JP2912624B2 - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JP2912624B2
JP2912624B2 JP4650389A JP4650389A JP2912624B2 JP 2912624 B2 JP2912624 B2 JP 2912624B2 JP 4650389 A JP4650389 A JP 4650389A JP 4650389 A JP4650389 A JP 4650389A JP 2912624 B2 JP2912624 B2 JP 2912624B2
Authority
JP
Japan
Prior art keywords
layer
quantum well
thickness
well layer
active layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4650389A
Other languages
Japanese (ja)
Other versions
JPH02228087A (en
Inventor
俊明 田中
敏弘 河野
俊 梶村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4650389A priority Critical patent/JP2912624B2/en
Priority to US07/339,125 priority patent/US4961197A/en
Priority to DE68926986T priority patent/DE68926986T2/en
Priority to EP89106800A priority patent/EP0358842B1/en
Publication of JPH02228087A publication Critical patent/JPH02228087A/en
Application granted granted Critical
Publication of JP2912624B2 publication Critical patent/JP2912624B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2231Buried stripe structure with inner confining structure only between the active layer and the upper electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/065Mode locking; Mode suppression; Mode selection ; Self pulsating
    • H01S5/0658Self-pulsating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2218Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special optical properties
    • H01S5/2219Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special optical properties absorbing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/305Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure
    • H01S5/3086Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure doping of the active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34313Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs
    • H01S5/3432Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs the whole junction comprising only (AI)GaAs

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION 【産業上の利用分野】[Industrial applications]

本発明は書き換え可能な光ディスク用光源として好適
な高出力低雑音特性を有する半導体レーザ素子に関す
る。
The present invention relates to a semiconductor laser device having high output and low noise characteristics suitable as a light source for a rewritable optical disk.

【従来の技術】[Prior art]

従来、半導体レーザの単一量子井戸構造は主に閾値電
流を低減するために用いられている。さらに量子井戸界
面の平坦性を改善し結晶性の向上を図るために単一量子
井戸活性層の上下に超格子光導波層が設けられている。
この種の半導体レーザについては、例えば第46回応用物
理学会学術講演会、講演予稿集1P−N−8、P196に述べ
られている。
Conventionally, a single quantum well structure of a semiconductor laser is mainly used to reduce a threshold current. Further, superlattice optical waveguide layers are provided above and below the single quantum well active layer in order to improve the flatness of the quantum well interface and improve the crystallinity.
This type of semiconductor laser is described in, for example, the 46th Annual Conference of the Japan Society of Applied Physics, Proceedings 1P-N-8, P196.

【発明が解決しようとする課題】[Problems to be solved by the invention]

上記従来技術は、半導体レーザ素子構造において、レ
ーザ光の横モード制御、および活性層横方向の屈折率差
による縦モード制御については配慮がされておらず、所
望の高出力特性や低雑音特性が得られないという問題が
あった。 本発明の目的は、高出力低雑音特性を満足する半導体
レーザ素子を実現することにある。
In the above prior art, the lateral mode control of the laser beam and the longitudinal mode control based on the refractive index difference in the lateral direction of the active layer are not considered in the semiconductor laser device structure, and the desired high output characteristics and low noise characteristics are not obtained. There was a problem that it could not be obtained. An object of the present invention is to realize a semiconductor laser device that satisfies high output and low noise characteristics.

【課題を解決するための手段】[Means for Solving the Problems]

上記目的を達成するために、活性層を、単一量子井戸
層の上下に超格子多重量子井戸層を設けた構造とし、各
層において組織,膜厚及び不純物濃度を所定の値にする
ことによりレーザ素子を作製したものである。 即ち本発明では、半導体基板上にバンドギャップ(伝
導体と価電子帯のエネルギーバンドの差)の小さい活性
層と、これを挟むバンドギャップの大きな光導波層(例
えば、クラッド層)を形成した公知の半導体レーザ素子
において、活性層と電子のド・ブロイ波長又はそれ以下
の幅を有する単一量子井戸層とその両面に形成した多重
量子井戸層で形成する。 さらに、自励発振レーザ素子を得るために、リッジ導
波路構造を形成し、活性層横方向の実効的に屈折率差を
所定の値になるように制御したものである。
In order to achieve the above object, the active layer has a structure in which a superlattice multiple quantum well layer is provided above and below a single quantum well layer, and the structure, film thickness, and impurity concentration of each layer are set to predetermined values. An element was produced. That is, in the present invention, an active layer having a small band gap (difference in energy band between a conductor and a valence band) and an optical waveguide layer having a large band gap (for example, a cladding layer) sandwiching the active layer are formed on a semiconductor substrate. In the semiconductor laser device, the active layer is formed of a single quantum well layer having a de Broglie wavelength of electrons or less, and multiple quantum well layers formed on both surfaces thereof. Further, in order to obtain a self-pulsation laser element, a ridge waveguide structure is formed, and an effective refractive index difference in a lateral direction of the active layer is controlled so as to have a predetermined value.

【作 用】[Operation]

本発明により、光ディスクの書き込み消去用光源及び
読み取り用光源に必要な低雑音高出力特性が得られるこ
とを以下に説明する。 従来、単一量子井戸構造を活性層に導入することによ
ってレーザ発振の低閾値電流化が図られていることが知
られている。さらにアプライド・フィジクス・レター
ズ,Appl.Phys.Lett.45(1984)p836において述べられて
いるように、単一量子井戸活性層のレーザ素子の方が通
常なダブルヘテロ活性層や多重量子井戸活性層のレーザ
素子よりもキャリア注入による屈折率の減少が小さい。
このことにより、単一量子井戸活性層のレーザ素子は、
活性層横方向の作り付けの実効的な屈折率差を高いキャ
リア注入レベルまで不安定にすることなく、キンク発生
光出力の大きい高出力特性が得られることが示唆され
る。しかし、単一量子井戸活性層は膜厚が薄いのでレー
ザ光がクラッド層へ大きく広がる。その為、光吸収層を
設けて横モード制御したレーザ素子では、活性層横方向
の実効的な屈折率差が大きくなってしまうという問題が
あった。また、この屈折率差の制御による縦モードの制
御が困難という問題があった。一方戻り光が生じても相
対雑音強度が10-14〜10-13Hzと優れた低雑音特性が実現
される自励発振レーザは、活性層横方向の実効的な屈折
率差が1×10-3〜5×10-3程度の範囲で生じる。このた
め、自励発振レーザを実現するためには活性層横方向の
実効的な屈折率差の制御が重要となってくる。この活性
層横方向の実効的な屈折率差は、素子の活性層膜厚とク
ラッド層膜厚によって制御することができる。 本発明では、単一量子井戸層の上下に超格子多重量子
井戸層を設けたので、キャリアとしての電子や正孔の波
動関数は、単一量子井戸層内に閉じ込められることな
く、単一量子井戸層の両側に大きくしみ出す。この結
果、活性層におけるレーザ光分布の広がりは、従来の単
一量子井戸活性層の場合に比べて小さくなる。単一量子
井戸層の幅は量子サイズ効果の生じる範囲内で比較的大
きな値をとることができ、10〜30nmの範囲が望ましい。
このように、レーザ光分布を制御し、かつ光吸収層を活
性層から所定の位置に設けることにより、活性層横方向
の実効的な屈折率差を、所望の値になるように実現でき
る。屈折率差を制御することにより、自励発振レーザ素
子が作製でき、かつ単一量子井戸層では、キャリア注入
に対する屈折率減少が小さいため、高い注入レベルまで
作り付けの屈折率差が失われず安定の基本横モードでキ
ンク発生光出力の大きい高出力特性が得られる。
The fact that the present invention can provide low noise and high output characteristics required for a write / erase light source and a read light source of an optical disk will be described below. Conventionally, it is known that a threshold current of laser oscillation is reduced by introducing a single quantum well structure into an active layer. Furthermore, as described in Applied Physics Letters, Appl. Phys. Lett. 45 (1984) p836, a laser device having a single quantum well active layer is more likely to have a conventional double hetero active layer or multiple quantum well active layer. The decrease in the refractive index due to the carrier injection is smaller than that of the laser device of the above.
Thus, a laser device having a single quantum well active layer has
It is suggested that a high output characteristic with a large kink generation light output can be obtained without making the effective refractive index difference built in the lateral direction of the active layer unstable to a high carrier injection level. However, since the single quantum well active layer has a small thickness, the laser light largely spreads to the cladding layer. Therefore, in a laser device in which the light absorption layer is provided and the transverse mode is controlled, there is a problem that the effective refractive index difference in the lateral direction of the active layer becomes large. There is also a problem that it is difficult to control the longitudinal mode by controlling the difference in refractive index. On the other hand, a self-sustained pulsation laser that achieves excellent low noise characteristics with relative noise intensity of 10 -14 to 10 -13 Hz even when return light is generated has an effective refractive index difference of 1 × 10 in the lateral direction of the active layer. -3 to 5 × 10 -3 . Therefore, it is important to control the effective refractive index difference in the lateral direction of the active layer in order to realize a self-pulsation laser. The effective refractive index difference in the lateral direction of the active layer can be controlled by the active layer thickness and the clad layer thickness of the device. In the present invention, since the superlattice multiple quantum well layers are provided above and below the single quantum well layer, the wave functions of electrons and holes as carriers are not confined within the single quantum well layer, but are Large seepage on both sides of the well layer. As a result, the spread of the laser beam distribution in the active layer is smaller than that in the conventional single quantum well active layer. The width of the single quantum well layer can take a relatively large value within a range where the quantum size effect occurs, and is preferably in the range of 10 to 30 nm.
As described above, by controlling the laser beam distribution and providing the light absorbing layer at a predetermined position from the active layer, the effective refractive index difference in the lateral direction of the active layer can be realized to have a desired value. By controlling the refractive index difference, a self-pulsation laser element can be manufactured, and in a single quantum well layer, the refractive index decrease with respect to carrier injection is small, so that the built-in refractive index difference is not lost up to a high injection level and is stable. In the basic transverse mode, a high output characteristic with a large kink generated light output can be obtained.

【実施例】【Example】

実施例1. 本発明の実施例1を第1図を用いて説明する。まず、
n型GaAs(001)基板(厚さ100μm)上に、n型GaAsバ
ッファ層2(厚さ0.5μm)、n型AlxGa1-xAsクラッド
層3(厚さ1.0〜1.5μm,x=0.45〜0.55)、アンドープ
或はn型又はp型多量子井戸層4量子障壁層4″はAlyG
a1-yAs層,幅2〜5nm、y=0.20〜0.45とし、量子井戸
層4′はAlzGa1-zAs層,幅3〜10nm、z=0〜0.20とし
これらを3〜6回繰り返し形成することにより、或はそ
れぞれAlyGa1-yAs超格子障壁層幅(量子障壁層幅に相
当)0.5〜1nm,AlzGa1-zAs超格子井戸層幅(量子井戸層
幅に相当)0.5〜2nmを10〜15回繰り返し形成することに
より第2図に示すような活性層における伝導帯と価電子
帯のエネルギーバンド構造を形成する。)、アンドープ
単一量子井戸層5(Alz′Ga1-z′As層、10〜30nm、z′
=0〜0.15)、アンドープ或はn型又はp型多重量子井
戸層6(量子障壁層6′はAlyGa1-yAs層,幅2〜5nm、
y=0.20〜0.45とし、量子井戸層6′はAlzGa1-zAs層、
幅3〜10nm、z=0〜0.20としこれらを3〜6回繰り返
し形成する。或はそれぞれAlyGa1-yAs超格子障壁層、幅
0.5〜1nm、AlzGa1-zAs超格子井戸層、幅0.5〜2nmを10〜
15回繰り返し形成する。)、p型AlxGa1-xAsクラッド層
7(厚さ1.0〜1.6μm、x=0.45〜0.55)、p−GaAs層
(0.2〜0.3μm)を順次分子線エピタキシー(MBE)法
或は有機金属気相成長(MOCVD)法によりエピタキシャ
ル成長する。次に、SiO2膜を形成してホトリソグラフィ
ーによりストライプマスクパターンを作製する。このス
トライプ状SiO2膜をマスクとして、リン酸溶液により層
8と層7をエッチング加工してリッジ状の光導波路を形
成する。この後、SiO2膜を残したままn−GaAs電流ブロ
ック層9(厚さ0.7〜1.0μm)を選択成長する。次に、
SiO2膜をマスク弗酸水溶液によりエッチング除去した
後、p−GaAsキャップ層10(厚さ1.0〜2.0μm)を埋め
込み成長する。この後、p型層側電極11及びN型層側電
極12を形成して、へき開,スクライブし素子の形に切り
出す。 本実施例において、基本横モードかつ低閾値電流でレ
ーザ発振するためには、リッジ底部のストライプ幅Sが
4〜6μmであることが適切であった。さらに、リッジ
導波路を作製した後のクラッド層膜厚dを0.3〜0.6μm
にしたときに自励発振するレーザ素子が得られた。本素
子は、閾値電流10〜20mAでレーザ発振し、出光力2〜30
mWの範囲で自励発振した。キンク発生号光出力は50〜60
mWであった。さらに、活性層における多重量子井戸層に
対してn型又はp型不純物を1×1018〜1×1019cm-3
ーピングすることによって、閾値電流10〜20mAでレーザ
発振し、かつ自励発振周波数をドーパントの極性及びド
ーピング濃度により制御することができた。また、レー
ザ素子の共振器端面に非対称コーティングすることによ
り光出力2〜50mWの範囲で自励発振し、かつキンク発生
光出力が80〜90mWの素子を得ることができた。活性層全
体の膜厚とクラッド層膜厚を所定の値に制御することに
より、(活性層膜厚:0.04〜0.08μm,クラッド層膜厚:0.
3〜0.6μm)、光出力2〜10mWの範囲で自励発振し、か
つキンク発生光出力が110〜120mWである素子も実現でき
た。このことにより、光ディスクの書き込み消去用光源
及び読み取り用光源として必要な低雑音高出力特性を一
つの素子において満足させることができた。 実施例.2 本発明の実施例2を第3図を用いて説明する。第3図
は活性層における伝導帯のエネルギーバンド構造の概略
を示す。活性層における単一量子井戸層の上下に設けた
多重量子井戸層4及び6において、量子井戸層AlzGa1-z
As層のAl組成zが単一量子井戸層5、Alz′Ga1-z′As層
のAl組成z′よりも大きい(z>z′)レーザ素子を作
製した。ここで、多重量子井戸層内に形成される量子準
位が単一量子井戸層内に形成される量子準位と同じレベ
ルか或はそれ以上になるように、多重量子井戸層4及び
6の構造を設計した。本実施例によると閾値電流をさら
に低減でき5〜10mAでレーザ発振が可能であった。その
他実施例1と同様の特性が得られる。 実施例3 本発明の実施例3を第4図を用いて説明する。第4図
は活性層における伝導帯のエネルギーバンド構造の概略
を示す。活性層における単一量子井戸層の上下に設けた
多重量子井戸層4及び6において、量子井戸層AlzGa1-z
As層4′,6′の幅及びAl組成を、各々単一量子井戸層5
からクラッド3,7へ向けて徐々に厚くなるように、また
大きくなるように変化させていく構造を有するレーザ素
子を作製した。多重量子井戸層内に形成される量子準位
が単一量子井戸層内に形成される量子準位と同じレベル
か或はそれ以上になるように、多重量子井戸層4及び6
の構造を設計した。本実施例によっても実施例2と同様
の効果があった。 実施例4. 本発明の実施例4について第5図を用いて説明する。
第5図は活性層における伝導帯のエネルギーバンド構造
の概略を示す。活性層における単一量子井戸層の上下に
設けた多重量子井戸層4及び6において量子障壁層AlyG
a1-yAs層のAl組成yを単一量子井戸層からクラッド層へ
向けて徐々に大きくなるように変化させたグレーデッド
層としたレーザ素子を作製した。ここでは、多重量子井
戸層の量子井戸層内に形成される量子準位は単一量子井
戸層からクラッド層へ向けて徐々に高い準位となってい
くグレーデッド状にエネルギー準位が形成される。本実
施例によっても実施例2,3と同様の効果があった。
Embodiment 1. Embodiment 1 of the present invention will be described with reference to FIG. First,
On an n-type GaAs (001) substrate (thickness 100 μm), an n-type GaAs buffer layer 2 (thickness 0.5 μm) and an n-type Al x Ga 1-x As cladding layer 3 (thickness 1.0 to 1.5 μm, x = 0.45 to 0.55), the undoped or n-type or p-type multiple quantum well layer 4 and the quantum barrier layer 4 ″ are Al y G
a 1-y As layer, the width 2 to 5 nm, and y = 0.20 to 0.45, the quantum well layer 4 'is Al z Ga 1-z As layer, the width 3 to 10 nm, and z = 0-0.20 and these 3-6 By repeatedly forming the layer, the width of the Al y Ga 1 -y As superlattice barrier layer (corresponding to the quantum barrier layer width) is 0.5 to 1 nm, and the width of the Al z Ga 1 -z As superlattice well layer (quantum well layer). By repeatedly forming 0.5 to 2 nm (corresponding to the width) 10 to 15 times, an energy band structure of a conduction band and a valence band in the active layer as shown in FIG. 2 is formed. ), An undoped single quantum well layer 5 (Al z 'Ga 1- z' As layer, 10 to 30 nm, z '
= 0 to 0.15), undoped or n-type or p-type multiple quantum well layer 6 (quantum barrier layer 6 'is an Al y Ga 1-y As layer, width 2 to 5 nm,
y = 0.20 to 0.45, the quantum well layer 6 ′ is an Al z Ga 1 -z As layer,
These are repeatedly formed 3 to 6 times with a width of 3 to 10 nm and z = 0 to 0.20. Or Al y Ga 1-y As superlattice barrier layer and width respectively
0.5-1 nm, Al z Ga 1-z As superlattice well layer, width 0.5-2 nm 10 ~
Formed 15 times repeatedly. ), A p-type Al x Ga 1 -x As cladding layer 7 (thickness: 1.0 to 1.6 μm, x = 0.45 to 0.55), and a p-GaAs layer (0.2 to 0.3 μm) in sequence by molecular beam epitaxy (MBE) or Epitaxial growth is performed by metal organic chemical vapor deposition (MOCVD). Next, an SiO 2 film is formed, and a stripe mask pattern is formed by photolithography. Using the striped SiO 2 film as a mask, the layers 8 and 7 are etched with a phosphoric acid solution to form a ridge-shaped optical waveguide. Thereafter, the n-GaAs current block layer 9 (0.7 to 1.0 μm in thickness) is selectively grown while leaving the SiO 2 film. next,
After the SiO 2 film is removed by etching with a mask hydrofluoric acid solution, a p-GaAs cap layer 10 (1.0 to 2.0 μm in thickness) is buried and grown. Thereafter, a p-type layer-side electrode 11 and an N-type layer-side electrode 12 are formed, cleaved, scribed, and cut into an element shape. In this embodiment, it is appropriate that the stripe width S at the bottom of the ridge is 4 to 6 μm in order to perform laser oscillation at the basic lateral mode and a low threshold current. Further, the thickness d of the cladding layer after forming the ridge waveguide is 0.3 to 0.6 μm.
A self-sustained pulsation laser element was obtained. This device oscillates with a threshold current of 10 to 20 mA and emits light with a power of 2 to 30 mA.
Self-excited oscillation in the range of mW. Kink generation light output is 50-60
mW. Further, by doping the multiple quantum well layer in the active layer with an n-type or p-type impurity at 1 × 10 18 to 1 × 10 19 cm −3 , laser oscillation is performed at a threshold current of 10 to 20 mA, and self-excited oscillation is performed. The frequency could be controlled by the polarity of the dopant and the doping concentration. Further, by asymmetrically coating the end face of the resonator of the laser element, an element having self-excited oscillation in an optical output range of 2 to 50 mW and a kink generation optical output of 80 to 90 mW could be obtained. By controlling the thickness of the entire active layer and the thickness of the cladding layer to predetermined values, (the thickness of the active layer: 0.04 to 0.08 μm, the thickness of the cladding layer: 0.
An element having self-excited oscillation in the range of 3 to 0.6 μm) and an optical output of 2 to 10 mW and having a kink generation optical output of 110 to 120 mW was also realized. As a result, the low-noise and high-output characteristics required as the light source for writing and erasing and the light source for reading of the optical disk could be satisfied by one element. Embodiment 2 Embodiment 2 of the present invention will be described with reference to FIG. FIG. 3 schematically shows the energy band structure of the conduction band in the active layer. In the multiple quantum well layers 4 and 6 provided above and below the single quantum well layer in the active layer, the quantum well layers Al z Ga 1-z
A laser device in which the Al composition z of the As layer is larger than the single quantum well layer 5 and the Al composition z 'of the Al z ' Ga 1 -z'As layer (z> z '). Here, the multiple quantum well layers 4 and 6 are set so that the quantum level formed in the multiple quantum well layer is equal to or higher than the quantum level formed in the single quantum well layer. The structure was designed. According to this embodiment, the threshold current can be further reduced, and laser oscillation was possible at 5 to 10 mA. Other characteristics similar to those of the first embodiment are obtained. Embodiment 3 Embodiment 3 of the present invention will be described with reference to FIG. FIG. 4 schematically shows the energy band structure of the conduction band in the active layer. In the multiple quantum well layers 4 and 6 provided above and below the single quantum well layer in the active layer, the quantum well layers Al z Ga 1-z
The width and the Al composition of the As layers 4 'and 6'
A laser device having a structure in which the thickness was gradually increased and gradually increased toward the claddings 3 and 7 from that of the laser device was fabricated. The multiple quantum well layers 4 and 6 are formed so that the quantum levels formed in the multiple quantum well layer are at the same level or higher than the quantum levels formed in the single quantum well layer.
The structure was designed. This embodiment also has the same effect as the second embodiment. Embodiment 4 Embodiment 4 of the present invention will be described with reference to FIG.
FIG. 5 schematically shows the energy band structure of the conduction band in the active layer. In the multiple quantum well layers 4 and 6 provided above and below the single quantum well layer in the active layer, the quantum barrier layers Al y G
A laser device was fabricated as a graded layer in which the Al composition y of the a 1-y As layer was gradually increased from the single quantum well layer toward the cladding layer. In this case, the quantum levels formed in the quantum well layers of the multiple quantum well layers are graded energy levels that gradually increase from the single quantum well layer toward the cladding layer. You. This embodiment also has the same effects as those of the second and third embodiments.

【発明の効果】【The invention's effect】

本発明によると、従来の技術では実現が難しかった、
単一量子井戸構造活性層横方向の実効的な屈折率差を制
御することが可能となるので、横モードおよび縦モード
の制御が容易になり所望のレーザ特性を得るとこができ
る効果がある。本発明のリッジ導波路構造において、リ
ッジ形成後のクラッド層膜厚が0.3〜0.6μmかつ、活性
層全体の膜厚が0.05〜0.08μmの範囲で、光出力2〜30
mWの範囲で自励発振し、キンク発生光出力50〜60mWであ
るレーザ素子を得た。閾値電流は、5〜10mAの素子が得
られた。さらに、非対称コーティングを施すことによ
り、光出力2〜50mWの範囲で自励発振し、キンク発生光
出力80〜90mWの素子を得ることができた。また、活性層
横方向の実効的屈折率差を制御することによって、光出
力2〜10mWの範囲で自励発振しかつキンク発生光出力11
0〜120mWである素子を得た。このため、光ディスクの書
き込み消去光源に必要な高出力特性と、読み取り光源に
必要な低雑音特性を満足することができた。 本発明では、AlGaAs系材料を用いて説明したが、AlGa
InP/GaAs系,InGaAsP/InP系についても同様なことができ
ることは言うまでもない。
According to the present invention, it was difficult to realize with the conventional technology,
Since the effective refractive index difference in the lateral direction of the single quantum well structure active layer can be controlled, the transverse mode and the longitudinal mode can be easily controlled, and the desired laser characteristics can be obtained. In the ridge waveguide structure of the present invention, when the thickness of the cladding layer after forming the ridge is 0.3 to 0.6 μm and the total thickness of the active layer is in the range of 0.05 to 0.08 μm, the light output is 2 to 30 μm.
A laser device which self-oscillates in the range of mW and has a kink generation light output of 50 to 60 mW was obtained. Devices having a threshold current of 5 to 10 mA were obtained. Further, by applying the asymmetric coating, self-oscillation was performed in the range of light output of 2 to 50 mW, and a device having kink generation light output of 80 to 90 mW was obtained. In addition, by controlling the effective refractive index difference in the lateral direction of the active layer, self-excited oscillation in the optical output range of 2 to 10 mW and kink-generated optical output 11
An element having a power of 0 to 120 mW was obtained. Therefore, the high output characteristics required for the write / erase light source of the optical disk and the low noise characteristics required for the read light source could be satisfied. The present invention has been described using an AlGaAs-based material.
It goes without saying that the same can be applied to the InP / GaAs system and the InGaAsP / InP system.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例1〜実施例4の半導体レーザの
断面図、第2図〜第5図は各々実施例1〜実施例4にお
ける活性層のエネルギーバンド構造の概略図である。 1……n−GaAs基板、2……n−GaAsバッファ層、3…
…n−AlxGa1-xAsクラッド層、4……アンドープ或はn
型又はp型不純物ドープ多重量子井戸層、5……アンド
ープ単一量子井戸層、6……アンドープ或はn型又はp
型不純物ドープ多重量子井戸層、7……p−AlxGa1-xAs
クラッド層、8……p−GaAs層、9……n−GaAs電流ブ
ロック層、10……p−GaAsキャップ層、11……p型層側
電極、12……n型層側電極。
FIG. 1 is a sectional view of a semiconductor laser according to Examples 1 to 4 of the present invention, and FIGS. 2 to 5 are schematic views of the energy band structure of an active layer in Examples 1 to 4, respectively. 1... N-GaAs substrate, 2... N-GaAs buffer layer, 3.
... n-Al x Ga 1- x As cladding layer, 4 ...... undoped or n
-Type or p-type impurity-doped multiple quantum well layer, 5 ... undoped single quantum well layer, 6 ... undoped or n-type or p-type
-Type impurity-doped multiple quantum well layer, 7... P-Al x Ga 1-x As
Cladding layer, 8 p-GaAs layer, 9 n-GaAs current blocking layer, 10 p-GaAs cap layer, 11 p-layer side electrode, 12 n-layer side electrode.

フロントページの続き (56)参考文献 特開 昭61−101089(JP,A) 特開 昭60−189983(JP,A) 1985年(昭和60年)秋季応物学会予稿 集 1P−N−8 p.196 1988年(昭和63年)秋季応物学会予稿 集 5P−ZC−21 p.864 電子情報通信学会技術研究報告88[4 ](1988)p.33−38 (58)調査した分野(Int.Cl.6,DB名) H01S 3/18 Continuation of the front page (56) References JP-A-61-101089 (JP, A) JP-A-60-189983 (JP, A) Proceedings of the Fall Reactive Society of Japan in 1985 1P-N-8 p. 196 1988 (Showa 63) Proceedings of the Japan Society for Autumn Science 5P-ZC-21 p. 864 IEICE Technical Report 88 [4] (1988) p. 33-38 (58) Field surveyed (Int. Cl. 6 , DB name) H01S 3/18

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】量子井戸層と該量子井戸層の上下に設けら
れ且つ井戸層並びに該井戸層よりバンドギャップの大き
い障壁層を交互に積層してなる第1及び第2の半導体領
域とを有する活性層と、該活性層に接合され且つ該接合
面の反対側にストライプ状のリッジが形成され且つ活性
層よりバンドギャップの大きい光導波層と、上記ストラ
イプ状のリッジの両側を狭むように形成された光吸収層
とを含み、上記光導波層の上記ストライプ状リッジの両
側の部分の厚さと上記活性層の厚さは該活性層において
レーザ光が自励発振を行えるように設定され、上記量子
井戸層は上記障壁層より小さいバンドキャップを有し且
つその上下には上記第1及び第2の半導体領域の障壁層
が夫々接合され、且つ上記井戸層及び上記障壁層は上記
量子井戸層より薄いことを特徴とする半導体レーザ素
子。
1. A semiconductor device comprising: a quantum well layer; and first and second semiconductor regions provided above and below the quantum well layer and alternately stacking well layers and barrier layers having a larger band gap than the well layer. An active layer, an optical waveguide layer bonded to the active layer and having a stripe-shaped ridge formed on the opposite side of the bonding surface and having a band gap larger than that of the active layer, and formed so as to narrow both sides of the stripe-shaped ridge. A thickness of the optical waveguide layer on both sides of the stripe-shaped ridge and a thickness of the active layer are set so that laser light can self-oscillate in the active layer; The well layer has a band gap smaller than that of the barrier layer, and barrier layers of the first and second semiconductor regions are respectively joined above and below the well layer, and the well layer and the barrier layer are thinner than the quantum well layer. The semiconductor laser device characterized by.
【請求項2】上記量子井戸層の厚さは10乃至30nmの範囲
に、上記井戸層の厚さは3乃至10nmの範囲に、上記障壁
層の厚さは2乃至5nmの範囲に夫々設定されることを特
徴とする特許請求の範囲第1項に記載の半導体レーザ素
子。
2. The quantum well layer has a thickness of 10 to 30 nm, the well layer has a thickness of 3 to 10 nm, and the barrier layer has a thickness of 2 to 5 nm. 2. The semiconductor laser device according to claim 1, wherein:
【請求項3】上記量子井戸層の厚さは10乃至30nmの範囲
に、上記井戸層の厚さは0.5乃至2nmの範囲に、上記障壁
層の厚さは0.5乃至1nmの範囲に夫々設定させることを特
徴とする特許請求の範囲第1項に記載の半導体レーザ素
子。
3. The thickness of the quantum well layer is set in the range of 10 to 30 nm, the thickness of the well layer is set in the range of 0.5 to 2 nm, and the thickness of the barrier layer is set in the range of 0.5 to 1 nm. 2. The semiconductor laser device according to claim 1, wherein:
【請求項4】上記活性層の厚さは0.04乃至0.08μmの範
囲に、上記光導波層の厚さは0.3乃至0.6μmの範囲に夫
々設定されることを特徴とする特許請求の範囲第1項乃
至第3項のいずれかに記載の半導体レーザ素子。
4. The method according to claim 1, wherein the thickness of the active layer is set in a range of 0.04 to 0.08 μm, and the thickness of the optical waveguide layer is set in a range of 0.3 to 0.6 μm. Item 4. The semiconductor laser device according to any one of Items 3 to 3.
【請求項5】活性層と、活性層に接合され且つ該接合面
の反対側にストライプ状のリッジが形成され且つ活性層
よりバンドギャップの大きい光導波層とを含み、上記活
性層の上記ストライプ状リッジに対向する部分と他の部
分との実効的な屈折率差が1×10-3乃至5×10-3の範囲
に設定された半導体レーザ素子において、上記活性層は
量子井戸層と該量子井戸層の上下に設けられ且つ井戸層
及び該井戸層よりバンドギャップの大きい障壁層を交互
に積層してなる第1及び第2の半導体領域とを有し、上
記量子井戸層は上記障壁層より小さいバンドギャップを
有し且つその上下には上記第1及び第2の半導体領域の
障壁層が夫々接合され、且つ上記井戸層及び上記障壁層
は上記量子井戸層より薄いことを特徴とする半導体レー
ザ素子。
5. The stripe of the active layer, comprising: an active layer; and an optical waveguide layer joined to the active layer and having a stripe-shaped ridge formed on a side opposite to the junction surface and having a band gap larger than that of the active layer. In a semiconductor laser device in which an effective refractive index difference between a portion facing the ridge and another portion is set in a range of 1 × 10 −3 to 5 × 10 −3 , the active layer is a quantum well layer and a quantum well layer. First and second semiconductor regions provided above and below the quantum well layer and alternately stacking well layers and barrier layers having a larger band gap than the well layer, wherein the quantum well layer is formed of the barrier layer A semiconductor having a smaller bandgap, and barrier layers of the first and second semiconductor regions are respectively joined above and below the semiconductor layer, and the well layer and the barrier layer are thinner than the quantum well layer. Laser element.
JP4650389A 1988-09-07 1989-03-01 Semiconductor laser device Expired - Lifetime JP2912624B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP4650389A JP2912624B2 (en) 1989-03-01 1989-03-01 Semiconductor laser device
US07/339,125 US4961197A (en) 1988-09-07 1989-04-14 Semiconductor laser device
DE68926986T DE68926986T2 (en) 1988-09-07 1989-04-17 Semiconductor laser and method of manufacturing the same
EP89106800A EP0358842B1 (en) 1988-09-07 1989-04-17 Semiconductor laser device and method of manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4650389A JP2912624B2 (en) 1989-03-01 1989-03-01 Semiconductor laser device

Publications (2)

Publication Number Publication Date
JPH02228087A JPH02228087A (en) 1990-09-11
JP2912624B2 true JP2912624B2 (en) 1999-06-28

Family

ID=12749049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4650389A Expired - Lifetime JP2912624B2 (en) 1988-09-07 1989-03-01 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JP2912624B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06268314A (en) * 1993-03-11 1994-09-22 Nec Corp Semiconductor laser
CN1146091C (en) * 1995-03-31 2004-04-14 松下电器产业株式会社 Semiconductor laser device and optical disk apparatus using same
JP3857417B2 (en) * 1998-05-13 2006-12-13 日亜化学工業株式会社 Nitride semiconductor device
US6586762B2 (en) 2000-07-07 2003-07-01 Nichia Corporation Nitride semiconductor device with improved lifetime and high output power
WO2003041234A1 (en) 2001-11-05 2003-05-15 Nichia Corporation Semiconductor element
KR100850950B1 (en) 2006-07-26 2008-08-08 엘지전자 주식회사 Nitride based light emitting diode

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
1985年(昭和60年)秋季応物学会予稿集 1P−N−8 p.196
1988年(昭和63年)秋季応物学会予稿集 5P−ZC−21 p.864
電子情報通信学会技術研究報告88[4](1988)p.33−38

Also Published As

Publication number Publication date
JPH02228087A (en) 1990-09-11

Similar Documents

Publication Publication Date Title
EP1750336B1 (en) Semiconductor optical device and a method of fabricating the same
US8093581B2 (en) Optical semiconductor device and method for manufacturing the same
JPS6254489A (en) Semiconductor light emitting element
JP2558744B2 (en) Semiconductor laser device and manufacturing method thereof
JP2002374040A (en) Semiconductor laser device and production method therefor
US5852625A (en) Distributed feedback semiconductor laser
JP2912624B2 (en) Semiconductor laser device
JPH06302908A (en) Semiconductor laser
US6560266B2 (en) Distributed feedback semiconductor laser
JP2882335B2 (en) Optical semiconductor device and method for manufacturing the same
US5065403A (en) Self-alignment type window semiconductor laser
JP4375834B2 (en) Gain-coupled distributed feedback semiconductor laser device and manufacturing method thereof
JP4652712B2 (en) Semiconductor device
JP2723924B2 (en) Semiconductor laser device
JP2679974B2 (en) Semiconductor laser device
US5170404A (en) Semiconductor laser device suitable for optical communications systems drive
JP2723921B2 (en) Semiconductor laser device
JPS6362292A (en) Semiconductor laser device and manufacture thereof
JP2783163B2 (en) Distributed feedback semiconductor laser and method of manufacturing the same
JP3115006B2 (en) Semiconductor laser device
JP2723944B2 (en) Semiconductor laser device and semiconductor laser array
JP4718309B2 (en) Optical semiconductor device
JPH09214058A (en) Semiconductor laser device
JP2865325B2 (en) Semiconductor laser device
JP2822470B2 (en) Semiconductor laser

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090409

EXPY Cancellation because of completion of term