JP2675068B2 - DNA detector - Google Patents

DNA detector

Info

Publication number
JP2675068B2
JP2675068B2 JP63128393A JP12839388A JP2675068B2 JP 2675068 B2 JP2675068 B2 JP 2675068B2 JP 63128393 A JP63128393 A JP 63128393A JP 12839388 A JP12839388 A JP 12839388A JP 2675068 B2 JP2675068 B2 JP 2675068B2
Authority
JP
Japan
Prior art keywords
gel
sample
migration
light
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63128393A
Other languages
Japanese (ja)
Other versions
JPH01299463A (en
Inventor
秀記 神原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63128393A priority Critical patent/JP2675068B2/en
Publication of JPH01299463A publication Critical patent/JPH01299463A/en
Application granted granted Critical
Publication of JP2675068B2 publication Critical patent/JP2675068B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は遺伝子診断あるいは遺伝子マツピング装置に
関し、特に短時間にDNAパターンを得ることのできるDNA
検出装置に関する。
TECHNICAL FIELD The present invention relates to a gene diagnosis or gene mapping device, and particularly to a DNA capable of obtaining a DNA pattern in a short time.
It relates to a detection device.

〔従来の技術〕[Conventional technology]

遺伝子に起因した病気の診断や遺伝子による固体の識
別には遺伝子診断法が用いられている。遺伝子を用いた
フインガープリント法を例に説明する。この場合の目的
は遺伝子が各個人で異なる事を利用して識別する事と親
子などの血縁者の場合には類似点が多い事を利用して親
子判別するなどである。人の遺伝子中には短かい一定の
配列を持つたDNAが繰り返し現われる。しかし、個人に
よりその繰り返しの頻度や場所が異なる。そこでまず、
この部分に水素結合で結合した(ハイブリダイゼーシヨ
ン)いわゆる相補的なDNAオリゴマーを作製する。この
オリゴマーはあらかじめ放射性元素で標識しておく。こ
れを通常プローブと呼ぶ。解析しようとする2本鎖DNA
を特定の配列を認識して切断する制限酵素で切断する。
このようにして得たDNA断片をアガロースゲルを用いて
電気泳動分離する。泳動分離したDNAをナイロンフイル
ター上に写し取り、二本鎖DANを変性させて一本鎖にす
ると共にフイルター上に固定する。このフイルター上の
DNAのプローブDNAをハイブリダイズさせる。この手法は
サザンブロツト法と呼ばれている。相補的なくりかえし
配列の存在するDNA断片部にプローブDNAは付着するの
で、このDNAバンドパターンをフイルムに転写する。こ
のパターンは人により異なるが同一人物の遺伝子バンド
パターンは一定である。また、親子では類似部分が多い
ので種々の鑑定に用いられる。
Genetic diagnosis methods are used for diagnosing diseases caused by genes and identifying individuals by genes. The Fingerprint method using genes will be described as an example. In this case, the purpose is to discriminate by utilizing the fact that the gene is different for each individual, and in the case of relatives such as parents and children, the fact that there are many similarities is used for parental discrimination. In human genes, DNA with a short and constant sequence appears repeatedly. However, the frequency and place of repetition vary depending on the individual. So first,
A so-called complementary DNA oligomer bonded to this portion by a hydrogen bond (hybridization) is prepared. This oligomer is labeled with a radioactive element in advance. This is usually called a probe. Double-stranded DNA to be analyzed
Is cut with a restriction enzyme that recognizes and cuts a specific sequence.
The DNA fragment thus obtained is electrophoretically separated using agarose gel. The electrophoretically separated DNA is transferred onto a nylon filter, and the double-stranded DAN is denatured into a single strand and fixed on the filter. On this filter
DNA probe DNA is hybridized. This method is called the Southern blot method. Since the probe DNA is attached to the DNA fragment portion where the complementary repeat sequence is present, this DNA band pattern is transcribed to the film. Although this pattern varies from person to person, the gene band pattern of the same person is constant. In addition, since parents and children have many similar parts, they are used for various kinds of appraisals.

遺伝子上の制限酵素の位置を調べるマツピングにも類
似の方法が用いられている。この種の従来技術に関して
は、日本法医学雑誌41巻3号236頁〜241頁(1987年)に
記載されている。
A similar method is used for mapping to find the position of the restriction enzyme on the gene. This type of conventional technique is described in Japanese Forensic Medicine Vol. 41, No. 3, pp. 236-241 (1987).

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

これら従来技術ではフイルター上にDNA断片を写し取
り、更にバンドパターンをフイルムに転写するというや
つかいなプロセスがあり、手間と時間を要していた。更
に放射性元素を用いる必要がある難点があつた。
In these conventional techniques, there is a tricky process of copying a DNA fragment on a filter and then transferring a band pattern to the film, which requires time and effort. Further, there is a problem that it is necessary to use a radioactive element.

また、DANシーケンサーなどで用いられているように
標識に蛍光標識を用いゲルを泳動中に光学的に測定しよ
うとすると、分離ゲルにアガロースを用いているために
散乱光が大きく高感度測定ができない。
Also, when using a fluorescent label as a label to optically measure the gel during electrophoresis as used in a DAN sequencer, etc., since agarose is used as the separation gel, scattered light is large and highly sensitive measurement cannot be performed. .

本発明はこれら難点を解消し、簡単に短時間でDNAバ
ンドパターンを得るためになされたものである。
The present invention has been made to solve these problems and to easily obtain a DNA band pattern in a short time.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的は、DNAプローブを蛍光標識し、相補的な部
分を含む試料DNA断片とハイブリダイズさせた状態でア
ガロースゲル電気泳動分離し、ゲルからDNA断片をバツ
フア液中に流出させて光照射し、実時間でDNA断片から
出る蛍光を観測する事により達成される。即ち、バッフ
ァー液中に配置され、蛍光標識された試料を電気泳動分
離する複数の泳動路が形成されるゲルと、試料が泳動す
る方向でゲルをはさむ両側に配置され試料に電気泳動力
を付与する電圧を印加する電極と、ゲルから試料が流出
する泳動終端側のゲルの短面に沿って、バッファー液中
を泳動する試料に照射する手段と、光により蛍光標識か
ら発する蛍光をバッファー液中で検出する光検出手段と
を有し、光検出手段が、泳動終端側のゲルの端面に対向
して配置されることに特徴がある 〔作用〕 蛍光標識したDNAをハイブリダイズさせ、泳動分離し
ながら実時間でバンド検出することにより、サザンブロ
ツトおよびオートラジオグラフイなど手間のかかるプロ
セスを省略できる。また、分離にはアガロースゲルが通
常用いられるが、これは白濁しており光を照射すると散
乱光が強く検出されて蛍光測定の障害となる。ここでは
アガロースゲルからDNA断片を引き出した後にレーザー
照射し、散乱による測定障害を除いている。
The above-mentioned purpose is a fluorescent labeling of the DNA probe, agarose gel electrophoresis separation in a state of being hybridized with a sample DNA fragment containing a complementary portion, the DNA fragment is allowed to flow out into a buffer solution and irradiated with light, This is achieved by observing the fluorescence emitted from the DNA fragment in real time. That is, a gel that is placed in a buffer solution and has a plurality of migration paths for electrophoretically separating a fluorescently labeled sample, and gels that are placed on both sides sandwiching the gel in the direction in which the sample migrates and impart an electrophoretic force to the sample Voltage applied to the sample, means for irradiating the sample that migrates in the buffer solution along the short surface of the gel on the migration end side where the sample flows out from the gel, and fluorescence emitted from the fluorescent label by light in the buffer solution. Is characterized in that it has a light detection means for detecting with, and the light detection means is arranged so as to face the end face of the gel on the migration end side. [Function] Fluorescently labeled DNA is hybridized and electrophoresed. However, by performing band detection in real time, it is possible to omit complicated processes such as Southern blot and autoradiography. In addition, agarose gel is usually used for separation, but this is cloudy and when irradiated with light, scattered light is strongly detected, which interferes with fluorescence measurement. Here, the DNA fragments were extracted from the agarose gel and then irradiated with a laser to eliminate measurement obstacles due to scattering.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。ゲ
ル板(アガロース板)7はバツフア液槽中に設置され、
バツフア液10がゲル板7上面まで満たされている。DNA
断片と蛍光標識したプローブをハイブリダイズした試料
は試料注入井戸9中に注入され、電極13と13′の間にか
けられた電界に従って泳動する。短かいDNAから順にゲ
ル断面14に到達するが、これらDNAプローブ付DNA断片は
ゲル中からバツフアー液10中に流出する。レーザー光11
はゲル断面14近傍のバツフアー液を端面14に沿つて照射
され、流出してくるDNA断片を励起して蛍光信号を得
る。泳動時間から遺伝子上の特定配列の位置を知ること
ができる。蛍光信号はレンズ、フイルター系3および光
電増幅器付のラインセンサーあるいはビジコンカメラ4
で検出され、データ処理機5に送られる。光照射部6の
厚みは十分狭くし、DNA断片群が拡散により照射部以外
の所を通過しないようにしている。
Hereinafter, an embodiment of the present invention will be described with reference to FIG. The gel plate (agarose plate) 7 is installed in the buffer solution tank,
The buffer solution 10 is filled up to the upper surface of the gel plate 7. DNA
The sample in which the fragment and the fluorescently labeled probe are hybridized is injected into the sample injection well 9 and migrates according to the electric field applied between the electrodes 13 and 13 '. The short DNA reaches the gel cross section 14 in order, but these DNA fragments with the DNA probe flow out from the gel into the buffer solution 10. Laser light 11
Is irradiated with the buffer solution near the gel cross section 14 along the end face 14 to excite the flowing out DNA fragment and obtain a fluorescence signal. The position of the specific sequence on the gene can be known from the migration time. The fluorescence signal is a lens, a filter system 3 and a line sensor with a photoelectric amplifier or a vidicon camera 4.
Detected and sent to the data processor 5. The thickness of the light irradiation part 6 is made sufficiently small so that the DNA fragment group does not pass through a part other than the irradiation part due to diffusion.

液体中の粒子の拡散による巾の広がりWはDを拡散係
数として で与えられる。電界Eが存在する事、ドリフト速度Vd
拡散係数と で結びついている。これを用いると となる。ここでkはボルツマン因子、Tは温度、eはDN
Aの持つ電荷、lは泳動距離である。分離良く検出する
にはWを小さくした方が良い。このためにはlを小さ
く、Eを大きくする必要がある。分析部ゲルの長さを一
定とすると、ゲルから出て光照射部に到る長さをできる
だけ小さくする必要がある。溶液中ではDNAの泳動速度
は電界強度50V/cm下で塩基長によらず約1cm/分である。
溶液中での電界強度を5V/cmとすると1K塩基のDNAが1cm
泳動した時の拡散による広がりは室温で約0.5mmにな
る。レーザーの巾は通常0.3mm以下なのでバツフアー液
抽出後の拡散による広がりは0.3mm以下が望ましい。こ
のためにはゲル端面から光照射部までの距離は5mm以下
の方が良い。
The width W due to the diffusion of particles in the liquid is D with D as the diffusion coefficient. Given by The existence of the electric field E, the drift velocity V d is Are tied together. With this Becomes Where k is Boltzmann factor, T is temperature, e is DN
A has a charge, l is a migration distance. It is better to reduce W in order to detect with good separation. For this purpose, it is necessary to make l small and E large. If the length of the analysis part gel is fixed, it is necessary to make the length from the gel to the light irradiation part as small as possible. In the solution, the migration speed of DNA is about 1 cm / min under the electric field strength of 50 V / cm regardless of the base length.
When the electric field strength in the solution is 5 V / cm, 1 K base DNA is 1 cm.
The spread due to diffusion when electrophoresing is about 0.5 mm at room temperature. Since the width of the laser is usually 0.3 mm or less, it is desirable that the spread due to diffusion after the buffer liquid extraction is 0.3 mm or less. For this purpose, the distance from the gel end face to the light irradiation part should be 5 mm or less.

また、電界強度はイオンの流れる部分の断面積に逆比
例するのでゲルから流出させて光検出部に到る部分の断
面積すなわち厚み(分析部の幅が一定なので)は薄い方
が良い。
Further, since the electric field strength is inversely proportional to the cross-sectional area of the portion where the ions flow, it is better that the cross-sectional area, that is, the thickness (because the width of the analysis portion is constant) of the portion that flows out from the gel and reaches the photodetection portion is thinner.

第2図は実施例の分離部の変形例である。ゲル7から
流出した後のDNAの拡散による泳動路間の干渉を防ぐた
めに泳動路をガラスあるいは石英(照射部)15で区分し
ている。この場合検出器として泳動路毎に光電子増幅管
を用いる事もできる。また、第3図はレーザービーム巾
より厚いアガロースゲル板7を使用した時でも高感度で
検出できるように検出部の幅を石英などで強制的に狭く
した例である。同様の事はゲルの厚みを検出部にゆくに
従がつて薄くする事でも達成できる。
FIG. 2 is a modified example of the separation unit of the embodiment. The migration path is divided by glass or quartz (irradiation section) 15 in order to prevent interference between migration paths due to diffusion of DNA after flowing out from gel 7. In this case, a photoelectron amplifier tube can be used as a detector for each migration path. Further, FIG. 3 shows an example in which the width of the detection portion is forcibly narrowed by quartz or the like so that detection can be performed with high sensitivity even when the agarose gel plate 7 thicker than the laser beam width is used. The same thing can be achieved by reducing the thickness of the gel as it goes to the detection part.

〔発明の効果〕〔The invention's effect〕

本発明によれば、放射性元素標識を使うわずらわしさ
や、分離DNAのフイルター転写などの手間のかかるプロ
セスなしにDNAパターン情報を計算機で処理できる利点
がある。このような光検出方式でアガロースゲル分離板
中を泳動中のDNAを測定しようとすると、アガロースゲ
ルからの散乱光が大きく高感度で測定できない。ここで
はゲルから流出した直後に検出することでこの難点をも
解消した。
According to the present invention, there is an advantage that the DNA pattern information can be processed by a computer without the troublesomeness of using the radioactive element label and the troublesome process such as the filter transcription of the separated DNA. When it is attempted to measure the DNA that is running through the agarose gel separation plate by such a light detection method, the scattered light from the agarose gel is large and the measurement cannot be performed with high sensitivity. Here, this problem was also solved by detecting immediately after flowing out from the gel.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例の概念図である。第2図は本
発明の一実施例に用いるゲル分離部を区分したゲル板及
びバツフア液の見取図である。第3図は本発明の一実施
例に用いる計測部の幅を狭くしたゲル板及びバツフア液
の見取図である。 1……光源、2……ミラー、3……レンズ・フイルター
系、4……光検出器、5……データ処理機、6……照射
部、7……ゲル板、8……隔壁板、9……試料注入井
戸、10……バツフアー液、11……照射光、12……泳動
槽、13,13′……電極、14……ゲル端面、15……泳動路
分離板、16……上部カバー、17……段差付保持板。
FIG. 1 is a conceptual diagram of an embodiment of the present invention. FIG. 2 is a sketch drawing of the gel plate and the buffer solution in which the gel separating part used in one embodiment of the present invention is divided. FIG. 3 is a sketch of a gel plate and a buffer solution in which the width of the measuring section used in one embodiment of the present invention is narrowed. 1 ... Light source, 2 ... Mirror, 3 ... Lens / filter system, 4 ... Photodetector, 5 ... Data processor, 6 ... Irradiation unit, 7 ... Gel plate, 8 ... Partition plate, 9 …… Sample injection well, 10 …… Buffer solution, 11 …… Irradiation light, 12 …… Migration bath, 13, 13 ′ …… Electrode, 14 …… Gel end face, 15 …… Migration path separation plate, 16 …… Upper cover, 17 ... Holding plate with steps.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 9282−4B C12N 15/00 A Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location 9282-4B C12N 15/00 A

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】溶液中に配置され、蛍光標識された試料を
電気泳動分離する複数の泳動路が形成されるゲルと、前
記試料が泳動する方向で前記ゲルをはさむ両側に配置さ
れ前記試料に電気泳動力を付与する電圧を印加する電極
と、前記ゲルから前記試料が流出する泳動終端側の前記
ゲルの端面に沿って、前記溶液中を泳動する前記試料に
照射する手段と、前記光により前記蛍光標識から発する
蛍光を前記溶液中で検出する光検出手段とを有し、前記
光検出手段が、前記泳動終端側の前記ゲルの端面に対向
して配置されることを特徴とするDNA検出装置。
1. A gel, which is placed in a solution and in which a plurality of migration paths for electrophoretically separating a fluorescently labeled sample are formed, and a gel which is placed on both sides of the gel in the direction in which the sample migrates An electrode for applying a voltage for applying an electrophoretic force, a means for irradiating the sample that migrates in the solution along the end surface of the gel on the migration end side where the sample flows out of the gel, and the light And a photodetector for detecting fluorescence emitted from the fluorescent label in the solution, wherein the photodetector is arranged so as to face the end face of the gel on the migration termination side. apparatus.
【請求項2】前記泳動終点側の前記ゲルの端面から5mm
以下の距離で、前記試料が前記光により照射されること
を特徴とする特許請求の範囲第1項に記載のDNA検出装
置。
2. 5 mm from the end surface of the gel on the end point side of the migration
The DNA detection device according to claim 1, wherein the sample is irradiated with the light at the following distances.
【請求項3】溶液中に配置され、蛍光標識された試料を
電気泳動分離するゲルと、前記試料が泳動する方向で前
記ゲルをはさむ両側に配置され前記試料に電気泳動力を
付与する電圧を印加する電極と、前記ゲルから前記試料
が流出する泳動終端側の前記ゲルの端面に沿って、前記
溶液中を泳動する前記試料に照射する手段と、前記光に
より前記蛍光標識から発する蛍光を前記溶液中で検出す
る光検出手段とを有し、前記試料が泳動する方向とほぼ
平行な方向で、前記ゲルを分割する部材により前記ゲル
が複数に分離され、前記光検出手段が、前記泳動終端側
の前記ゲルの端面に対向して配置されることを特徴とす
るDNA検出装置。
3. A gel which is placed in a solution and which electrophoretically separates a fluorescently labeled sample, and a voltage which is placed on both sides of the gel in the direction in which the sample runs to apply an electrophoretic force to the sample. An electrode to be applied, a means for irradiating the sample that migrates in the solution along the end surface of the gel on the migration end side where the sample flows out from the gel, and fluorescence emitted from the fluorescent label by the light. A light detecting means for detecting in a solution, and the gel dividing member divides the gel into a plurality of pieces in a direction substantially parallel to the direction in which the sample migrates, and The DNA detection device is arranged so as to face the end surface of the gel on the side.
【請求項4】溶液中に配置され、蛍光標識された試料を
電気泳動分離する複数の泳動路が形成されるゲルと、前
記試料が泳動する方向で前記ゲルをはさむ両側に配置さ
れ前記試料に電気泳動力を付与する電圧を印加する電極
と、前記ゲルから前記試料が流出する泳動終端側の前記
ゲルの端面に沿って、前記溶液中を泳動する前記試料に
照射する手段と、前記光により前記蛍光標識から発する
蛍光を前記溶液中で検出する光検出手段とを有し、前記
ゲルの前記試料の注入端側の厚さと前記泳動終点側の厚
さとが異なること特徴とするDNA検出装置。
4. A gel, which is placed in a solution and in which a plurality of migration paths for electrophoretically separating a fluorescently labeled sample are formed, and a gel which is placed on both sides of the gel in the direction in which the sample migrates An electrode for applying a voltage for applying an electrophoretic force, a means for irradiating the sample that migrates in the solution along the end surface of the gel on the migration end side where the sample flows out of the gel, and the light A DNA detection device comprising: a light detection unit that detects fluorescence emitted from the fluorescent label in the solution, and a thickness of the gel on the injection end side of the sample and a thickness on the migration end point side are different.
【請求項5】溶液中に配置され、蛍光標識された試料を
電気泳動分離する複数の泳動路が形成されるゲルと、前
記試料が泳動する方向で前記ゲルをはさむ両側に配置さ
れ前記試料に電気泳動力を付与する電圧を印加する電極
と、前記ゲルから前記試料が流出する泳動終端側の前記
ゲルの端面に沿って、前記溶液中を泳動する前記試料に
照射する手段と、前記光により前記蛍光標識から発する
蛍光を前記溶液中で検出する光検出手段とを有し、前記
ゲルの厚さが、前記試料の注入端側から前記泳動終点側
の方向に沿って順次薄くなっていること特徴とするDNA
検出装置。
5. A gel which is placed in a solution and in which a plurality of migration paths for electrophoretically separating a fluorescently labeled sample is formed, and a gel which is placed on both sides of the gel in the direction in which the sample migrates An electrode for applying a voltage for applying an electrophoretic force, a means for irradiating the sample that migrates in the solution along the end surface of the gel on the migration end side where the sample flows out of the gel, and the light And a light detecting unit for detecting fluorescence emitted from the fluorescent label in the solution, and the thickness of the gel is gradually reduced along the direction from the injection end side of the sample to the migration end point side. Characteristic DNA
Detection device.
【請求項6】蛍光標識された試料が泳動する複数の泳動
路と、該泳動路の末端から前記試料が流出する液槽と、
該液槽中に流出してくる前記試料に、レーザ光を前記泳
動路の末端の近傍に照射する手段と、前記レーザ光の照
射により前記液槽中で前記蛍光標識から発する蛍光を検
出する光検出手段とを有することを特徴とするDNA検出
装置。
6. A plurality of migration paths through which a fluorescence-labeled sample migrates, and a liquid tank through which the sample flows out from the ends of the migration paths,
Means for irradiating the sample flowing out into the liquid tank with laser light in the vicinity of the end of the migration path, and light for detecting fluorescence emitted from the fluorescent label in the liquid tank by irradiation with the laser light. A DNA detection device comprising a detection means.
JP63128393A 1988-05-27 1988-05-27 DNA detector Expired - Fee Related JP2675068B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63128393A JP2675068B2 (en) 1988-05-27 1988-05-27 DNA detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63128393A JP2675068B2 (en) 1988-05-27 1988-05-27 DNA detector

Publications (2)

Publication Number Publication Date
JPH01299463A JPH01299463A (en) 1989-12-04
JP2675068B2 true JP2675068B2 (en) 1997-11-12

Family

ID=14983699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63128393A Expired - Fee Related JP2675068B2 (en) 1988-05-27 1988-05-27 DNA detector

Country Status (1)

Country Link
JP (1) JP2675068B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4798876B2 (en) * 2001-05-31 2011-10-19 株式会社アドバンス Electrophoresis device
JP4712364B2 (en) * 2004-12-07 2011-06-29 株式会社アドバンス Electrophoresis device electrophoresis tank
JP5975636B2 (en) * 2011-12-20 2016-08-23 シャープ株式会社 Electrophoresis cassette, electrophoresis cassette manufacturing method, and electrophoresis method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS508594A (en) * 1973-05-18 1975-01-29
JPH0610665B2 (en) * 1984-02-01 1994-02-09 株式会社日立製作所 Nucleic acid nucleotide sequencer

Also Published As

Publication number Publication date
JPH01299463A (en) 1989-12-04

Similar Documents

Publication Publication Date Title
US6103533A (en) Molecular imaging
JP2550106B2 (en) Optical dispersion detection type electrophoretic device
US6277259B1 (en) High performance multidimensional proteome analyzer
JP2804038B2 (en) Base sequence determination method
JP2853745B2 (en) Light detection electrophoresis device
CA2128317A1 (en) Differential separation assay
JP3613032B2 (en) Capillary array electrophoresis device
JP2675068B2 (en) DNA detector
US6290831B1 (en) Electrophoretic system for real time detection of multiple electrophoresed biopolymers
JP2702965B2 (en) Gene detection apparatus and gene detection method
JPH0610665B2 (en) Nucleic acid nucleotide sequencer
JP2762451B2 (en) Electrophoresis pattern analyzer for genetic material
JP2910319B2 (en) Groove electrophoresis device
JPH05296978A (en) Electrophoretic device
JP2840586B2 (en) Light detection electrophoresis device
Guttman et al. Rapid two‐dimensional analysis of proteins by ultra‐thin layer gel electrophoresis
JP3186269B2 (en) DNA separation detector
JP2914333B2 (en) Base sequence determination method
JP2592016B2 (en) Nylon membrane clearing method
JP2853706B2 (en) Base sequence determination method
US5671289A (en) Method of setting belt areas in an image to locate bands of biopolymers
JPH0792163A (en) Primary screening method for carrier having abnormal base sequence of gene
JP2875849B2 (en) Method and apparatus for determining nucleic acid base sequence
Penneys et al. Electrophoretic Patterns of Proteins in Cystic Fibrosis Sweat.
JPH0658341B2 (en) DNA nucleotide sequencer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees