JP2915453B2 - Image input device - Google Patents
Image input deviceInfo
- Publication number
- JP2915453B2 JP2915453B2 JP1309736A JP30973689A JP2915453B2 JP 2915453 B2 JP2915453 B2 JP 2915453B2 JP 1309736 A JP1309736 A JP 1309736A JP 30973689 A JP30973689 A JP 30973689A JP 2915453 B2 JP2915453 B2 JP 2915453B2
- Authority
- JP
- Japan
- Prior art keywords
- light receiving
- receiving element
- light
- output
- image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Image Input (AREA)
- Image Analysis (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、入力画像のエッジ抽出機能を備えた画像入
力装置に関する。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image input device having an edge extraction function of an input image.
多数の光受容素子を二次元的に配設してなり入力画像
を受光する光受容素子層と、光受容素子層の複数個の光
受容素子からの光電変換出力を夫々受信して演算処理し
入力画像のエッジを検出する演算回路部とを有する画像
入力装置を用い、生体の視覚系を模倣した画像処理を行
う並列画像処理系が知られている(例えば、特公昭50−
34901号公報等)。A plurality of light receiving elements are two-dimensionally arranged to receive an input image, and a photoelectric conversion output from a plurality of light receiving elements of the light receiving element layer is received and arithmetically processed. 2. Description of the Related Art A parallel image processing system that performs image processing that imitates a visual system of a living body by using an image input device having an arithmetic circuit unit that detects an edge of an input image is known (for example, Japanese Patent Publication No.
No. 34901).
ところで、生体の網膜には、物の形、すなわち、輪郭
(エッジ)を検知するための機構と、動きを検知するた
めの機構とがある(その他に色を検知するための機構等
もある)。物の形を検知するためには高い分解能が必要
であり、生態の場合、その中心部にそのための細胞が存
在する。また、動きを検知するためには、十分な感度が
必要で、抜け目なく検知する必要があり、生体の場合、
比較的視野周辺部にそのための細胞が集まっている。By the way, the retina of a living body has a mechanism for detecting the shape of an object, that is, a contour (edge), and a mechanism for detecting a movement (there is another mechanism for detecting a color, etc.). . High resolution is required to detect the shape of an object, and in the case of ecology, there are cells for that in the center. In addition, in order to detect motion, sufficient sensitivity is required, and it is necessary to perform detection without flash.
Cells for that purpose are relatively concentrated around the visual field.
したがって、このような生態の視覚構造の特性を持つ
画像入送装置を実現するためには、前述の画像入力装置
の光受容素子層の中央部に高い分解能を持つ光受容素子
を配置し、周辺部に高い感度を持つ光受容素子を配置し
て実現する方法が考えられる。Therefore, in order to realize an image input / output device having the characteristics of such an ecological visual structure, a photoreceptor having a high resolution is arranged at the center of the photoreceptor element layer of the above-described image input device, and a peripheral portion is provided. A method is conceivable in which a light receiving element having high sensitivity is arranged in the portion to realize the light receiving element.
しかしながら、上述の画像入力装置を具体的に実現す
るには、光受容素子層に特性の異なる多数の光受容素子
を配設しなければならず光受容素子層の構造が複雑とな
り、また、光受容素子層と演算部とを結ぶ配線や回路構
成も複雑となるなどの実現上の問題があり、人工的な装
置としては実現されていない。However, in order to specifically realize the above-described image input device, a large number of light receiving elements having different characteristics must be provided in the light receiving element layer, and the structure of the light receiving element layer becomes complicated, There are problems in realization such as the wiring and circuit configuration between the receiving element layer and the arithmetic unit becoming complicated, and it has not been realized as an artificial device.
本発明は上記事情に鑑みてなされたものであって、視
野中心部では分解能が高く、周辺部では感度の高いエッ
ジ抽出能力を有し、より生体の視覚特性に近い画像入力
特性を有する画像入力装置を提供することを目的とす
る。The present invention has been made in view of the above circumstances, and has a high resolution at the center of the visual field, a high edge extraction capability at the peripheral portion, and an image input having image input characteristics closer to the visual characteristics of a living body. It is intended to provide a device.
上記目的を達成するため、本発明による画像入力装置
は、前面側から受けた光を背面側に拡散する拡散面を備
え上記拡散面に入力画像が結像される光拡散部材と、中
心部受光素子とその中心部受光素子の周囲を囲繞する周
辺部受光素子とからなる光受容素子組を複数個一次元的
若しくは二次元的に配設してなり上記光拡散部材の背面
側に配置され上記拡散面からの拡散光を受光して上記入
力画像を検出する光受容素子列と、上記光受容素子列の
各光受容素子組毎に設けられ中心部受光素子からの光電
変換出力と周辺部受光素子からの光電変換出力とを夫々
所定の増幅率で増幅したのち両出力の差動出力を求める
演算回路とを備え、上記演算回路からの出力によって入
力画像に対応するエッジ出力を得る装置であって、上記
光拡散部材の拡散面を曲面形状としたことを特徴とす
る。In order to achieve the above object, an image input device according to the present invention includes a light diffusion member having a diffusion surface for diffusing light received from the front side to the back side, and an input image formed on the diffusion surface. A plurality of light receiving element sets each including an element and a peripheral light receiving element surrounding the periphery of the central light receiving element are arranged one-dimensionally or two-dimensionally, and are arranged on the back side of the light diffusing member. A light receiving element array for receiving the diffused light from the diffusion surface and detecting the input image; a photoelectric conversion output from a central light receiving element provided for each light receiving element set of the light receiving element array; An arithmetic circuit for amplifying the photoelectric conversion output from the element at a predetermined amplification factor and then obtaining a differential output between the two outputs, and obtaining an edge output corresponding to an input image by an output from the arithmetic circuit. The diffusion surface of the light diffusion member Characterized in that it has a curved shape.
本発明による画像入力装置では、光受容素子列を構成
する中心部受光素子とその中心部受光素子の周囲を囲繞
する周辺部受光素子とからなる光受容素子組が1単位の
画素として機能し、各光受容素子組の中心部受光素子の
送電変換出力と周辺部受光素子の光電変換出力は、入力
画像の濃淡(入力光の強弱)に応じた出力となる。In the image input device according to the present invention, a light receiving element set including a central light receiving element constituting a light receiving element array and a peripheral light receiving element surrounding the periphery of the central light receiving element functions as one unit of pixel, The power transmission conversion output of the central light receiving element and the photoelectric conversion output of the peripheral light receiving element of each light receiving element set are outputs according to the density of the input image (the intensity of the input light).
ここで、演算回路は、上記光受容素子列の各光受容素
子組毎に設けられ中心部受光素子からの光電変換出力と
周辺部受光素子からの光電変換出力とを夫々所定の増幅
率で増幅したのち両出力の差動出力を出力するように構
成されており、均一光入射時に中心部受光素子と周辺部
受光素子の出力が1:1の関係となるように上記増幅率を
調整することにより、上記差動出力から入力画像の輪郭
(絵、文字、物体等の輪郭、すなわち、入力画像の濃淡
の境目)に対応したエッジ出力を得ることができる。。
また、周辺部受光素子側の増幅率を“0"とすれば、差動
出力は中心部受光素子の出力のみとなり、入力画像の濃
淡に対応したオリジナル画像出力が得られる。Here, the arithmetic circuit amplifies the photoelectric conversion output from the central light receiving element and the photoelectric conversion output from the peripheral light receiving element at a predetermined amplification factor, which are provided for each light receiving element set in the light receiving element row. After that, it is configured to output the differential output of both outputs, and the above amplification factor is adjusted so that the output of the central light receiving element and the peripheral light receiving element has a 1: 1 relationship when uniform light is incident. Accordingly, an edge output corresponding to the contour of the input image (the contour of a picture, a character, an object, or the like, that is, the boundary between the light and shade of the input image) can be obtained from the differential output. .
If the amplification factor on the peripheral light receiving element side is "0", the differential output is only the output of the central light receiving element, and an original image output corresponding to the density of the input image can be obtained.
また、上記光受容素子列の分解能と感度とは、光受容
素子列の受光面と光拡散部材の拡散面との距離に依存
し、受光面と拡散面との距離を近くすると分解能が高く
なり、距離が離れると光受容素子組間のクロストーク領
域が拡がり感度が高くなる。In addition, the resolution and sensitivity of the light receiving element array depend on the distance between the light receiving surface of the light receiving element array and the diffusion surface of the light diffusing member, and the resolution increases as the distance between the light receiving surface and the diffusion surface decreases. When the distance increases, the crosstalk area between the light receiving element sets expands, and the sensitivity increases.
したがって、光拡散部材の拡散面を曲面形状としたこ
とにより、受光面と拡散面との距離が近い部分では分解
能が高く、受光面と拡散面との距離が離れた部分では感
度が高くなる。Therefore, by forming the diffusion surface of the light diffusing member into a curved surface shape, the resolution is high in a portion where the distance between the light receiving surface and the diffusion surface is short, and the sensitivity is high in a portion where the distance between the light receiving surface and the diffusion surface is large.
以下、本発明の画像入力装置について図面を参照して
詳細に説明する。Hereinafter, an image input device of the present invention will be described in detail with reference to the drawings.
先ず、第4図及び第5図を参照して本発明の画像入力
装置の基本構成について説明する。First, the basic configuration of the image input device of the present invention will be described with reference to FIGS.
第4図において、符号2は撮影レンズを示し、この撮
影レンズ2の入力画像1結像位置には、前面側から受け
た光を背面側に拡散する拡散面を備えこの拡散面に上記
入力画像1が結像される光拡散部材13が配置されてい
る。In FIG. 4, reference numeral 2 denotes a photographing lens, and a diffusing surface for diffusing light received from the front side to the rear side is provided at the image forming position of the input image 1 of the photographing lens 2 and the diffusing surface is provided with the input image. A light diffusing member 13 on which an image 1 is formed is arranged.
この光拡散部材13の背面側には、第5図に示すよう
に、中心部受光素子7とその中心部受光素子7の周囲を
囲繞する周辺部受光素子8とからなる光受容素子組6を
複数個一次元的若しくは二次元的に配設してなる光受容
素子列層4が配置されており、上記拡散面からの拡散光
を受光して上記入力画像を検出するように構成されてい
る。As shown in FIG. 5, a light receiving element set 6 including a central light receiving element 7 and a peripheral light receiving element 8 surrounding the central light receiving element 7 is provided on the back side of the light diffusing member 13. A plurality of light receiving element array layers 4 arranged one-dimensionally or two-dimensionally are arranged, and are configured to receive the diffused light from the diffusion surface and detect the input image. .
光受容素子列層4を構成する光受容素子組6は円形の
受光面を備え光電変換機能を有する中心部受光素子7
と、中心部受光素子7の周囲を囲繞する円環状の受光面
を備え光電変換機能を有する周辺部受光素子8とによっ
て構成されており、中心部受光素子7と周辺部受光素子
8とは、夫々、増幅器9,10の入力端子に接続され、両素
子からの光電変換出力が夫々所定の増幅率で増幅され出
力されるようになっている。そいて、両増幅器9,10の出
力端は、後段の差動増幅器11の非反転入力端子と反転入
力端子とに夫々接続されており、両増幅器9,10からの出
力の差動出力が得られるようになっている。すなわち、
上記増幅器9,10と差動増幅器11とは、上記光受容素子列
層4の各光受容素子組6毎に設けられ、中心部受光素子
7からの光電変換出力と周辺部受光素子8からの光電変
換出力とを夫々所定の増幅率で増幅したのち両出力の差
動出力を求める演算回路を構成している。尚、上記演算
回路の差動増幅器11からの出力は、後段に接続された並
列画像処理装置5に入力され、入力画像のオリジナル画
像検出、エッジ検出、動き検出等に供される。The light receiving element set 6 constituting the light receiving element array layer 4 has a central light receiving element 7 having a circular light receiving surface and having a photoelectric conversion function.
And a peripheral light receiving element 8 having an annular light receiving surface surrounding the periphery of the central light receiving element 7 and having a photoelectric conversion function. The central light receiving element 7 and the peripheral light receiving element 8 are: They are connected to the input terminals of the amplifiers 9 and 10, respectively, so that the photoelectric conversion outputs from both elements are amplified and output at predetermined amplification factors, respectively. The output terminals of both amplifiers 9 and 10 are connected to the non-inverting input terminal and the inverting input terminal of differential amplifier 11 at the subsequent stage, respectively, so that differential outputs of the outputs from both amplifiers 9 and 10 can be obtained. It is supposed to be. That is,
The amplifiers 9 and 10 and the differential amplifier 11 are provided for each photoreceptor element set 6 of the photoreceptor element row layer 4, and the photoelectric conversion output from the central photoreceptor 7 and the output from the peripheral photoreceptor 8 are provided. An arithmetic circuit for amplifying the photoelectric conversion output at a predetermined amplification factor and obtaining a differential output of both outputs is configured. The output from the differential amplifier 11 of the arithmetic circuit is input to the parallel image processing device 5 connected at the subsequent stage, and is used for original image detection, edge detection, motion detection, and the like of the input image.
さて、第4図及び第5図に示す構成の画像入力装置で
は、光受容素子列層4を構成する、中心部受光素子7と
その中心部受光素子7の周囲を囲繞する周辺部受光素子
8とからなる光受容素子組6が1単位の画素として機能
し、各光受容素子組6の中心部受光素子7の光電変換出
力と周辺部受光素子8の光電変換出力は、夫々入力画像
の濃淡(入力光の強弱)に応じた出力となる。In the image input device having the structure shown in FIGS. 4 and 5, the central light receiving element 7 and the peripheral light receiving element 8 surrounding the central light receiving element 7 constituting the light receiving element array layer 4 are described. And a photoelectric conversion output of the central light receiving element 7 and a photoelectric conversion output of the peripheral light receiving element 8 of each of the light receiving element sets 6 are shades of the input image. (The intensity of the input light).
ここで、演算回路は、上述したように、光受容素子列
層4の各光受容素子組6毎、すなわち、1画素毎に設け
られ、中心部受光素子7からの光電変換出力と周辺部受
光素子8からの光電変換出力とを夫々所定の増幅率で増
幅したのち両出力の差動出力を出力するように構成され
ているから、均一光入射時に中心部受光素子7と周辺部
受光素子8の出力が1:1の関係となるように増幅器9,10
の増幅率を調整することにより、差動増幅器11の差動出
力から入力画像の輪郭(絵、文字、物体等の輪郭、すな
わち、入力画像の濃淡の境目)に対応したエッジ出力を
得ることができる。Here, as described above, the arithmetic circuit is provided for each light receiving element set 6 of the light receiving element row layer 4, that is, for each pixel, and outputs the photoelectric conversion output from the central light receiving element 7 and the peripheral light receiving element. Since the photoelectric conversion output from the element 8 and the photoelectric conversion output from the element 8 are each amplified by a predetermined amplification factor, and the differential output of both outputs is output, the central light receiving element 7 and the peripheral light receiving element 8 when uniform light enters. Amplifiers 9 and 10 so that the outputs of
By adjusting the amplification factor, it is possible to obtain an edge output corresponding to the contour of the input image (the contour of a picture, a character, an object, or the like, that is, the boundary of the light and shade of the input image) from the differential output of the differential amplifier 11. it can.
また、周辺部受光素子8側の増幅器10の増幅率を“0"
とすれば、差動増幅器11からの差動出力は中心部受光素
子7の出力のみとなり、入力画像の濃淡に対応したオリ
ジナル画像出力が得られる。また、周辺部受光素子8側
の増幅器10を反転増幅器に切り替え可能とすれば、この
増幅器からの出力は負極性出力となるから差動増幅器11
からの出力は中心部受光素子側の出力との和となり、入
力画像の濃淡に対応したオリジナル画像出力を得る場合
に有利となる。In addition, the amplification factor of the amplifier 10 on the peripheral light receiving element 8 side is set to “0”.
Then, the differential output from the differential amplifier 11 is only the output of the central light receiving element 7, and an original image output corresponding to the density of the input image is obtained. Further, if the amplifier 10 on the side of the peripheral light receiving element 8 can be switched to an inverting amplifier, the output from this amplifier becomes a negative output, so that the differential amplifier 11
Is the sum with the output of the central light receiving element, which is advantageous when obtaining an original image output corresponding to the density of the input image.
尚、各増幅器9,10の増幅率の切り替えが並列画像処理
装置5側からの信号によって切り替えられるようにして
おけば、入力画像のオリジナル画像検出とエッジ検出の
切り替えとが容易となる。If the switching of the amplification factor of each of the amplifiers 9 and 10 is switched by a signal from the parallel image processing device 5, it is easy to switch between the original image detection and the edge detection of the input image.
ところで、上記光受容素子列層4の分離能と感度と
は、各光受容素子組6の特性が同一であれば、光受容素
子列層4の受光面4aと光拡散部材13の拡散面との距離に
依存し、受光面4aと拡散面の背面側13bとの距離を近く
すると分解能が高くなり、距離が離れると光受容素子組
6間のクロストーク領域が拡がり感度が高くなる。した
がって、光受容素子列層4の受光面4aと光拡散部材13の
拡散面との距離、すなわち間隔を調整することによっ
て、画像入力装置の分解能及び感度を操作することがで
きる。By the way, the separation ability and sensitivity of the light receiving element array layer 4 are defined as the light receiving surface 4a of the light receiving element array layer 4 and the diffusion surface of the light diffusing member 13 if the characteristics of each light receiving element set 6 are the same. When the distance between the light receiving surface 4a and the back surface 13b of the diffusion surface is short, the resolution increases, and when the distance increases, the crosstalk region between the photoreceptor element sets 6 expands to increase the sensitivity. Therefore, the resolution and sensitivity of the image input device can be controlled by adjusting the distance between the light receiving surface 4a of the light receiving element array layer 4 and the diffusion surface of the light diffusion member 13, that is, the distance.
ここで、第6図は上述の検証結果を示す図であって、
光拡散部材13の拡散面の背面側と光受容素子列層4の受
光面4aとの間の面間隔dを3段階に変化させた場合の差
動出力(エッジ検出出力)波形の関係を示す図である。Here, FIG. 6 is a diagram showing the above-mentioned verification results,
FIG. 7 shows the relationship between differential output (edge detection output) waveforms when the surface distance d between the back surface of the light diffusing member 13 and the light receiving surface 4a of the light receiving element array layer 4 is changed in three stages. FIG.
第6図(a),(b),(c)中、上段の図は先の第
5図と対応する図であり、符号14はエッジ形成のための
遮光板、符号13は光拡散部材、符号6は光受容素子組を
示す。また、図中の数値は相対値であり、光受容素子組
6の中心部受光素子7の受光面の半径a1を2、周辺部受
光素子8の受光面の内周側半径a2を3、同外周側半径a3
を5とした場合の相対値である。エッジ検出方法として
は、光拡散部材13の拡散面に密接して遮光板14を載置し
た状態で均一光を照射し、遮光板14を徐々に図中x方向
に変位させながら中心部受光素子7と周辺部受光素子8
の出力の差動出力を検出する。尚、均一光入射時に中心
部受光素子7と周辺部受光素子8の出力が1:1の関係と
なるように前述の増幅器9,10の増幅率が調整されてお
り、したがって、差動増幅器からの差動出力(エッジ出
力)は、両受光素子7,8の受光面上に遮光板14が無い状
態のとき、及び、両受光素子7,8の受光面が遮光板14で
完全に覆われているときには“0"となる。6 (a), (b) and (c), the upper diagram is a diagram corresponding to the previous FIG. 5, reference numeral 14 is a light shielding plate for forming an edge, reference numeral 13 is a light diffusing member, Reference numeral 6 denotes a light receiving element set. The numerical values in the figure are relative values, and the radius a1 of the light receiving surface of the central light receiving element 7 of the light receiving element set 6 is 2, the inner radius a2 of the light receiving surface of the peripheral light receiving element 8 is 3, and the same. Outer radius a3
Is a relative value when 5 is set. As an edge detection method, a uniform light is irradiated in a state where the light shielding plate 14 is placed in close contact with the diffusion surface of the light diffusion member 13, and the central light receiving element is gradually displaced in the x direction in the drawing. 7 and peripheral light receiving element 8
Detect the differential output of the outputs. The amplification factors of the amplifiers 9 and 10 are adjusted so that the outputs of the central light receiving element 7 and the peripheral light receiving element 8 have a 1: 1 relationship at the time of uniform light incidence. The differential output (edge output) is when the light-shielding plate 14 is not on the light-receiving surfaces of both light-receiving elements 7 and 8, and when the light-receiving surfaces of both light-receiving elements 7 and 8 are completely covered by the light-shielding plate 14. It becomes “0” when it is.
さて、第6図(a),(b),(c)の各下段側の図
は、前述の面間隔dが夫々相対値で2、10、15の時に、
遮光板14で光受容素子組6の全面を遮光した状態から遮
光板14をx方向に変位した場合の遮光板の変位xに対す
るエッジ出力を示したものである。6 (a), 6 (b), and 6 (c) show that the above-mentioned surface distance d is 2, 10, and 15 in relative values, respectively.
The edge output with respect to the displacement x of the light-shielding plate when the light-shielding plate 14 is displaced in the x direction from the state where the entire surface of the light receiving element set 6 is shielded from light by the light-shielding plate 14 is shown.
ここで、第6図(a)に示すように、面間隔dが小さ
い場合には、光受容素子組6の各受光素子7,8の受光域
は狭く、このため、分解能は比較的高くなる。しかしな
がら、各受光素子7,8の受光域が狭いため、隣合う光受
容素子組とのクロストーク領域も狭く、不感部が生ずる
虞れがあり、エッジの位置によっては、不応答となり、
所謂抜け目が生じる虞れがある。また、第6図(c)に
示すように、面間隔dが大きい場合には、光受容素子組
6の各受光素子7,8の受光域は広くなるが、分解能は比
較的低くなる。しかしながら、各受光素子7,8の受光域
が広いため、隣合う光受容素子組とのクロストーク領域
も広くなり、エッジの有無に対する検知を抜け目なく行
うことができる。すなわち、感度良くエッジ検知を行え
る。Here, as shown in FIG. 6 (a), when the surface distance d is small, the light receiving area of each of the light receiving elements 7, 8 of the light receiving element set 6 is narrow, so that the resolution is relatively high. . However, since the light receiving area of each of the light receiving elements 7 and 8 is narrow, a crosstalk area between the adjacent light receiving element sets is also narrow, and a dead portion may be generated.
There is a possibility that a so-called loop may occur. In addition, as shown in FIG. 6C, when the surface distance d is large, the light receiving areas of the light receiving elements 7 and 8 of the light receiving element set 6 are widened, but the resolution is relatively low. However, since the light receiving area of each of the light receiving elements 7 and 8 is wide, the crosstalk area between the adjacent light receiving element sets is also wide, and the detection of the presence or absence of the edge can be performed without fail. That is, edge detection can be performed with high sensitivity.
以上のように、光受容素子列層4の分解能と感度と
は、各光受容素子組6の特性が同一であれば、光受容素
子列層4の受光面4aと光拡散部材13の拡散面との面間隔
dに依存し、面間隔dを小さくすると分解能が高くな
り、エッジ形状、すなわち、絵や文字、物体等の輪郭の
形状検出に有利となる。また、面間隔dが大きいと、光
受容素子組6間のクロストーク領域が拡がり感度が高く
なり、エッジの有無の検知に有利となる。As described above, the resolution and sensitivity of the light receiving element array layer 4 are the same as the light receiving surface 4a of the light receiving element array layer 4 and the diffusion surface of the light diffusing member 13 if the characteristics of each light receiving element set 6 are the same. The resolution increases as the surface distance d decreases, which is advantageous for detecting the edge shape, that is, the shape of the contour of a picture, a character, or an object. Further, when the surface distance d is large, the crosstalk region between the light receiving element groups 6 expands, and the sensitivity increases, which is advantageous for detecting the presence or absence of an edge.
このように、光受容素子列層4の受光面4aと光拡散部
材13の拡散面との距離、すなわち面間隔を調整すること
によって、画像入力装置の分解能及び感度を操作するこ
とができるが、第4図乃至第6図に示したように光拡散
部材13の拡散面が均一な平面の場合には、エッジ検出の
分解能及び感度は視野全面において均一であり、生体の
視覚特性のように、両機能を同時に満たすことは難し
い。As described above, by adjusting the distance between the light receiving surface 4a of the light receiving element array layer 4 and the diffusion surface of the light diffusion member 13, that is, the surface interval, the resolution and sensitivity of the image input device can be controlled. When the diffusion surface of the light diffusion member 13 is a uniform plane as shown in FIGS. 4 to 6, the resolution and sensitivity of edge detection are uniform over the entire visual field, and, as in the visual characteristics of a living body, It is difficult to satisfy both functions at the same time.
そこで、本発明による画像入力装置では、生体の視覚
特性と同様に、視野中心部では分解能が高く、視野周辺
部では感度が高いエッジ抽出能力を持たせるため、前述
の画像入力装置の構成に加え、光拡散部材の拡散面を曲
面形状とする。Therefore, the image input device according to the present invention has a high resolution in the center of the visual field and a high edge extraction capability in the peripheral portion of the visual field, similarly to the visual characteristics of the living body. The light diffusion member has a curved diffusion surface.
第1図及び第2図は本発明による画像入力装置の実施
例を示す図であって、夫々前述の第4図、第5図に対応
する図であり、第4図、第5図に示す装置との違いは光
拡散部材3の拡散面を曲面形状としたことにあり、その
他の構成は同一のものである。FIGS. 1 and 2 are views showing an embodiment of an image input device according to the present invention, which correspond to FIGS. 4 and 5, respectively, and are shown in FIGS. 4 and 5, respectively. The difference from the device is that the light diffusing surface of the light diffusing member 3 has a curved shape, and the other configuration is the same.
第1図及び第2図において、光拡散部材3の拡散面3a
は凹面状の曲面形状となっており、光受容素子列層4の
受光面4aと光拡散部材3の拡散面背面側3bとの面間隔
は、拡散面の背面側の頂点と対向する光受容素子列の中
央部で小さく、周辺部で大きくなるように構成されてい
る。このため、拡散面の背面側の頂点と対向する光受容
素子列の中央部では光受容素子組6の受光域は狭く分解
能が高く、周辺部に進むに従って拡散面と受光面との面
間隔が大きくなるため、周辺部に進むに従い光受容素子
組の受光域は広くなり、分解能を下げる代わりに感度が
高くなる。1 and 2, the diffusion surface 3a of the light diffusion member 3 is shown.
Has a concave curved surface shape, and the surface interval between the light receiving surface 4a of the light receiving element array layer 4 and the diffusion surface back surface 3b of the light diffusion member 3 is the light receiving surface facing the vertex on the back surface side of the diffusion surface. It is configured to be small at the center of the element row and large at the periphery. For this reason, the light receiving area of the light receiving element set 6 is narrow at the central portion of the light receiving element row facing the vertex on the back side of the diffusion surface and the resolution is high, and the surface distance between the diffusion surface and the light receiving surface increases toward the peripheral portion. As the distance increases, the light receiving area of the photoreceptor element set becomes wider as it goes to the peripheral portion, and the sensitivity increases instead of lowering the resolution.
以上のように、第1図及び第2図に示す構成の画像入
力装置では、光拡散部材3の拡散面を曲面形状とし、光
受容素子列層4の受光面4aに対して凸面となるように設
置したことにより、光受容素子列層4の中央部では分解
能が高く、周辺部では感度を高くすることができ、生体
の視覚特性に近いエッジ検出特性を備えた画像入力装置
を実現することができる。As described above, in the image input device having the configuration shown in FIG. 1 and FIG. 2, the light diffusing surface of the light diffusing member 3 is formed into a curved surface, and the light diffusing surface becomes convex with respect to the light receiving surface 4a of the light receiving element array layer 4. In this case, the resolution is high in the central part of the light receiving element array layer 4 and the sensitivity is high in the peripheral part, thereby realizing an image input device having edge detection characteristics close to the visual characteristics of a living body. Can be.
また、上述の構成に加えて、第3図に示すように、光
受容素子列層4の受光面と光拡散部材3の拡散面との間
にレンズアレイ15を設けて、各光受容素子組6の中心部
受光素子7と周辺部受光素子8の指向特性を操作するこ
ともできる。Further, in addition to the above-described configuration, as shown in FIG. 3, a lens array 15 is provided between the light receiving surface of the light receiving element array layer 4 and the diffusion surface of the light diffusing member 3, and The directional characteristics of the central light-receiving element 7 and the peripheral light-receiving element 8 can also be controlled.
尚、第1図乃至第3図のように光拡散部材3の拡散面
を曲面形状にする代わりに、光受容素子列層4の受光面
側を曲面として構成することにより同様の作用効果を得
ることができるが、受光面側を曲面形状として作製する
のは、技術的に困難であり、また、生産性も悪くなる。In addition, instead of forming the diffusion surface of the light diffusion member 3 as a curved surface as shown in FIGS. 1 to 3, the same effect can be obtained by configuring the light receiving surface side of the light receiving element array layer 4 as a curved surface. However, it is technically difficult to fabricate the light receiving surface side as a curved surface, and the productivity is deteriorated.
以上説明したように、本発明の画像入力装置において
は、入力画像のオリジナル画像出力、エッジ抽出出力を
選択的に容易に得ることができ、後段の並列画像処理装
置との組合せにより、原稿画像の絵、文字の輪郭の抽出
や分類、撮影物体の輪郭の抽出、動き検知等を行う、人
工視覚に近い画像処理装置を実現することができる。As described above, in the image input device of the present invention, an original image output and an edge extraction output of an input image can be selectively and easily obtained, and in combination with a subsequent parallel image processing device, an original image output can be obtained. It is possible to realize an image processing device similar to artificial vision, which performs extraction and classification of outlines of pictures and characters, extraction of outlines of photographed objects, motion detection, and the like.
また、本発明の画像入力装置においては、入力像中心
部においては比較的分解能の高いエッジ検知を行い、周
辺部においては比較的感度の高いエッジ検知を行うの
で、より生体の視覚特性に近い画像取り込みが可能とな
り、ロボットアイ等の人工視覚装置の実現が容易とな
る。Further, in the image input device of the present invention, relatively high-resolution edge detection is performed at the center of the input image, and relatively high-sensitivity edge detection is performed at the peripheral portion. Capture becomes possible, and it becomes easy to realize an artificial vision device such as a robot eye.
第1図は本発明による画像入力装置の実施例を示す概略
構成図、第2図は第1図に示す画像入力装置の概略的要
部構成図、第3図は本発明による画像入力装置の別の実
施例を示す概略的要部構成図、第4図は本発明による画
像入力装置の基本構成を示す概略構成図、第5図は第4
図に示す画像入力装置の概略的要部構成図、第6図は第
5図に示す構成の画像入力装置において、光受容素子列
層の受光面と拡散板との間の面間隔を図中(a),
(b),(c)に示す3段階に変化させ場合の遮光板変
位に対するエッジ出力波形の関係を示す説明図である。 1……入力画像、2……撮影レンズ、3,13……光拡散部
材、4……光受容素子列層、6……光受容素子組、7…
…中心部受光素子、8……周辺部受光素子、9,10……増
幅器、11……差動増幅器、14……遮光板、15……レンズ
アレイ。FIG. 1 is a schematic configuration diagram showing an embodiment of an image input device according to the present invention, FIG. 2 is a schematic configuration diagram of main parts of the image input device shown in FIG. 1, and FIG. FIG. 4 is a schematic configuration diagram showing a basic configuration of an image input apparatus according to the present invention, and FIG.
FIG. 6 is a schematic view of a main part of the image input device shown in FIG. 6, and FIG. 6 is a diagram showing a surface interval between a light receiving surface of a light receiving element array layer and a diffusion plate in the image input device having the structure shown in FIG. (A),
It is explanatory drawing which shows the relationship of the edge output waveform with respect to the light-shielding plate displacement at the time of changing to three steps shown to (b) and (c). 1 ... input image, 2 ... photographing lens, 3,13 ... light diffusing member, 4 ... light receiving element array layer, 6 ... light receiving element set, 7 ...
... Central light receiving element, 8 ... Peripheral light receiving element, 9,10 ... Amplifier, 11 ... Differential amplifier, 14 ... Light shield plate, 15 ... Lens array.
Claims (1)
散面を備え上記拡散面に入力画像が結像される光拡散部
材と、中心部受光素子とその中心部受光素子の周囲を囲
繞する周辺部受光素子とからなる光受容素子組を複数個
一次元的若しくは二次元的に配設してなり上記光拡散部
材の背面側に配置され上記拡散面からの拡散光を受光し
て上記入力画像を検出する光受容素子列と、上記光受容
素子列の各光受容素子組毎に設けられ中心部受光素子か
らの光電変換出力と周辺部受光素子からの光電変換出力
とを夫々所定の増幅率で増幅したのち両出力の差動出力
を求める演算回路とを備え、上記演算回路からの出力に
よって入力画像に対応するエッジ出力を得る装置であっ
て、上記光拡散部材の拡散面を曲面形状としたことを特
徴とする画像入力装置。A light diffusion member having a diffusion surface for diffusing light received from a front side to a back side, an input image being formed on the diffusion surface, a central light receiving element, and a periphery of the central light receiving element. A plurality of light receiving element sets including a surrounding peripheral light receiving element are arranged one-dimensionally or two-dimensionally, and are arranged on the back side of the light diffusion member to receive diffused light from the diffusion surface. A light receiving element array for detecting the input image, and a photoelectric conversion output from a central light receiving element and a photoelectric conversion output from a peripheral light receiving element provided for each light receiving element set of the light receiving element row are respectively predetermined. And an arithmetic circuit for obtaining a differential output of both outputs after amplification at an amplification factor of, and an edge output corresponding to an input image by an output from the arithmetic circuit, wherein the diffusion surface of the light diffusion member is Image input characterized by having a curved shape Location.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1309736A JP2915453B2 (en) | 1989-11-29 | 1989-11-29 | Image input device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1309736A JP2915453B2 (en) | 1989-11-29 | 1989-11-29 | Image input device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03168882A JPH03168882A (en) | 1991-07-22 |
JP2915453B2 true JP2915453B2 (en) | 1999-07-05 |
Family
ID=17996681
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1309736A Expired - Fee Related JP2915453B2 (en) | 1989-11-29 | 1989-11-29 | Image input device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2915453B2 (en) |
-
1989
- 1989-11-29 JP JP1309736A patent/JP2915453B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH03168882A (en) | 1991-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023029344A1 (en) | Complementary single-pixel centroid detection system and method | |
WO2002049366A1 (en) | 3d camera | |
JP2915453B2 (en) | Image input device | |
US5144684A (en) | Parallel image processing apparatus using edge detection layer | |
US20190123075A1 (en) | Color pixel and range pixel combination unit | |
JP2540801B2 (en) | Automatic focus adjustment device | |
JP2869161B2 (en) | Reflective chopper for infrared imaging device | |
AU2006267263A1 (en) | 3-dimensional image detector | |
JPH0763512A (en) | Light position detecting device | |
JPS63143862A (en) | Solid-state image sensing device | |
JP3007659B2 (en) | Edge extraction device | |
JPH03159485A (en) | Image sensor | |
JPH0373074A (en) | Image input device | |
JPS5541432A (en) | Focus detector | |
JPS58100807A (en) | Focusing device | |
JPH03274971A (en) | Infrared ray image pickup device | |
JP2840387B2 (en) | Optical signal processing device | |
US6281486B1 (en) | Off-axis image correction with spaced photodetectors | |
JP3658068B2 (en) | Imaging device | |
JPS62188901A (en) | Optical position detector | |
JPH03129574A (en) | Artificial visual device | |
GB2165121A (en) | Photoelectric receiver having local brightness adaptation | |
JPH01209884A (en) | Picture input device | |
JPH0314187A (en) | Image input device | |
JPS5727244A (en) | Distance measuring device of camera |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |