JP2914333B2 - Base sequence determination method - Google Patents

Base sequence determination method

Info

Publication number
JP2914333B2
JP2914333B2 JP9009164A JP916497A JP2914333B2 JP 2914333 B2 JP2914333 B2 JP 2914333B2 JP 9009164 A JP9009164 A JP 9009164A JP 916497 A JP916497 A JP 916497A JP 2914333 B2 JP2914333 B2 JP 2914333B2
Authority
JP
Japan
Prior art keywords
gel
concentration
migration
equation
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP9009164A
Other languages
Japanese (ja)
Other versions
JPH09171001A (en
Inventor
秀記 神原
佳子 片山
哲夫 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9009164A priority Critical patent/JP2914333B2/en
Publication of JPH09171001A publication Critical patent/JPH09171001A/en
Application granted granted Critical
Publication of JP2914333B2 publication Critical patent/JP2914333B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はDNAあるいはRNAの
塩基配列決定方法及び塩基配列決定装置に係わり、特に
測定時間の短縮に好適な方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for determining the base sequence of DNA or RNA, and more particularly to a method and apparatus suitable for shortening the measurement time.

【0002】[0002]

【従来の技術】従来、DNAなどの塩基配列決定はDN
A断片を放射性元素で標識し、長さに応じてゲル電気泳
動分離したパターンをオートラジオグラフイーで写真に
転写し、DNAバンドパターンを読み取ることによりな
されていた。これは手間と時間のかかる難点があった。
そこで放射性標識に代わり、蛍光標識を用いて、実時間
でDNA断片を分離検出して塩基配列を決定する手法が
発展してきた。このような蛍光標識を用いた実時間検出
法及びこれに用いる光検出型電気泳動装置については、
例えば、ジャーナル オブ バイオケミカル アンド
バイオフイジカルメソーズ 13(1986)315−
323(Journal of Biochemica
l and Biophysical Methods
13(1986)315−323)、あるいはネーチ
ャー 321,12,6月,1986,第674頁−第
679頁(Nature Vol.321 12 Ju
ne 1986)に記載されている。
2. Description of the Related Art Conventionally, base sequence determination of DNA and the like has been performed by DN.
The fragment A was labeled with a radioactive element, the pattern obtained by gel electrophoresis separation according to the length was transferred to a photograph by autoradiography, and the DNA band pattern was read. This had the disadvantage that it was troublesome and time-consuming.
Thus, a technique has been developed in which a DNA fragment is separated and detected in real time to determine a base sequence by using a fluorescent label instead of a radioactive label. About the real-time detection method using such a fluorescent label and the light detection type electrophoresis apparatus used for the method,
For example, Journal of Biochemical and
Bioactive Physical Methods 13 (1986) 315-
323 (Journal of Biochemical)
l and Biophysical Methods
13 (1986) 315-323), or Nature 321, December, June, 1986, pp. 674-679 (Nature Vol. 321 12 Ju).
ne 1986).

【0003】[0003]

【発明が解決しようとする課題】上記従来技術では、泳
動開始から測定終了までに5〜10時間もの長時間を要
する難点があった。このような長時間泳動を必要とする
原因はゲル電気泳動現象の詳細が知られていないこと、
実時間検出法ではオートラジオグラムを目視してバンド
を読み取る時の位置分解能よりも光検出の位置分解能が
悪く、長い泳動路を必要とすること、それにもかかわら
ずオートラジオグラフイーと同じような通常8%程度の
高いアクリルアミド濃度の泳動分離器で測定を行なって
いることなどによる。本発明の課題はこの難点を解決
し、短時間で測定を終了しえるDNAあるいはRNAの
塩基配列決定方法及び装置を提供することにある。
In the above-mentioned prior art, there is a problem that it takes as long as 5 to 10 hours from the start of the electrophoresis to the end of the measurement. The reason why such long-time electrophoresis is required is that the details of the gel electrophoresis phenomenon are not known,
In the real-time detection method, the position resolution of light detection is lower than the position resolution when reading the band by looking at the autoradiogram, and a long electrophoresis path is required. This is due to the fact that the measurement is carried out using a migration separator having a high acrylamide concentration of usually about 8%. An object of the present invention is to provide a method and an apparatus for determining the base sequence of DNA or RNA, which can solve the above-mentioned difficulties and can complete the measurement in a short time.

【0004】[0004]

【課題を解決するための手段】そこで上記短時間計測と
いう目的は、ゲル電気泳動の諸条件を最適化することに
より達成される。具体的には、電気泳動分離器に用いる
ゲルのポリアクリルアミド濃度を2%〜6%とすること
で達成される。より詳細には、測定上支障のない電界強
度及び温度下で、DNAバンドを識別すると共に泳動に
要する時間tをできるだけ小さくするようなゲル濃度C
及び泳動路長Lを選ぶ。
Accordingly, the object of the short-time measurement is achieved by optimizing various conditions of gel electrophoresis. Specifically, it is achieved by setting the polyacrylamide concentration of the gel used for the electrophoresis separator to 2% to 6%. More specifically, the gel concentration C is such that the DNA band is identified and the time t required for the electrophoresis is as small as possible under the electric field strength and temperature at which there is no problem in the measurement.
And the length L of the migration path.

【0005】[0005]

【作用】塩基長NのDNA断片長の泳動速度V(N)を
用いると泳動路長Lを泳動するに要する時間tは(数
1)と表示できる。
Using the migration speed V (N) of the DNA fragment length of base length N, the time t required to migrate the migration path length L can be expressed as (Equation 1).

【0006】[0006]

【数1】 t=L/V(N) …(数1) V(N)はゲル中の電界強度Eに比例し、比例係数V0
(N,C,T)はDNA断片の塩基数即ち塩基長N、ポ
リアクリルアミドの濃度C、及び温度Tの関数である。
T = L / V (N) (Equation 1) V (N) is proportional to the electric field strength E in the gel, and a proportional coefficient V 0
(N, C, T) is a function of the number of bases, that is, the base length N, the concentration C of polyacrylamide, and the temperature T of the DNA fragment.

【0007】[0007]

【数2】 t=L/{E・V0(N,C,T)} …(数2) 電界強度Eを高くすると泳動に要する時間tは小さくで
きるが、ジュール熱が発生してゲル板の温度が高くなり
DNAバンドの分離に支障をきたす。測定上支障のない
電界強度E及び温度(T)下で、DNAバンドを識別す
ると共に泳動に要する時間tをできるだけ小さくするよ
うなゲル濃度C及び泳動路長Lを選ぶことにより短時間
計測を実現できる。
T = L / {E · V 0 (N, C, T)} (Equation 2) When the electric field strength E is increased, the time t required for electrophoresis can be shortened. , The temperature of the DNA band increases, which hinders the separation of the DNA band. Under the electric field intensity E and temperature (T) at which there is no problem in the measurement, a short time measurement is realized by selecting the gel concentration C and the migration path length L so as to identify the DNA band and minimize the time t required for the electrophoresis as much as possible. it can.

【0008】[0008]

【実施例】以下、本発明の一実施例を図1〜図5を用い
て説明する。図1は本発明による光検出型電気泳動装置
の一例である。レーザー源31から得た励起用レーザー
1はレンズ2を通して側面から電気泳動ゲル4に入る。
電気泳動ゲル4は石英板3に保持されている。蛍光標識
DNAなどの試料32は、例えばゲル4の上端部を泳動
開始点として泳動分離されながらゲル4の下端部に向か
つて進んでゆく。泳動開始点から一定距離の所をレーザ
ー1は照射し、そこを通過する蛍光標識DNAからの蛍
光をフイルタ5付きレンズ6で集光し、イメージ増幅器
7で増幅しリレーレンズ8を通した後ビジコンカメラ9
で検出する。得られた信号は計算機10で処理され出力
される。レーザーを側面から入れる代わりに前面から一
定路上をスキャンして照射してもよい。泳動時間は(数
2)からわかるように泳動開始点からレーザ照射部まで
の距離L、ポリアクリルアミドゲルの濃度C、ゲル板の
上下両端に加える電圧v(あるいはゲル中での電界強度
E)に依存する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to FIGS. FIG. 1 shows an example of a photodetection type electrophoresis apparatus according to the present invention. The excitation laser 1 obtained from the laser source 31 enters the electrophoresis gel 4 from the side through the lens 2.
The electrophoresis gel 4 is held on the quartz plate 3. The sample 32 such as a fluorescence-labeled DNA advances toward the lower end of the gel 4 while being subjected to electrophoretic separation with the upper end of the gel 4 as an electrophoresis starting point, for example. The laser 1 irradiates a certain distance from the electrophoresis start point, and the fluorescence from the fluorescently labeled DNA passing therethrough is collected by the lens 6 with the filter 5, amplified by the image amplifier 7, passed through the relay lens 8, Camera 9
To detect. The obtained signal is processed and output by the computer 10. Instead of inserting the laser from the side, it may scan and irradiate a fixed road from the front. As can be seen from (Equation 2), the migration time is determined by the distance L from the electrophoresis start point to the laser irradiation part, the concentration C of the polyacrylamide gel, the voltage v applied to the upper and lower ends of the gel plate (or the electric field intensity E in the gel). Dependent.

【0009】図2は種々のゲル濃度におけるDNA断片
の泳動時間tを示したものである。DNA断片の泳動時
間tは、泳動速度V(N)が電界強度Eに比例すること
及び図2から(数2)と表示できる。なお、V0(N,
C,T)=f(C,T)N+g(T)である。
FIG. 2 shows the migration times t of DNA fragments at various gel concentrations. The migration time t of the DNA fragment can be expressed as (Equation 2) from FIG. 2 that the migration speed V (N) is proportional to the electric field strength E. Note that V 0 (N,
C, T) = f (C, T) N + g (T).

【0010】[0010]

【数3】 t=(L/E){f(C,T)N+g(T)} …(数3) ここで、f(C,T)及びg(T)はポリアクリルアミ
ドの濃度C、及び温度Tの関数である。塩基長を零に漸
近した時の泳動時間t0は(数3)のL・g(T)/E
に等しく、濃度Cによらない。(数1)及び(数3)か
らV(N)は(数4)と表示できる。
T = (L / E) {f (C, T) N + g (T)} (Equation 3) where f (C, T) and g (T) are polyacrylamide concentration C, and It is a function of the temperature T. When the base length is asymptotically reduced to zero, the electrophoresis time t 0 is L · g (T) / E in (Equation 3).
And does not depend on the concentration C. From (Equation 1) and (Equation 3), V (N) can be expressed as (Equation 4).

【0011】[0011]

【数4】 V(N)=E/{f(C,T)N+g(T)} …(数4) 時間tだけ泳動した時の隣接したバンドの間隔dは(数
5)となる。
V (N) = E / {f (C, T) N + g (T)} (Equation 4) The interval d between adjacent bands when electrophoresed for time t is (Equation 5).

【0012】[0012]

【数5】 d={V(N)−V(N+1)}t =L/{N+(g(T)/f(C,T))} …(数5) この(数5)からバンド間隔dは塩基長Nの値が大きい
時、ポリアクリルアミドの濃度Cにあまり依存せず、L
/Nに近くなることがわかる。例えば、L=220mm
とする時、N=100、200、300、400塩基に
対して、L/N=2.2、1.1、0.73、0.55
となる。
D = {V (N) -V (N + 1)} t = L / {N + (g (T) / f (C, T))} (Equation 5) From this (Equation 5), the band interval When the value of the base length N is large, d does not depend much on the concentration C of polyacrylamide.
/ N. For example, L = 220 mm
L / N = 2.2, 1.1, 0.73, 0.55 for N = 100, 200, 300, 400 bases
Becomes

【0013】図3は実測のバンド間隔の濃度依存性を種
々の塩基長について示したものである。泳動距離は22
cmである。塩基長が100程度と短い時にはゲル濃度
Cを上げるとバンド間隔dも大きくなるが、塩基長が2
00以上、とくに300あるいは400になってくると
ゲル濃度C、6%ではバンド間隔はほぼ一定になり、6
%以上のゲルの使用は単に泳動時間の増大を招くだけで
あることがわかる。一方、DNAバンド幅ωはゲル濃度
にほとんど依存せず、√Lにほぼ比例することが実験か
ら確認できた。そこで、ωは(数6)で表わすことがで
きる。
FIG. 3 shows the concentration dependence of the measured band interval for various base lengths. Migration distance is 22
cm. When the base length is as short as about 100, increasing the gel concentration C increases the band interval d.
When the gel concentration is more than 00, especially 300 or 400, the band interval becomes almost constant at the gel concentration C and 6%.
It can be seen that the use of more than 10% gel merely leads to an increase in the migration time. On the other hand, it was confirmed from the experiment that the DNA bandwidth ω hardly depends on the gel concentration and is almost proportional to ΔL. Therefore, ω can be represented by (Equation 6).

【0014】[0014]

【数6】 ω=ω0(N,T)√L …(数6) 図4は種々の塩基長の泳動時間のポリアクリルアミドゲ
ル濃度依存性を示したものである。濃度Cのほぼ2乗に
比例して泳動時間が増大することがわかる。温度を一定
にした時、泳動時間tは泳動路長Lとゲル濃度Cの函数
である。二つの隣接バンドを識別するには少なくともd
≧ωである必要がある。そこでd=ωとおいて、泳動時
間tをゲル濃度Cだけの函数にして、泳動時間tを最小
にするゲル濃度Cを求めた。d=ω、(数5)、(数
6)から(数7)のようにLを求め、(数3)に代入し
て(数8)を得る。
Ω = ω 0 (N, T) √L (Equation 6) FIG. 4 shows the polyacrylamide gel concentration dependence of the migration time of various base lengths. It can be seen that the migration time increases in proportion to the square of the concentration C. When the temperature is kept constant, the migration time t is a function of the migration path length L and the gel concentration C. At least d to distinguish two adjacent bands
≧ ω is required. Then, with d = ω, the migration time t was made a function of the gel concentration C only, and the gel concentration C that minimized the migration time t was determined. L is obtained as in (Equation 7) from d = ω, (Equation 5) and (Equation 6), and substituted into (Equation 3) to obtain (Equation 8).

【0015】[0015]

【数7】 L=ω0 2(N,T){N+(g(T)/f(C,T))}2 …(数7)L = ω 0 2 (N, T) {N + (g (T) / f (C, T))} 2 (Equation 7)

【0016】[0016]

【数8】 t=ω0 2(N,T){N+(g(T)/f(C,T))}3/{Ef2(C,T) } …(数8 ) (数8)を用い(dt/dC)=0からCを変化させた
時にtを極小とするC値が求めるゲル濃度である。
T = ω 0 2 (N, T) {N + (g (T) / f (C, T))} 3 / {Ef 2 (C, T)} (Equation 8) (Equation 8) Is used, and when C is changed from (dt / dC) = 0, the C value that minimizes t is the gel concentration to be obtained.

【0017】[0017]

【数9】 (dt/dC)={ω0 2(N,T)/(Ef4(C,T))}× {3(f(C,T)N+g(T))2f(C,T)N−2(f(C,T)N+ g(T))3}f(C,T){df(C,T)/dC}=0 …(数9) (数9)より、f(C,T)N=2g(T)を得る。即
ち図4上で (t−t0)=(L/E)f(C,T)N=(L/E)2g(T)=2t0 となるゲル濃度Cがtを最小にするもので、塩基長が1
00、200、300及び400の時、それぞれ6.2
%、4.3%、3.2%及び2.6%である。実際の分
析では200〜300塩基長の分析をすることが多い。
分離に必要なゲル泳動路長Lは(数7)にf(C,T)
N=2g(T)を代入して求めることができる。
(Dt / dC) = {ω 0 2 (N, T) / (Ef 4 (C, T))} × {3 (f (C, T) N + g (T)) 2 f (C, T) N−2 (f (C, T) N + g (T)) 3 {f (C, T)} df (C, T) / dC} = 0 (Equation 9) (C, T) N = 2g (T) is obtained. That is, the gel concentration C that satisfies (t−t 0 ) = (L / E) f (C, T) N = (L / E) 2g (T) = 2t 0 in FIG. 4 minimizes t. , Base length is 1
At the time of 00, 200, 300 and 400, 6.2 respectively
%, 4.3%, 3.2% and 2.6%. In actual analysis, analysis of 200 to 300 bases is often performed.
The gel path length L required for the separation is given by (Equation 7) as f (C, T)
It can be obtained by substituting N = 2g (T).

【0018】[0018]

【数10】 L=(9/4)N2ω0 2(N,T) …(数10) ω0(N,T)は(数6)より泳動路長L0の時のバンド
幅の実測値ωobsからωobs/√L0により求めることが
できる。
L = (9/4) N 2 ω 0 2 (N, T) (Equation 10) ω 0 (N, T) is the bandwidth of the migration path length L 0 from (Equation 6). It can be obtained from the measured value ω obs by ω obs / L 0 .

【0019】ゲル板厚さを0.3mmとし、電界強度5
0V/cmの時に泳動時間を最小とするポリアクリルア
ミド濃度Cと泳動路長L及びその時の泳動時間tを、以
下に、{塩基長N:ポリアクリルアミド濃度C(%):
泳動路長L(cm):泳動時間t(分)}として示す。
The thickness of the gel plate is set to 0.3 mm, and the electric field intensity is set to 5 mm.
The polyacrylamide concentration C and the migration path length L that minimize the migration time at 0 V / cm and the migration time t at that time are as follows: {base length N: polyacrylamide concentration C (%):
Migration path length L (cm): shown as migration time t (minutes)}.

【0020】 {N=100:C=6.2%:L= 6cm:t= 22分} {N=200:C=4.3%:L=15cm:t= 56分} {N=300:C=3.2%:L=28cm:t=106分} {N=400:C=2.6%:L=41cm:t=156分} ここで示した値は1つの目安であり、泳動電圧、泳動ゲ
ルの濃度、ゲルの厚さなどで若干変化する。しかし、長
い塩基長のDNA断片を含む試料を、好適なバンド間隔
で高速に電気泳動分離するには、ポリアクリルアミド濃
度が2%〜6%のゲルの使用が好適であることがわか
る。この濃度範囲は、従来使用されていた濃度よりはは
るかに低い濃度である。
{N = 100: C = 6.2%: L = 6 cm: t = 22 minutes} {N = 200: C = 4.3%: L = 15 cm: t = 56 minutes} {N = 300: C = 3.2%: L = 28 cm: t = 106 minutes} {N = 400: C = 2.6%: L = 41 cm: t = 156 minutes} The values shown here are only a guide, and can be used for electrophoresis. It varies slightly depending on the voltage, the concentration of the electrophoretic gel, the thickness of the gel, and the like. However, it can be seen that the use of a gel having a polyacrylamide concentration of 2% to 6% is suitable for high-speed electrophoretic separation of a sample containing a DNA fragment having a long base length at a suitable band interval. This concentration range is much lower than the concentration conventionally used.

【0021】ここで得た条件は約1.5時間で300塩
基までの計測を行なうことができる。 図5には3%ゲ
ルを用いて泳動路長22cmで測定した結果を示す。泳
動路長が28cmよりも短いので分離は十分ではない
が、300塩基近傍の塩基が識別できることがわかる。
300塩基長のDNA断片の泳動時間は77分であっ
た。
Under the conditions obtained here, measurement of up to 300 bases can be performed in about 1.5 hours. FIG. 5 shows the results of measurement using a 3% gel at a migration path length of 22 cm. Since the migration path length is shorter than 28 cm, separation is not sufficient, but it can be seen that bases near 300 bases can be identified.
The electrophoresis time of the DNA fragment having a length of 300 bases was 77 minutes.

【0022】[0022]

【発明の効果】本発明によれば従来5〜10時間を必要
としていたDNA断片の測定が1時間余で行なうことが
でき、塩基配列決定に必要な時間を飛躍的に短縮できる
という効果がある。また、蛍光計測ではゲルからの散乱
光や蛍光が背景光となり検出下限を決めていたが、低い
ゲル濃度ではこれら背景光も低下するので高感度検出が
できる利点もある。
According to the present invention, the measurement of a DNA fragment, which conventionally required 5 to 10 hours, can be performed in less than 1 hour, and the time required for base sequence determination can be greatly reduced. . In the fluorescence measurement, the scattered light and the fluorescence from the gel serve as background light, and the lower limit of detection is determined. However, at a low gel concentration, the background light also decreases, so that there is an advantage that high sensitivity detection is possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による光検出型電気泳動装置の1実施例
の概念図。
FIG. 1 is a conceptual diagram of one embodiment of a light detection type electrophoresis apparatus according to the present invention.

【図2】本発明の実施例での種々のポリアクリルアミド
ゲル濃度における塩基長と泳動時間の関係を示す図。
FIG. 2 is a diagram showing the relationship between base length and migration time at various polyacrylamide gel concentrations in Examples of the present invention.

【図3】本発明の実施例での種々の塩基長のバンド間隔
のゲル濃度依存性を示す図。
FIG. 3 is a graph showing the gel concentration dependency of the band intervals of various base lengths in Examples of the present invention.

【図4】本発明の実施例での各塩基長の泳動時間のゲル
濃度依存性を示す図。
FIG. 4 is a graph showing the gel concentration dependence of the migration time of each base length in Examples of the present invention.

【図5】本発明の実施例での3%ポリアクリルアミドゲ
ル(泳動路長22cm)を用いて得たDNA断片スペク
トルを示す図。
FIG. 5 is a view showing a DNA fragment spectrum obtained using a 3% polyacrylamide gel (migration path length: 22 cm) in an example of the present invention.

【符号の説明】[Explanation of symbols]

1…レーザ、2…レンズ、3…石英板、4…ゲル板、5
…フイルター、6…結像レンズ、7…イメージ増幅器、
8…リレーレンズ、9…ビジコンカメラ、10…計算
機、11〜16…それぞれ2%、3%、4%、5%、6
%、8%ポリアクリルアミドゲルを用いた時の泳動時間
と塩基長の関係、17〜20…100、200、300
及び400塩基のDNA断片のバンド間隔あるいは泳動
時間のゲル濃度による変化、16…末端がグアニン
(G)で終わる断片群のスペクトル、17’…末端がチ
ミン(T)で終わる断片群のスペクトル、31…レーザ
ー源、32…試料。
DESCRIPTION OF SYMBOLS 1 ... Laser, 2 ... Lens, 3 ... Quartz plate, 4 ... Gel plate, 5
... a filter, 6 ... an imaging lens, 7 ... an image amplifier,
8: relay lens, 9: vidicon camera, 10: computer, 11 to 16: 2%, 3%, 4%, 5%, 6 respectively
%, Relationship between electrophoresis time and base length when using 8% polyacrylamide gel, 17 to 20 ... 100, 200, 300
And the change in the band interval or the migration time of the DNA fragment of 400 bases depending on the gel concentration, the spectrum of the group of fragments ending with guanine (G) at 16..., The spectrum of the group of fragments ending with thymine (T) at 17 ′. ... laser source, 32 ... sample.

フロントページの続き (56)参考文献 特開 昭61−173158(JP,A) 青木幸一郎、永井裕編集「最新電気泳 動法」廣川書店 p.378−386,p. 409 (58)調査した分野(Int.Cl.6,DB名) G01N 27/447 Continuation of the front page (56) References JP-A-61-173158 (JP, A) Edited by Koichiro Aoki and Hiroshi Nagai, “Latest Electric Swing Method,” Hirokawa Shoten p. 378-386, p. 409 (58) Fields investigated (Int. Cl. 6 , DB name) G01N 27/447

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】核酸試料の蛍光標識された断片を泳動媒体
を用いて電気泳動し、前記泳動媒体の泳動開始点から所
定の距離にある光照射部にレーザ光を照射し、分離され
た前記断片の前記蛍光標識から発生した蛍光を検出して
前記断片のスペクトルを得て前記核酸試料の塩基配列を
決定する塩基配列決定方法であって、前記泳動媒体中の
ポリアクリルアミド濃度が2%から6%であり、前記塩
基配列を決定すべき塩基長に対応して前記ポリアクリル
アミド濃度及び前記所定の距離が決定され、前記塩基長
の長又は短に対応して前記ポリアクリルアミド濃度が低
又は高濃度に設定され、前記塩基長の長又は短に対応し
て前記所定の距離が長又は短距離に設定されることを特
徴とする塩基配列決定方法。
1. A method according to claim 1, wherein the fluorescence-labeled fragment of the nucleic acid sample is electrophoresed using a migration medium, and a laser beam is irradiated to a light irradiation unit at a predetermined distance from a migration start point of the migration medium. A method for determining the nucleotide sequence of the nucleic acid sample by detecting the fluorescence generated from the fluorescent label of the fragment and obtaining the spectrum of the fragment, wherein the polyacrylamide concentration in the electrophoresis medium is 2% to 6%. %, And the polyacrylamide concentration and the predetermined distance are determined according to the base length for which the base sequence is to be determined, and the polyacrylamide concentration is low or high depending on the length or shortness of the base length. Wherein the predetermined distance is set to a long or short distance in accordance with the length or shortness of the base length.
JP9009164A 1997-01-22 1997-01-22 Base sequence determination method Expired - Fee Related JP2914333B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9009164A JP2914333B2 (en) 1997-01-22 1997-01-22 Base sequence determination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9009164A JP2914333B2 (en) 1997-01-22 1997-01-22 Base sequence determination method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP63039385A Division JP2804038B2 (en) 1988-02-24 1988-02-24 Base sequence determination method

Publications (2)

Publication Number Publication Date
JPH09171001A JPH09171001A (en) 1997-06-30
JP2914333B2 true JP2914333B2 (en) 1999-06-28

Family

ID=11712983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9009164A Expired - Fee Related JP2914333B2 (en) 1997-01-22 1997-01-22 Base sequence determination method

Country Status (1)

Country Link
JP (1) JP2914333B2 (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
青木幸一郎、永井裕編集「最新電気泳動法」廣川書店 p.378−386,p.409

Also Published As

Publication number Publication date
JPH09171001A (en) 1997-06-30

Similar Documents

Publication Publication Date Title
JP2804038B2 (en) Base sequence determination method
EP0628164B1 (en) Capillary array confocal fluorescence scanner and method
EP0284660B1 (en) Apparatus for determining base sequence
Kostichka et al. High speed automated DNA sequencing in ultrathin slab gels
US5051162A (en) Fluorescence detection type electrophoresis apparatus and its supporting vessel
JPH0798276A (en) Determining device for appangement of dna base
JP2914333B2 (en) Base sequence determination method
US20050259256A1 (en) Device and method for measurement
JP2853706B2 (en) Base sequence determination method
JP2702965B2 (en) Gene detection apparatus and gene detection method
JP2610870B2 (en) Base sequencer
Chan et al. On-line detection of DNA in gel electrophoresis by ultraviolet absorption utilizing a charge-coupled device imaging system
Lindberg et al. Gel electrophoresis of DNA fragments in narrow‐bore capillaries
JP7016957B2 (en) Biopolymer analysis method and biopolymer analyzer
EP0275440B1 (en) Photo detection system for dna base analysis
Smith et al. [10] High-speed automated DNA sequencing in ultrathin slab gels
JPH10132784A (en) Apparatus for determining dna base sequence
JP2840586B2 (en) Light detection electrophoresis device
Kambara et al. Photodestruction of fluorophores and optimum conditions for trace DNA detection by automated DNA sequencer
JP2675068B2 (en) DNA detector
JPH04244954A (en) Apparatus for determining base sequence
JPH09178703A (en) Base arrangement determining device
Lindberg et al. Elecrrophoresis zyxwvutsrqponmlkjihgfedcbaZYX
KR100777363B1 (en) Separation wall-integrated electrophoresis board and Nucleic acid sequencing appratus using the same
JPH0210266A (en) Apparatus for determining arrangement of base

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees