JP2911911B2 - Epoxy compound polymerization method - Google Patents

Epoxy compound polymerization method

Info

Publication number
JP2911911B2
JP2911911B2 JP1102375A JP10237589A JP2911911B2 JP 2911911 B2 JP2911911 B2 JP 2911911B2 JP 1102375 A JP1102375 A JP 1102375A JP 10237589 A JP10237589 A JP 10237589A JP 2911911 B2 JP2911911 B2 JP 2911911B2
Authority
JP
Japan
Prior art keywords
polymerization
epoxy compound
mmol
reaction
polyether
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1102375A
Other languages
Japanese (ja)
Other versions
JPH02281030A (en
Inventor
剛 遠藤
洋子 南部
恵示 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adeka Corp
Original Assignee
Asahi Denka Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Denka Kogyo KK filed Critical Asahi Denka Kogyo KK
Priority to JP1102375A priority Critical patent/JP2911911B2/en
Priority to US07/502,415 priority patent/US5017684A/en
Priority to DE69023535T priority patent/DE69023535T2/en
Priority to EP90303511A priority patent/EP0393872B1/en
Priority to AT90303511T priority patent/ATE130326T1/en
Publication of JPH02281030A publication Critical patent/JPH02281030A/en
Application granted granted Critical
Publication of JP2911911B2 publication Critical patent/JP2911911B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/04Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
    • C08G65/22Cyclic ethers having at least one atom other than carbon and hydrogen outside the ring

Abstract

A polymer of an epoxy compound is selectively obtained by polymerizing an epoxy compound having the formula (I). <CHEM> wherein R is a substituted or unsubstituted alkyl group, by using an initiator comprising a silyl ether represented by the general formula (II): <CHEM> wherein R<1>, R<2> and R<3> are each a substituted or unsubstituted alkyl or aryl group, in the presence of an inorganic fluoride catalyst, thereby preparing a polyether having a silyloxy group in its terminal.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、エポキシ化合物の重合方法に関するもので
ある。
The present invention relates to a method for polymerizing an epoxy compound.

〔従来の技術及び発明が解決しようとする課題〕[Problems to be solved by conventional technology and invention]

エポキシ化合物の開環重合により得られるポリエーテ
ルは、特殊ゴム、界面活性剤など用途は広い。
Polyethers obtained by ring-opening polymerization of epoxy compounds have a wide range of uses such as special rubbers and surfactants.

重合反応の進歩に伴って、分子量および分子量分布、
共重合体の連鎖分布、末端基の規制など構造の規制され
たポリマーの合成も可能となり、新しい機能性高分子へ
の展開がなされ、ポリエーテルにおいても同様の試みが
なされている。
With the progress of polymerization reaction, molecular weight and molecular weight distribution,
It is also possible to synthesize a polymer whose structure is regulated, such as the chain distribution of the copolymer and the terminal groups, which has been developed into a new functional polymer, and similar attempts have been made for polyethers.

ところで、エポキシ化合物のカチオン触媒による重合
では、低分子量のポリマーしか得られず、また副反応も
多い。アルカリ触媒によるエチレンオキシドのアニオン
重合は、リビング重合機構で進行し、単分散性のポリエ
ーテルが得られるが、モノマーが限定される嫌いがあ
る。他方、配位アニオン重合により、高分子量のポリエ
ーテルが容易に得られるが、分子量および分布の規制は
困難である。
By the way, in the polymerization of an epoxy compound with a cationic catalyst, only a low molecular weight polymer can be obtained, and there are many side reactions. The anionic polymerization of ethylene oxide by an alkali catalyst proceeds by a living polymerization mechanism, and a monodisperse polyether is obtained. On the other hand, high molecular weight polyethers can be easily obtained by coordination anionic polymerization, but it is difficult to regulate molecular weight and distribution.

井上らは、アルミニウムポルフィン錯体が、エポキシ
化合物のリビング重合に極めて有効な開始剤になること
を報告している[S.Inoue,T.Aida,Macromol.Chem.Macro
mol.Symp.,6,217(1986)]。
Inoue et al. Report that aluminum porphine complexes are extremely effective initiators for living polymerization of epoxy compounds [S. Inoue, T. Aida, Macromol . Chem. Macro.
mol. Symp., 6 , 217 (1986)].

一方、ウェブスターらは、シリルケテンアセタールに
よるグループトランスファー重合で、メタクリル酸エス
テルの単分散ポリマーを得ているが[D.Y.Sogah,W.R.He
rtler,O.W.Webster,G.M.Cohen,Macromolecules.,20,147
3(1987)]、その開環重合例はない。
On the other hand, Webster et al. Obtained a monodisperse polymer of methacrylate by group transfer polymerization using silyl ketene acetal [DYSogah, WRHe
rtler, OWWebster, GMCohen, Macromolecules. , 20,147
3 (1987)], there is no ring-opening polymerization example.

本発明者らは既にCaFを触媒として、アリールシリル
エーテルによるグリシジルエーテル型エポキシド類の環
開反応が進行し、高収率で位置選択的な付加生成物が得
られることを見出している(特願昭63−57981号)。
The present inventors have already found that the ring-opening reaction of glycidyl ether type epoxides with arylsilyl ethers proceeds using CaF as a catalyst, and regioselective addition products can be obtained in high yield (Japanese Patent Application 63-57981).

〔課題を解決するための手段〕 本発明者らは、CsFを触媒とするシリルエーテルとア
ルキルグリシジルエーテルとの反応においては、アリー
ルグリシジルエーテルとの反応の場合と異なり、付加生
成物はさらに過剰のグリシジルエーテルと反応すること
を新たに見出し、本反応を応用して構造規制を高度に可
能とするエポキシ化合物の新規な重合方法の発明に到達
した。
[Means for Solving the Problems] In the reaction of silyl ether with alkyl glycidyl ether catalyzed by CsF, unlike the reaction with aryl glycidyl ether, the addition product is further excessive. They have newly found that they react with glycidyl ether, and have arrived at the invention of a novel polymerization method of an epoxy compound which enables a high degree of structural regulation by applying this reaction.

即ち、本発明のエポキシ化合物の重合方法は、一般式
(I) (式中Rは置換又は無置換のアルキル基を示す) で示されるエポキシ化合物を、一般式(II) (式中、R1,R2,R3はそれぞれ置換又は無置換のアルキル
基またはアリール基を示す) で示されるシリルエーテル0.01〜0.2当量を開始剤とし
て、CsFの存在下に重合させ、末端にシリルオキシ基を
持つポリエーテルを得ることを特徴とする。
That is, the method for polymerizing the epoxy compound of the present invention is represented by the general formula (I): (Wherein R represents a substituted or unsubstituted alkyl group) represented by the general formula (II) (Wherein R 1 , R 2 , and R 3 each represent a substituted or unsubstituted alkyl group or an aryl group). The initiator is polymerized in the presence of CsF, using 0.01 to 0.2 equivalents of a silyl ether represented by the following formula: To obtain a polyether having a silyloxy group.

一般式(I)で示されるエポキシ化合物としては、R
が炭素原子数1〜20のアルキル基、ハロゲン置換アルキ
ル基、またはオレフィン、ニトリル、エステル、アミ
ド、アミンエーテルなどの置換基を持つアルキル基を有
するグリシジルエーテルが挙げられ、好ましくはRとし
て炭素原子数1〜4の直鎖もしくは分岐型アルキル基を
持つグリシジルエーテルが挙げられる。
The epoxy compound represented by the general formula (I) includes R
Is a glycidyl ether having an alkyl group having 1 to 20 carbon atoms, a halogen-substituted alkyl group, or an alkyl group having a substituent such as an olefin, a nitrile, an ester, an amide, or an amine ether. Glycidyl ethers having 1 to 4 linear or branched alkyl groups are exemplified.

一般式(II)で示されるシリルエーテルとしては、
R1,R2,R3が炭素原子数1〜20のアルキル基、アリール
基、もしくはアリールカルボニルオキシ、アルキル、ビ
ニル、ハロゲン、シアノ、カルバモイル置換アリール基
のものが挙げられ、好ましくは、無置換またはアルキル
置換フェニルトリアルキルシリルエーテルが挙げられ
る。
As the silyl ether represented by the general formula (II),
R 1 , R 2 , and R 3 each have an alkyl group having 1 to 20 carbon atoms, an aryl group, or an arylcarbonyloxy, alkyl, vinyl, halogen, cyano, or carbamoyl-substituted aryl group, and are preferably unsubstituted Or an alkyl-substituted phenyltrialkylsilyl ether.

本発明のシリルエーテル化合物開始剤の使用量は、一
般式(I)のエポキシ化合物に対して、0.001〜0.5当
量、好ましくは0.01〜0.2当量程度が好ましい。
The amount of the silyl ether compound initiator of the present invention to be used is preferably about 0.001 to 0.5 equivalent, more preferably about 0.01 to 0.2 equivalent based on the epoxy compound of the general formula (I).

本発明で用いられる無機フッ化物触媒としては、アル
カリ金属のフッ化物が挙げられ、例えばCsF、KFなどが
ある。
Examples of the inorganic fluoride catalyst used in the present invention include alkali metal fluorides, such as CsF and KF.

無機フッ化物触媒の使用量は、一般式(I)のエポキ
シ化合物に対して、0.001〜0.05当量が好ましく、さら
に好ましくは0.005〜0.02当量である。
The amount of the inorganic fluoride catalyst to be used is preferably 0.001 to 0.05 equivalent, more preferably 0.005 to 0.02 equivalent to the epoxy compound of the general formula (I).

本発明の重合反応は、無溶媒中もしくは非プロトン性
有機溶媒中で行うことができる。非プロトン性有機溶媒
としては、アセトニトリル、アセトン、DMF、THFなどが
挙げられる。非プロトン性有機溶媒の使用量は、一般式
(I)のエポキシ化合物に対して0.3〜2当量程度が好
ましい。
The polymerization reaction of the present invention can be carried out without a solvent or in an aprotic organic solvent. Examples of the aprotic organic solvent include acetonitrile, acetone, DMF, THF and the like. The use amount of the aprotic organic solvent is preferably about 0.3 to 2 equivalents to the epoxy compound of the general formula (I).

本発明の重合反応は、脱気封管中、100〜200℃で、1
分〜10時間行うことができる。
The polymerization reaction of the present invention is carried out in a degassed sealed tube at 100 to 200 ° C for 1 hour.
Can be performed for minutes to 10 hours.

本発明の好ましい実施態様を次に述べる。 Preferred embodiments of the present invention are described below.

アルキルグリシジルエーテルを無溶媒下、0.01〜0.2
当量の置換フェニルトリメチルシリルエーテルを開始剤
とし、0.005〜0.02当量のCsF触媒を用い、脱気封管中、
115〜150℃で、5分〜2時間重合させる。
Alkyl glycidyl ether without solvent, 0.01-0.2
Using an equivalent of substituted phenyltrimethylsilyl ether as an initiator, using 0.005 to 0.02 equivalent of CsF catalyst, in a degassed sealed tube,
Polymerize at 115-150 ° C for 5 minutes to 2 hours.

反応後触媒を濾別し、未反応のグリシジルエーテルを
減圧除去すると次式の単分散性の高いポリエーテルまた
はオリゴエーテルが得られる。
After the reaction, the catalyst is filtered off and unreacted glycidyl ether is removed under reduced pressure to obtain a polyether or oligoether having the following formula and high monodispersity.

〔発明の効果〕 本発明は、グリシジルエーテル型のエポキシ化合物を
新規重合方法で重合させるものである。
[Effect of the Invention] The present invention is to polymerize a glycidyl ether type epoxy compound by a novel polymerization method.

本発明によれば、酸・塩基を用いることなく、しかも
短時間で重合が進行し、単分散性の高いポリエーテルが
得られる。エポキシ化合物と開始剤のモル比を変化させ
れば容易に分子量も制御でき、オリゴマーも得られる。
さらにブロック共重合体、星型ポリマーの合成への展開
も可能で可能である。しかも本発明の重合反応は選択性
も高く、種々の機能団を持つポリエーテルの製造、新規
マクロマーの開発に応用できる。
According to the present invention, the polymerization proceeds in a short time without using an acid or a base, and a polyether having high monodispersity can be obtained. By changing the molar ratio between the epoxy compound and the initiator, the molecular weight can be easily controlled, and an oligomer can be obtained.
Further, it can be applied to the synthesis of block copolymers and star polymers. Moreover, the polymerization reaction of the present invention has high selectivity and can be applied to the production of polyethers having various functional groups and the development of new macromers.

本発明の重合系は100℃以上の加熱を必要とすること
から、エポキシ化合物に対する熱潜在性重合開始剤とし
ても利用できる。
Since the polymerization system of the present invention requires heating at 100 ° C. or higher, it can also be used as a thermal latent polymerization initiator for epoxy compounds.

〔実施例〕〔Example〕

以下、実施例により本発明を更に詳細に説明するが、
本発明はこれらの実施例に限定されるものではない。
Hereinafter, the present invention will be described in more detail by examples,
The present invention is not limited to these examples.

実施例1 重合管に、CsF 260mg(1.71ミリモル)を量り込み、
加熱乾燥した後、n−ブチルグリシジルエーテル12.2ml
(85.6ミリモル)、およびフェニルトリメチルシリルエ
ーテル0.31ml(1.71ミリモル)を加え、脱気封管後、13
0℃で15分間重合させた。反応後、反応液を濾過し、CsF
を除き、さらに未反応のグリシジルエーテルを減圧除去
すると、ポリエーテル9.2g(収率82%)が得られた。
Example 1 260 mg (1.71 mmol) of CsF was weighed into a polymerization tube,
After heating and drying, n-butyl glycidyl ether 12.2 ml
(85.6 mmol), and 0.31 ml (1.71 mmol) of phenyltrimethylsilyl ether were added.
Polymerization was carried out at 0 ° C. for 15 minutes. After the reaction, the reaction solution is filtered, and CsF
Then, unreacted glycidyl ether was removed under reduced pressure to obtain 9.2 g (yield: 82%) of polyether.

IR及び1H−NMR分析の結果から、末端にフェノキシ
基、およびトリメチルシリルオキシ基を持つ次の構造の
ポリエーテルであることを確認した。
From the results of IR and 1 H-NMR analysis, it was confirmed that the polyether had the following structure having a phenoxy group and a trimethylsilyloxy group at the terminal.

またGPC分析〔溶媒:テトラヒドロフラン、分子量
(ポリスチレン換算):n=5310(計算値:5490)、
分子量分布(D=w/n)=1.17〕の結果から、本発
明の重合方法が単分散性の高いポリエーテルを与えるこ
とが判明した。
GPC analysis [solvent: tetrahydrofuran, molecular weight (polystyrene conversion): n = 5310 (calculated value: 5490),
From the result of the molecular weight distribution (D = w / n) = 1.17], it was found that the polymerization method of the present invention gave a polyether having high monodispersity.

実施例2〜4 重合管に、CsF 130mg(0.85ミリモル)を量り込み、
加熱乾燥した後、n−ブチルグリシジルエーテル12.2ml
(85.6ミリモル)、およびフェニルトリメチルシリルエ
ーテル0.31ml(1.71ミリモル)を加え、実施例1と同様
にして、115℃で15,40,及び80分間それぞれ反応させ、
ポリエーテルを得た。
Examples 2 to 4 130 mg (0.85 mmol) of CsF was weighed into a polymerization tube.
After heating and drying, n-butyl glycidyl ether 12.2 ml
(85.6 mmol), and 0.31 ml (1.71 mmol) of phenyltrimethylsilyl ether were added, and reacted at 115 ° C. for 15, 40, and 80 minutes, respectively, in the same manner as in Example 1.
A polyether was obtained.

第1図に実施例2〜4における生成物のGPCチャート
を示した。本発明の重合系により単分散性の高いポリマ
ーが得られ、重合度の上昇につれ、分子量が増加してい
ることが明らかである。
FIG. 1 shows GPC charts of the products in Examples 2 to 4. It is apparent that a polymer having high monodispersity can be obtained by the polymerization system of the present invention, and that the molecular weight increases as the degree of polymerization increases.

実施例5 重合管に、CsF 130mg(0.856ミリモル)を量り込み、
加熱乾燥した後、n−ブチルグリシジルエーテル12.2ml
(85.6ミリモル)、およびフェニルトリメチルシリルエ
ーテル1.56ml(8.56ミリモル)を加え、実施例1と同様
にして、130℃で30分間反応させ、ポリエーテル6.70g
(収率60%)を得た。
Example 5 130 mg (0.856 mmol) of CsF was weighed into a polymerization tube,
After heating and drying, n-butyl glycidyl ether 12.2 ml
(85.6 mmol) and 1.56 ml (8.56 mmol) of phenyltrimethylsilyl ether, and reacted at 130 ° C. for 30 minutes in the same manner as in Example 1 to obtain 6.70 g of polyether.
(60% yield).

実施例6 重合管に、CaF 260mg(1.7ミリモル)を量り込み、加
熱乾燥した後、メチルグリシジルエーテル7.7ml(85.6
ミリモル)、およびフェニルトリメチルシリルエーテル
0.31ml(1.7ミリモル)を加え、実施例1と同様にし
て、130℃で30分間反応させ、ポリエーテル7.5g(収率1
00%)を得た。n=2440;D=1.23 比較例1 本発明の開始剤と無機フッ化物触媒の代わりに、セシ
ウムフェノレート(PhOCs)を用いる他は実施例1と同
様にして、130℃で30分間反応させ、ポリエーテルを得
た。
Example 6 260 mg (1.7 mmol) of CaF was weighed into a polymerization tube, dried by heating, and then 7.7 ml of methyl glycidyl ether (85.6 mg).
Mmol), and phenyltrimethylsilyl ether
0.31 ml (1.7 mmol) was added and reacted at 130 ° C. for 30 minutes in the same manner as in Example 1 to obtain 7.5 g of polyether (yield 1).
00%). n = 2440; D = 1.23 Comparative Example 1 A reaction was performed at 130 ° C. for 30 minutes in the same manner as in Example 1 except that cesium phenolate (PhOCs) was used instead of the initiator and the inorganic fluoride catalyst of the present invention. A polyether was obtained.

比較例2 重合管に、ZnF2177mg(1.71ミリモル)を量り込み、
加熱乾燥した後、n−ブチルグリシジルエーテル12.2ml
(85.6ミリモル)と、フェニルトリメチルシリルエーテ
ル0.31ml(1.71ミリモル)を加え、脱気封管後、130℃
で30分間反応させた。反応後、反応液を濾過してZnF2
除き、さらにn−ブチルグリシジルエーテルを減圧除去
した。その結果、IR及び1H−NMR分析により、ポリエー
テルが生成していないことを確認した。
Comparative Example 2 177 mg (1.71 mmol) of ZnF 2 was weighed into a polymerization tube,
After heating and drying, n-butyl glycidyl ether 12.2 ml
(85.6 mmol) and 0.31 ml (1.71 mmol) of phenyltrimethylsilyl ether were added.
For 30 minutes. After the reaction, except ZnF 2 The reaction was filtered and the further n- butyl glycidyl ether was removed under reduced pressure. As a result, it was confirmed by IR and 1 H-NMR analysis that no polyether was generated.

比較例3 重合管に、KHF2133mg(1.71ミリモル)を量り込み、
加熱乾燥した後、n−ブチルグリシジルエーテル12.2ml
(85.6ミリモル)と、フェニルトリメチルシリルエーテ
ル0.31ml(1.71ミリモル)を加え、脱気封管後、130℃
で30分間反応させた。反応後、反応液を濾過してKHF2
除き、さらにn−ブチルグリシジルエーテルを減圧除去
した。その結果、IR及び1H−NMR分析により、フェニル
トリメチルシリルエーテルに対して、約1当量分のn−
ブチルグリシジルエーテルが付加したが、それ以上の反
応の進行がなかったことを確認した。
Comparative Example 3 133 mg (1.71 mmol) of KHF 2 was weighed into a polymerization tube.
After heating and drying, n-butyl glycidyl ether 12.2 ml
(85.6 mmol) and 0.31 ml (1.71 mmol) of phenyltrimethylsilyl ether were added.
For 30 minutes. After the reaction, except KHF 2 The reaction was filtered and the further n- butyl glycidyl ether was removed under reduced pressure. As a result, by IR and 1 H-NMR analysis, about 1 equivalent of n-
It was confirmed that butyl glycidyl ether was added, but no further reaction proceeded.

実施例1〜5及び比較例1の反応条件及び生成物のGP
Cの結果を合わせて、第1表に示した(分子量はポリス
チレン換算)。比較例1のフェノキシドアニオンによる
重合例と対照的に、実施例1〜5において分子量分布
(D)の狭いポリエーテルが得られた。また、その数平
均分子量(n)はモノマーと開始剤(シリルエーテ
ル)との比及び変換率より算出した計算値とよく対応し
ており、容易に分子量制御が可能であった。これらの結
果は本発明の重合系のリビング性を示すものである。
Reaction Conditions of Examples 1 to 5 and Comparative Example 1 and GP of Product
The results of C are shown in Table 1 (the molecular weight is in terms of polystyrene). In contrast to the polymerization example using phenoxide anion of Comparative Example 1, polyethers having narrow molecular weight distributions (D) were obtained in Examples 1 to 5. The number average molecular weight (n) well corresponded to the calculated value calculated from the ratio of the monomer to the initiator (silyl ether) and the conversion, and the molecular weight could be easily controlled. These results show the living properties of the polymerization system of the present invention.

【図面の簡単な説明】[Brief description of the drawings]

第1図は実施例2〜4で得られた反応液より触媒を濾別
し、濾液をテトラヒドロフランに溶解させ、GPC分析を
行った結果を示す。 これらのチャートにおいて、右のピークはエポキシモノ
マーに、左のピークはポリエーテルに基づく溶出曲線を
示す。
FIG. 1 shows the results obtained by filtering the catalyst from the reaction solutions obtained in Examples 2 to 4, dissolving the filtrate in tetrahydrofuran, and performing GPC analysis. In these charts, the right peak shows the elution curve based on the epoxy monomer, and the left peak shows the elution curve based on the polyether.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−278529(JP,A) 特開 平2−29429(JP,A) 特開 昭47−6994(JP,A) 特開 昭47−6993(JP,A) 特開 平2−196825(JP,A) 特許2620290(JP,B2) (58)調査した分野(Int.Cl.6,DB名) C08G 65/00 - 65/48 CASONLINE(STN)──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-1-278529 (JP, A) JP-A-2-29429 (JP, A) JP-A-47-6994 (JP, A) JP-A-47-699 6993 (JP, A) JP-A-2-196825 (JP, A) Patent 2620290 (JP, B2) (58) Fields investigated (Int. Cl. 6 , DB name) C08G 65/00-65/48 CASSONLINE ( STN)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一般式(I) (式中Rは置換又は無置換のアルキル基を示す) で表されるエポキシ化合物を、一般式(II) (式中、R1,R2,R3はそれぞれ置換又は無置換のアルキル
基またはアリール基を示す) で示されるシリルエーテル0.01〜0.2当量を開始剤とし
て、CsFの存在下に重合させ、末端にシリルオキシ基を
持つポリエーテルを得ることを特徴とするエポキシ化合
物の重合方法。
1. The compound of the general formula (I) (Wherein R represents a substituted or unsubstituted alkyl group) represented by the general formula (II) (Wherein R 1 , R 2 , and R 3 each represent a substituted or unsubstituted alkyl group or an aryl group). The initiator is polymerized in the presence of CsF using 0.01 to 0.2 equivalents of a silyl ether represented by the following formula: A method for polymerizing an epoxy compound, comprising obtaining a polyether having a silyloxy group.
JP1102375A 1989-04-21 1989-04-21 Epoxy compound polymerization method Expired - Lifetime JP2911911B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP1102375A JP2911911B2 (en) 1989-04-21 1989-04-21 Epoxy compound polymerization method
US07/502,415 US5017684A (en) 1989-04-21 1990-03-30 Method of polymerizing epoxy compound
DE69023535T DE69023535T2 (en) 1989-04-21 1990-04-02 Process for the polymerization of epoxy compounds.
EP90303511A EP0393872B1 (en) 1989-04-21 1990-04-02 Method of polymerizing epoxy compound
AT90303511T ATE130326T1 (en) 1989-04-21 1990-04-02 METHOD FOR POLYMERIZING EPOXY COMPOUNDS.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1102375A JP2911911B2 (en) 1989-04-21 1989-04-21 Epoxy compound polymerization method

Publications (2)

Publication Number Publication Date
JPH02281030A JPH02281030A (en) 1990-11-16
JP2911911B2 true JP2911911B2 (en) 1999-06-28

Family

ID=14325715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1102375A Expired - Lifetime JP2911911B2 (en) 1989-04-21 1989-04-21 Epoxy compound polymerization method

Country Status (5)

Country Link
US (1) US5017684A (en)
EP (1) EP0393872B1 (en)
JP (1) JP2911911B2 (en)
AT (1) ATE130326T1 (en)
DE (1) DE69023535T2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4943626A (en) * 1988-07-29 1990-07-24 The Dow Chemical Company Primary polyether active hydrogen compounds which are prepared from linked, protectively initiated polyalkyleneoxides

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2620290B2 (en) 1988-03-11 1997-06-11 旭電化工業株式会社 Method for producing aryl ether compound having silyloxy group

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3503898A (en) * 1968-02-16 1970-03-31 Koppers Co Inc Cationic polymerization catalyst
US3660315A (en) * 1970-09-22 1972-05-02 Du Pont Process for preparing fluorine-containing polymers
US4336366A (en) * 1980-02-29 1982-06-22 Ciba-Geigy Corporation Thermally polymerizable mixtures and processes for the thermally-initiated polymerization of cationically polymerizable compounds
US4448980A (en) * 1983-09-22 1984-05-15 E. I. Du Pont De Nemours And Company Preparation of trialkylsilyl ethers
JPH01278529A (en) * 1988-04-30 1989-11-08 Cemedine Co Ltd Ring-opening of heterocyclic compound and polymerization thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2620290B2 (en) 1988-03-11 1997-06-11 旭電化工業株式会社 Method for producing aryl ether compound having silyloxy group

Also Published As

Publication number Publication date
ATE130326T1 (en) 1995-12-15
EP0393872B1 (en) 1995-11-15
DE69023535D1 (en) 1995-12-21
US5017684A (en) 1991-05-21
JPH02281030A (en) 1990-11-16
EP0393872A3 (en) 1991-08-28
EP0393872A2 (en) 1990-10-24
DE69023535T2 (en) 1996-05-30

Similar Documents

Publication Publication Date Title
US6069259A (en) Multifunctional polymerizible alkoxy siloxane oligomers
JPH06502442A (en) Hyperbranched polyesters and polyamides
JP2002542343A (en) Living cationic polymers prepared from silyl-functional aromatic initiators
JPS63137903A (en) Polymer functionalized at chain terminal and its production
KR100408611B1 (en) Polymerization of Cyclic Ethers Using Selected Metal Compound Catalysts
KR101767852B1 (en) Synthesis of free radical polymerizable ethylenically unsaturated poloxamers and poloxamines
JPS59168029A (en) Manufacture of bifunctional polyphenylene oxide
US4256859A (en) Substituted crown polyethers
US5478920A (en) Cyclic ether polymerization using silicon compound accelerators
EP0222586B1 (en) Polyether polymer or copolymer, monomer therefor, and process for production thereof
JP2911911B2 (en) Epoxy compound polymerization method
EP0351859B1 (en) Preparation process of block copolymers and resulting block copolymers
EP0708794B1 (en) Polymerization of cyclic ethers using heterogeneous catalysts
US5475069A (en) Polymerization of vinyl ethers
JPH06157728A (en) Multiple-branch aliphatic/aromatic polyester and production of multiple-branch aliphatic/aromatic polyester
JPH09143259A (en) Production of polymer having oxetanyl group on side-chain
JP3537575B2 (en) Terminal reactive polymer compound and method for producing the same
Montornes et al. Synthesis of New Reactive Polyethers: Poly (ω‐bromoalkyl‐1‐glycidylether) s
JP2002030144A (en) Process for producing polyether compound
JP3023917B2 (en) Method for producing reactive monomer
JP4325097B2 (en) Optically active poly (N-methylbenzylmaleimide) and process for producing the same
JP3394591B2 (en) Method for producing polyester-type macromonomer by ring-opening polymerization of lactone compound
JP3429516B2 (en) Block copolymer and method for producing the same
JP3673788B2 (en) Polystyrene type graft polymer and method for producing the same
Webster Does anion-catalyzed group-transfer polymerization proceed via an enolate intermediate?

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080409

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 11