている。底板1aには
図1、3に示すように空気分散管10が各隔室7の幅方
向に延在し、かつ、左右方向に並置して設けられ、図7
に示すように空気分散管10には底板1a上に向けて空
気が噴出するように空気噴出孔11が穿設されている。The upper portion of the bottom plate 1a inside the drying apparatus main body 1 is a fluid chamber 6, and the fluid chambers 6 are plural (four in this embodiment).
Partitioning plate 5 is vertically erected on the bottom plate 1a of the drying device main body 1 at substantially constant intervals in the direction from the supply port 2 to the discharge port 3 of the object to be dried, and is divided into a plurality (five in this embodiment). A chamber 7 is formed. Openings 6 having a predetermined width are alternately formed in the partition plates 5 between the opposed side walls 1b and 1c of the flow chamber 6, and the compartments 7 are communicated with each other to form a zigzag-shaped material to be dried. A (powder) channel is formed. As shown in FIGS. 1 and 3, the bottom plate 1 a is provided with an air distribution pipe 10 extending in the width direction of each compartment 7 and juxtaposed in the left-right direction.
As shown in FIG. 2, an air ejection hole 11 is formed in the air distribution pipe 10 so that air is ejected toward the bottom plate 1a.
【0015】各隔室7には粉粒体の流れ方向である隔室
7の幅方向に延在して伝熱管としての加熱管8が上下お
よび左右方向に複数本、流動層F内に位置されるように
配設されている。加熱管8は本実施例では8段配置さ
れ、各段の加熱管8は図2に示すように各隔室7の幅方
向の両端部で折り返されて連続されて形成されている。
また、この加熱管8は乾燥装置本体1の側壁(外壁)お
よび仕切板5にも設けられている。即ち、側壁(外壁)
および仕切板5は加熱管8が平板で接続されて構成され
ている。本実施例では図1、5に示すように加熱管8は
四角配列で配置されている。図2に示すように乾燥装置
本体1の右端の壁面に取付けられた上下の加熱管8の端
部には加熱源としての飽和蒸気の入口ヘッダ8aが設け
られ、一方、左端壁面に取付けられた加熱管8には伝熱
に供された飽和蒸気の出口ヘッダ8bが設けられてい
る。In each of the compartments 7, a plurality of heating tubes 8 as heat transfer tubes extending in the width direction of the compartment 7, which is the flow direction of the granular material, are positioned in the fluidized bed F in the vertical and horizontal directions. It is arranged to be. In the present embodiment, the heating tubes 8 are arranged in eight stages, and the heating tubes 8 in each stage are formed by being folded back at both ends in the width direction of each compartment 7 as shown in FIG.
The heating tube 8 is also provided on the side wall (outer wall) of the drying device main body 1 and the partition plate 5. That is, the side wall (outer wall)
The partition plate 5 is configured by connecting a heating tube 8 with a flat plate. In this embodiment, the heating tubes 8 are arranged in a square array as shown in FIGS. As shown in FIG. 2, at the ends of upper and lower heating pipes 8 attached to the right end wall surface of the drying device main body 1, an inlet header 8a for a saturated steam as a heating source is provided, while it is attached to the left end wall surface. The heating tube 8 is provided with an outlet header 8b for saturated steam used for heat transfer.
【0016】左右方向に隣合う加熱管8、8の間には詳
細を図4、5に示すように加熱管8の延在方向(軸方
向)に所定の長さを有したスペーサ9が加熱管8の延在
方向に所定の間隔をおいて取付けられている。そして、
このスペーサ9は上下の加熱管8への取付位置を1ピッ
チずらして取付けられている。また、本実施例ではスペ
ーサ9は左右の加熱管8への取付け位置も1ピッチずら
して取付けられている。各スペーサ9は上下面に粉粒体
の流れ方向に向かって先細りになるように傾きが設けら
れて形成されている。As shown in detail in FIGS. 4 and 5, a spacer 9 having a predetermined length in the extending direction (axial direction) of the heating tube 8 is heated between the adjacent heating tubes 8 in the left-right direction. The tubes 8 are attached at predetermined intervals in the extending direction. And
The spacers 9 are attached to the upper and lower heating tubes 8 by shifting the attachment positions by one pitch. In this embodiment, the spacers 9 are also attached to the left and right heating tubes 8 at positions shifted by one pitch. Each of the spacers 9 is formed on the upper and lower surfaces so as to be inclined so as to be tapered toward the flow direction of the granular material.
【0017】底板1aには図6、7に示すように被乾燥
物粒子の流れ方向に下がる勾配1abが多数連続されて
形成されたのこ歯状表面が設けられている。一方、図
8、9に示すように仕切板5の開口6が位置する部位の
底板1aは、粒子が空気分散管10に邪魔されることが
なく円滑に方向転換して隣の隔室7に流入するように、
空気分散管10の上面に位置されている。As shown in FIGS. 6 and 7, the bottom plate 1a is provided with a saw-toothed surface in which a number of gradients 1ab descending in the flow direction of the particles to be dried are formed continuously. On the other hand, as shown in FIGS. 8 and 9, the bottom plate 1 a at the portion where the opening 6 of the partition plate 5 is located is turned smoothly without the particles being obstructed by the air dispersion pipe 10, and is turned into the adjacent compartment 7. As it flows in,
It is located on the upper surface of the air distribution pipe 10.
【0018】次に、このような構成の振動流動層乾燥装
置の作動について説明する。結晶水(内部水)を含む平
均粒子径30μmの2水石膏を乾燥装置本体1の供給口
2から供給して図1、2の左端の隔室7の底板1a上に
載せ、加振装置4を作動させて流動室6を上下振動させ
ると、2水石膏の粒子は流動化されて所定高さの流動層
Fが形成されると共に、仕切板5で形成された隔室7間
を図2に示すように矢印Gの方向にジグザグ状に流され
ながら図示右端の排出口3が位置する隔室7に向かう。
なお、加熱管8は各隔室7において2水石膏粒子の流れ
方向に延在しているので粒子は加熱管8に沿って円滑に
流れる。上下に多段(本実施例では8段)配設された加
熱管8は流動化されて形成された流動層Fにより埋没さ
れる。Next, the operation of the vibrating fluidized bed drying apparatus having such a configuration will be described. Gypsum with an average particle diameter of 30 μm containing crystallization water (internal water) is supplied from the supply port 2 of the drying device main body 1 and placed on the bottom plate 1 a of the leftmost compartment 7 in FIGS. Is operated to vertically vibrate the fluidized chamber 6, the particles of gypsum dihydrate are fluidized to form a fluidized bed F of a predetermined height, and the space between the compartments 7 formed by the partition plate 5 is shown in FIG. As shown in the figure, while flowing in a zigzag manner in the direction of arrow G, it heads toward the compartment 7 where the outlet 3 at the right end in the figure is located.
In addition, since the heating pipe 8 extends in the flow direction of the gypsum particles in each compartment 7, the particles flow smoothly along the heating pipe 8. The heating tubes 8 arranged in multiple stages (eight stages in this embodiment) are buried in a fluidized bed F formed by fluidization.
【0019】この間に2水石膏粒子は加熱管8およびス
ペーサ9に接し、加熱源としての飽和蒸気の流通により
加熱された加熱管8およびスペーサ9からの熱によって
表面の付着水分が蒸発されて乾燥される。しかして、こ
の2水石膏の乾燥においては結晶水を飛ばすことができ
ず加熱源である飽和蒸気温度は高くすることはできない
が、層内加熱管8とスペーサ9により伝熱面積が充分に
大きく確保されていることにより、層面積を大きくする
ことなく表面付着水分を蒸発させて粒子を目的とする乾
燥度に乾燥させることができる。In the meantime, the gypsum dihydrate particles come into contact with the heating tube 8 and the spacer 9, and the heat from the heating tube 8 and the spacer 9 heated by the flow of the saturated steam as a heating source evaporates the water adhering to the surface to dry. Is done. In the drying of the dihydrate gypsum, the water of crystallization cannot be flown out and the saturated steam temperature as the heating source cannot be increased, but the heat transfer area is sufficiently large due to the in-layer heating pipe 8 and the spacer 9. When the particles are secured, the particles can be dried to a desired degree of drying by evaporating the moisture attached to the surface without increasing the layer area.
【0020】そして、図4、5に示すように、スペーサ
9は上下の加熱管8への取付け位置を1ピッチずらして
取付けられていることにより、粒子が流動室6の隔室7
を移動するときにおいて、上下方向のスペーサ9の間に
流動層Fsが形成されるため、スペーサ9で分割された
浅い流動層Fs(高さH)として流動化を良好に保つこ
とができ効率良く乾燥を行うことができる。また、図4
でもわかるように粒子の移動に伴って加熱管8の軸方向
(延在方向)に段違いで隣接するスペーサ9上に落ち込
むようにして移動するので均等な流動化が行われる。な
お、本実施例ではスペーサ9は左右の加熱管8への取付
け位置も1ピッチずらして取付けられていることによ
り、粒子が全体的により一層均等に充填されるようにな
り、より一層均一な流動化が行われるものとなってい
る。As shown in FIGS. 4 and 5, the spacers 9 are attached to the upper and lower heating tubes 8 at a position shifted by one pitch, so that the particles are separated from the compartment 7 of the flow chamber 6.
Is moved, the fluidized bed Fs is formed between the spacers 9 in the vertical direction, so that the fluidized bed Fs (height H) divided by the spacers 9 can maintain good fluidization and can be efficiently operated. Drying can be performed. FIG.
However, as can be seen, the particles are moved so as to fall on the adjacent spacer 9 at different levels in the axial direction (extending direction) of the heating tube 8 with the movement of the particles, so that uniform fluidization is performed. In this embodiment, since the spacers 9 are attached to the left and right heating tubes 8 at positions shifted by one pitch, the particles can be more uniformly filled as a whole, and a more uniform flow can be achieved. Has been implemented.
【0021】また、上記蒸発、乾燥過程において、乾燥
流路は仕切板5で画成された隔室7間でジグザグ状通路
とされていることから2水石膏粒子の乾燥のための所望
の滞留時間が確保されると共に、粒子同士の移動方向の
混合が極力防がれショートパスが極力防止されるため粒
子の乾燥ムラがなく均一乾燥された粒子が製品として排
出口3から取り出され所望の乾燥度にまで効率良く乾燥
される。そして、乾燥装置本体1はジグザグ状流路とさ
れていることにより最適な細長比(縦、横の長さの比)
を以て大きさが決定されるため、徒に細長い装置になる
ことがなく、設置面積も適正な面積とされる。In the above evaporation and drying process, the drying flow path is formed as a zigzag passage between the compartments 7 defined by the partition plates 5, so that a desired residence for drying the gypsum dihydrate particles is obtained. As time is secured, mixing in the moving direction of the particles is prevented as much as possible, and the short path is prevented as much as possible. It is efficiently dried to the point. The drying apparatus main body 1 has an optimum slenderness ratio (ratio of vertical and horizontal lengths) due to the zigzag flow path.
Since the size is determined according to the above, the device does not become a slender device, and the installation area is set to an appropriate area.
【0022】なお、本実施例では、上記蒸発、乾燥過程
において、排ガスの水蒸気圧を下げ乾燥を促進するため
底板1aに設けた空気供給管10の空気噴出孔11から
一定量の空気が吹き込まれる。この空気量は最小流動化
速度に相当する量より少ない量とされ、粒子の飛び出し
も微量とされる。また、底板1a表面は粒子の流れ方向
に下がる勾配1abが多数連続されて設けられた、のこ
歯状表面とされていることにより底板1a上では2水石
膏粒子は確実に送り方向(流れ方向)に流される。そし
て、仕切板5の開口6の付近は底板1aが空気分散管1
0の表面に平面として位置されていることにより、隣の
隔室7内に図2に矢印Gで示すように円滑に方向を転換
して流入する。In this embodiment, a certain amount of air is blown from the air ejection holes 11 of the air supply pipe 10 provided in the bottom plate 1a in order to lower the water vapor pressure of the exhaust gas and promote drying in the evaporation and drying processes. . The amount of air is smaller than the amount corresponding to the minimum fluidization speed, and the amount of particles jumping out is also small. Further, the surface of the bottom plate 1a has a saw-toothed surface provided with a large number of continuous gradients 1ab descending in the flow direction of the particles, so that the dihydrate gypsum particles can be reliably fed on the bottom plate 1a in the feeding direction (flow direction). ). In the vicinity of the opening 6 of the partition plate 5, the bottom plate 1a is
By being positioned as a plane on the surface of the zero, the air flows smoothly into the adjacent compartment 7 as shown by the arrow G in FIG.
【0023】一方、本実施例では、図10にも示すよう
にスペーサ9の上面9aおよび下面9bに粒子の流れ方
向に先細りとなるように傾きがつけられているため、ス
ペーサ9の上面9aではスペーサ9により加振力が粒子
に与えられて粒子が斜め上方前方に移動されるようにな
り、また、その下面9bには下方にあるスペーサ9によ
り上方に移動された粒子が当たって衝突して跳ね返り斜
め下方前方に移動されるようになる。従って、振動によ
り上下方向に運動する粒子を上面9aおよび下面9bの
斜面に当てて前方に移動させる力を与えて粒子を確実に
前方へ移動させることができ、移動方向前後の粒子の混
合を防いで粒子のショートパスをより一層確実に防止す
ることができる。この場合、ジグザグ流路により確保さ
れた所定の送り速度と兼ね合わせて粒子のショートパス
防止効果が一層発揮される。On the other hand, in the present embodiment, as shown in FIG. 10, the upper surface 9a and the lower surface 9b of the spacer 9 are inclined so as to be tapered in the flow direction of the particles. The vibration force is applied to the particles by the spacers 9 so that the particles are moved obliquely upward and forward, and the particles moved upward by the spacers 9 located below hit the lower surface 9b and collide. It will rebound and move diagonally downward and forward. Therefore, the particles moving in the vertical direction due to the vibration are applied to the slopes of the upper surface 9a and the lower surface 9b to apply a force to move the particles forward, so that the particles can be surely moved forward, and the mixing of the particles before and after the movement direction is prevented. Thus, the short path of the particles can be more reliably prevented. In this case, the effect of preventing a short path of particles is further exhibited in combination with the predetermined feed speed secured by the zigzag flow path.
【0024】なお、図11に示すように、乾燥装置本体
1を停止したとき、即ち、振動作用を停止し流動層Fの
静止時にスペーサ9の下面9bの下部に粒子の存在しな
い空間Sが形成されることにより、上下のスペーサ9間
の圧密を避けることができ、再起動時に粒子の流動化を
スムーズに行わせることができる。また、この場合、ス
ペーサ9の下面9bの勾配は安息角RA未満とすること
によりスペーサ下面9bに空間Sをより確実に形成させ
ることができる。なお、スペーサ9の下面9bの勾配を
安息角RA以上の大きな傾斜面とするとその下面9bの
下部分には粒子が入り込むため空間が形成されない。As shown in FIG. 11, when the drying apparatus main body 1 is stopped, that is, when the vibration action is stopped and the fluidized bed F is stopped, a space S free of particles is formed below the lower surface 9b of the spacer 9. By doing so, consolidation between the upper and lower spacers 9 can be avoided, and fluidization of particles can be smoothly performed at the time of restart. In this case, by setting the gradient of the lower surface 9b of the spacer 9 to be less than the angle of repose RA, the space S can be more reliably formed on the lower surface 9b of the spacer. If the slope of the lower surface 9b of the spacer 9 is a large inclined surface having a repose angle RA or more, no space is formed below the lower surface 9b because particles enter the lower surface 9b.
【0025】次に、本実施例装置を用いたテスト例を説
明する。流動室6に仕切板5を4枚設けて構成した各隔
室7に、1インチの加熱管8を50.8mmピッチで四角
配列(上下左右共、同ピッチ)で配置し、左右の加熱管
8の間に加熱管8の軸方向の長さを100mmとしたスペ
ーサ9を加熱管8の軸方向に100mm間隔で取付けた。
そして、上下および左右の加熱管8への取付けピッチを
いずれも1ピッチずらして取付けた。乾燥装置本体1を
4個所の支持バネ15上に設置した。Next, a test example using the apparatus of this embodiment will be described. Heating tubes 8 of 1 inch are arranged in a square array (upper, lower, left and right, same pitch) at a pitch of 50.8 mm in each compartment 7 configured by providing four partition plates 5 in the flow chamber 6. Spacers 9 having a length of the heating tube 8 in the axial direction of 100 mm were attached between the heating tubes 8 at intervals of 100 mm in the axial direction of the heating tube 8.
The mounting pitches to the upper and lower heating tubes 8 were shifted by one pitch. The drying device main body 1 was set on four support springs 15.
【0026】このように構成した振動流動層乾燥装置を
用い、入口付着水分が10%で平均粒子径が30μmの
2水石膏(CaSO4 ・2H2O) の粒子を供給口2から供給
し、2個の加振装置4で両振幅10mm前後、振動数10
Hz前後で上下振動させ振動流動層Fを形成させ、加熱管
8に124℃の飽和蒸気を供給して結晶水が飛ばないよ
うに加熱した。なお、排ガスの水蒸気圧を下げ乾燥を促
進するため、底板1aに設けた空気分散管10の空気噴
出孔11より粒子の最小流動化速度に相当する量より少
なく粒子の飛び出しも微量となるような一定量の空気を
吹き込んだ。その結果、表面付着水分が0.5%以下ま
で乾燥され、乾燥ムラが殆どない製品粒子が排出口3か
ら連続して得られた。Using the vibrating fluidized bed drying apparatus thus configured, dihydrate gypsum (CaSO 4 .2H 2 O) particles having an adhering water content of 10% and an average particle diameter of 30 μm are supplied from the supply port 2, With two vibration devices 4, both amplitudes are around 10 mm, frequency 10
By vibrating vertically at about Hz to form a vibrating fluidized bed F, saturated steam at 124 ° C. was supplied to the heating pipe 8 to heat it so that water of crystallization did not fly. In order to reduce the water vapor pressure of the exhaust gas and promote drying, the amount of particles that flow out from the air ejection holes 11 of the air dispersion pipe 10 provided in the bottom plate 1a is smaller than the amount corresponding to the minimum fluidization speed of the particles, and the amount of the particles jumping out is also small. A certain amount of air was blown. As a result, the surface adhered moisture was dried to 0.5% or less, and product particles having almost no drying unevenness were continuously obtained from the outlet 3.
【0027】以上の実施例では、振動流動層装置が乾燥
装置である場合を示したが、本発明は物質を加熱分解し
て特定成分、組成のガスを取り出す加熱分解装置として
も好適に用いることができる。また、加熱管8の加熱媒
体も蒸気に限らず、高温の溶融塩等も使用することがで
きるIn the above embodiment, the case where the vibrating fluidized bed apparatus is a drying apparatus has been described. However, the present invention can be suitably used as a thermal decomposition apparatus for thermally decomposing a substance to extract a gas having a specific component and composition. Can be. The heating medium of the heating tube 8 is not limited to steam, and a high-temperature molten salt or the like can be used.
【0028】[0028]
【発明の効果】以上の説明から明らかなように、本発明
の振動流動層装置によれば、振動流動層装置が本来有し
ている粒子同士の混合およびショートパス防止機能をジ
グザグ流路によって一層確実なものとすることができ
る。また、粒子は流動層内の伝熱面積が大きく確保され
た加熱管等の伝熱管およびスペーサに接触して効率良く
熱を吸収することができる。これにより層面積を小さく
することができる。そして、流動層は所定の浅い流動層
が組み合わされて構成されることにより流動層の流動化
を良好に行うことができると共に層面積を小さくするこ
とができる。さらに、装置は粒子の移動速度又は滞留時
間と兼ね合いを持たせて適切な細長比でもって構成する
ことができ層面積および設置面積を適正なものとするこ
とができると共に放熱量を小さくすることができる。As is clear from the above description, according to the vibrating fluidized bed apparatus of the present invention, the function of mixing particles and preventing short paths inherent in the vibrating fluidized bed apparatus is further enhanced by the zigzag flow path. It can be assured. Further, the particles can efficiently absorb heat by coming into contact with a heat transfer tube such as a heating tube and a spacer in which a large heat transfer area is secured in the fluidized bed. Thereby, the layer area can be reduced. The fluidized bed is formed by combining predetermined shallow fluidized beds, so that the fluidized bed can be fluidized well and the bed area can be reduced. Furthermore, the device can be configured with an appropriate slenderness ratio in consideration of the moving speed or residence time of the particles, so that the layer area and the installation area can be made appropriate and the heat radiation amount can be reduced. it can.
【0029】本発明装置を流動層乾燥装置として適用す
るときには、例えば、被乾燥物の制約条件により加熱源
温度を高くできない場合でも流動層の層面積を小さいも
のとして、適切な細長比の大きさの乾燥装置として未乾
燥粒子の混入或いは乾燥ムラを生じず、均一乾燥を行う
ことができ、効率良く乾燥を行うことができる。When the apparatus of the present invention is applied as a fluidized bed drying apparatus, for example, even if the temperature of the heating source cannot be increased due to the restriction of the material to be dried, the bed area of the fluidized bed is reduced and the appropriate slenderness ratio is set. As a drying apparatus, uniform drying can be performed without causing mixing of undried particles or uneven drying, and drying can be performed efficiently.
【図1】本発明に係る振動流動層乾燥装置の一実施例を
示す概略正断面図である。FIG. 1 is a schematic front sectional view showing one embodiment of a vibrating fluidized bed drying apparatus according to the present invention.
【図2】図1のA〜A線矢視平断面図である。FIG. 2 is a plan sectional view taken along line AA of FIG. 1;
【図3】図1のB線矢視側断面図である。FIG. 3 is a sectional side view taken along line B in FIG. 1;
【図4】図1のC線矢視断面図であり伝熱管およびスペ
ーサの部分側面拡大図である。FIG. 4 is a cross-sectional view taken along line C of FIG. 1 and is an enlarged partial side view of a heat transfer tube and a spacer.
【図5】スペーサを取付けた伝熱管の斜視図である。FIG. 5 is a perspective view of a heat transfer tube to which a spacer is attached.
【図6】図1のD線矢視断面図であり、底板に設けたの
こ歯状表面を示す図である。FIG. 6 is a cross-sectional view taken along line D in FIG. 1, showing a saw-toothed surface provided on a bottom plate.
【図7】底板を示す斜視図である。FIG. 7 is a perspective view showing a bottom plate.
【図8】図2のE〜E線矢視断面図である。FIG. 8 is a sectional view taken along line EE of FIG. 2;
【図9】図8のF線矢視断面図である。FIG. 9 is a cross-sectional view taken along line F of FIG. 8;
【図10】スペーサによる粒子の前方移動作用を説明す
る図である。FIG. 10 is a diagram illustrating a forward movement effect of particles by a spacer.
【図11】スペーサ回りの粒子の状態を示す図である。FIG. 11 is a diagram showing a state of particles around a spacer.
1 乾燥装置本体 1a 底板 2 被乾燥物供給口 3 被乾燥物排出口 4 加振装置(振動発生装置) 5 仕切板 5a 開口(仕切板) 6 流動室 7 隔室 8 加熱管(伝熱管) 9 スペーサ 9a スペーサ上面 9a スペーサ下面 10 空気分散管 12 排気口 15 支持バネ F 流動層 Fs 分割された浅い流動層 S スペーサ下面空間 DESCRIPTION OF SYMBOLS 1 Drying apparatus main body 1a Bottom plate 2 Dry material supply port 3 Dry material discharge port 4 Exciter (vibration generator) 5 Partition plate 5a Opening (partition plate) 6 Flow chamber 7 Separator 8 Heating pipe (heat transfer pipe) 9 Spacer 9a Spacer upper surface 9a Spacer lower surface 10 Air distribution pipe 12 Exhaust port 15 Support spring F Fluidized bed Fs Divided shallow fluidized bed S Spacer underside space
Claims (1)
粉粒体を流動化させ粉粒体を流動室の一端側の供給口か
ら他端側の排出口に向けて流すようにした振動流動層装
置において、該流動室内に流動室底板に所定間隔おいて
複数の仕切板を立設して複数の隔室を形成し、該各々の
仕切板に流動室の相対向する側壁との間に所定幅の開口
を交互に設けて各隔室を互いに連通させてジグザグ状の
粉粒体流路を形成し、各隔室に粉粒体の流れ方向に延在
させて伝熱管を上下および左右方向に複数本、流動層内
に位置するように配設し、左右方向に隣合う伝熱管の間
にスペーサを伝熱管の延在方向に間隔をおいて取付け、
スペーサは上下の伝熱管への取付け位置を1ピッチずら
して取付けたことを特徴とする振動流動層装置。An oscillating flow in which a fluid chamber is vibrated by a vibration generator to fluidize a granular material and flow the granular material from a supply port at one end of the fluid chamber to a discharge port at the other end. In the bed apparatus, a plurality of partition plates are erected at predetermined intervals on the bottom plate of the flow chamber in the flow chamber to form a plurality of compartments, and each partition plate is provided between the opposed side walls of the flow chamber. Openings having a predetermined width are alternately provided to connect the compartments to each other to form a zigzag-shaped powdery material flow path, and extend in each compartment in the flow direction of the powdery material so that the heat transfer tubes are vertically and horizontally. Multiple in the direction, arranged so as to be located in the fluidized bed, spacers are installed at intervals in the direction in which the heat transfer tubes extend between heat transfer tubes adjacent in the left-right direction,
A vibrating fluidized bed apparatus wherein the spacers are attached to the upper and lower heat transfer tubes by being shifted by one pitch.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11328093A JP2918138B2 (en) | 1993-05-14 | 1993-05-14 | Vibrating fluidized bed equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11328093A JP2918138B2 (en) | 1993-05-14 | 1993-05-14 | Vibrating fluidized bed equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06323724A JPH06323724A (en) | 1994-11-25 |
JP2918138B2 true JP2918138B2 (en) | 1999-07-12 |
Family
ID=14608183
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11328093A Expired - Lifetime JP2918138B2 (en) | 1993-05-14 | 1993-05-14 | Vibrating fluidized bed equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2918138B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003137682A (en) * | 2001-11-02 | 2003-05-14 | Chisso Corp | Method of manufacturing coated bioactive granular material |
JP6972570B2 (en) * | 2017-02-15 | 2021-11-24 | 株式会社Ihi | Drying equipment and boiler system |
JP7225727B2 (en) * | 2018-11-20 | 2023-02-21 | 株式会社Ihi | drying equipment |
-
1993
- 1993-05-14 JP JP11328093A patent/JP2918138B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH06323724A (en) | 1994-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6328099B1 (en) | Moving bed dryer | |
US4071304A (en) | Separation of products in granular form | |
JP3345002B2 (en) | Process for fluidizing powder or particulate material or product by treating with gas, floor plate and fluidized bed dryer used in the process | |
EP0125516B1 (en) | Granulating apparatus | |
RU2002118783A (en) | Circulating pvc fluidized bed with controlled in-layer heat exchanger | |
EP1352945A1 (en) | Apparatus for mixing feedstock and catalyst particles | |
JPH0463729B2 (en) | ||
US4670993A (en) | Method for fluidizing fine kaolin particles | |
US4235024A (en) | Fluidized bed treatment apparatus | |
JPS6223237B2 (en) | ||
JP2918138B2 (en) | Vibrating fluidized bed equipment | |
US6851558B2 (en) | Method and a device for processing a solution, melt, suspension, emulsion, slurry or solids into granules | |
CN109140905B (en) | Drying device and drying method for vibrating fluidized bed | |
JPS5885096A (en) | Fluid bed type heat exchanger | |
US4949735A (en) | Treatment of particulate materials | |
JPS6363253B2 (en) | ||
US4446629A (en) | Fluidized bed heat exchanger utilizing induced circulation | |
US4297321A (en) | Apparatus having main and auxiliary fluidized beds therein | |
US2812592A (en) | Heat treatment of finely-divided solids | |
EP0026775B1 (en) | Heat exchanger for gases | |
US5105559A (en) | Flow-seal fluidization nozzle and a fluidized bed system utilizing same | |
JP2700892B2 (en) | Vibrating fluidized bed equipment | |
EP0078706B1 (en) | Fluidized bed heat exchanger incorporating induced circulation utilizing directional and/or differential bed fluidization | |
RU2812073C1 (en) | Fluidized bed installation | |
KR100510880B1 (en) | Dispersion Nozzle and Fluidized Bed Reactor Using the Same |