JP2909694B2 - Sheet plasma generation method and apparatus - Google Patents

Sheet plasma generation method and apparatus

Info

Publication number
JP2909694B2
JP2909694B2 JP5136009A JP13600993A JP2909694B2 JP 2909694 B2 JP2909694 B2 JP 2909694B2 JP 5136009 A JP5136009 A JP 5136009A JP 13600993 A JP13600993 A JP 13600993A JP 2909694 B2 JP2909694 B2 JP 2909694B2
Authority
JP
Japan
Prior art keywords
plasma
magnetic field
sheet
permanent magnets
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5136009A
Other languages
Japanese (ja)
Other versions
JPH06349593A (en
Inventor
俊之 酒見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP5136009A priority Critical patent/JP2909694B2/en
Publication of JPH06349593A publication Critical patent/JPH06349593A/en
Application granted granted Critical
Publication of JP2909694B2 publication Critical patent/JP2909694B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Plasma Technology (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は円柱プラズマからシート
プラズマを生成する方法及びその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for generating a sheet plasma from a cylindrical plasma.

【0002】[0002]

【従来の技術】大面積の処理物に対してプラズマを用い
て表面処理を行う場合、高速で均一な処理を行うために
は、シートプラズマが極めて有用である。
2. Description of the Related Art When performing a surface treatment on a large-area workpiece using plasma, sheet plasma is extremely useful for performing uniform processing at high speed.

【0003】従来のシートプラズマの生成方法として
は、永久磁石により円柱プラズマをシート状に偏平化さ
せる方法(特公平4−23400号)が知られている。
このシートプラズマ生成法は、図9,10を参照して説
明すると、磁場中の放電により形成された円柱プラズマ
50を挟むように、一対の永久磁石51,52を配置
し、これらの永久磁石51,52を同極同士を対向させ
て強い反発磁場を形成して円柱プラズマ50を圧縮して
拡げ、かつ、円柱プラズマ50の軸方向における該永久
磁石51,52の磁場成分の大きさを円柱プラズマ形成
の場における同方向の磁場より小さくすることにより、
円柱プラズマ形成の場における磁場の方向のシートプラ
ズマ流53を形成するようにしている。
As a conventional sheet plasma generating method, there is known a method of flattening a cylindrical plasma into a sheet shape using a permanent magnet (Japanese Patent Publication No. 4-23400).
In the sheet plasma generation method, referring to FIGS. 9 and 10, a pair of permanent magnets 51 and 52 are arranged so as to sandwich a cylindrical plasma 50 formed by electric discharge in a magnetic field. , 52 with the same poles facing each other to form a strong repulsive magnetic field to compress and expand the columnar plasma 50, and to determine the magnitude of the magnetic field component of the permanent magnets 51, 52 in the axial direction of the columnar plasma 50 by the columnar plasma. By making it smaller than the co-directional magnetic field in the field of formation,
The sheet plasma flow 53 in the direction of the magnetic field in the field of the cylindrical plasma is formed.

【0004】図中、BZ0は大直径磁場コイル(図示せ
ず)による初期の軸方向磁場であり、BX ,BY ,BZ
はそれぞれ、永久磁石51,52によるX,Y,Z軸方
向の磁場の成分である。
In FIG. 1, B Z0 is an initial axial magnetic field generated by a large-diameter magnetic field coil (not shown), and B X , B Y , and B Z
Are the components of the magnetic field in the X, Y and Z axis directions by the permanent magnets 51 and 52, respectively.

【0005】図11は円柱プラズマ50側とシートプラ
ズマ53側のZ軸方向の磁場分布を示した図であり、初
期の軸方向磁場BZ0と永久磁石のZ軸方向の磁場BZ
の合成磁場を示したものである。そして、磁場分布
(1)から(4)になるにつれて初期の軸方向磁場BZ0
の強さを大きくしている。
[0005] Figure 11 is a diagram showing the magnetic field distribution in the Z-axis direction of the cylindrical plasma 50 side and the sheet plasma 53 side, the synthesis of the magnetic field B Z of the Z-axis direction of the initial axial magnetic field B Z0 and the permanent magnet It shows a magnetic field. Then, as the magnetic field distribution changes from (1) to (4), the initial axial magnetic field B Z0
The strength has been increased.

【0006】ところで、従来方法では、円柱プラズマ5
0側のある領域において初期の軸方向磁場BZ0の強さよ
り永久磁石のZ軸方向の磁場BZ の強さがaだけ小さい
磁場分布(2)が良いとされている。
By the way, in the conventional method, the cylindrical plasma 5
Z-axis direction of the magnetic field strength B Z of the permanent magnets than the strength of the initial axial magnetic field B Z0 in the region of 0 side is only small magnetic field distribution (2) Good a.

【0007】このように、円柱プラズマ50の軸方向の
磁場の強さよりも永久磁石51,52による同方向の磁
場の強さを小さくすると、円柱プラズマ50の軸方向の
磁場が強いため、図12に示すように、円柱プラズマ5
0の一部が矢印Cで示す部分においてZ軸方向に一直線
に走る。
If the strength of the magnetic field in the same direction by the permanent magnets 51 and 52 is made smaller than the strength of the magnetic field in the axial direction of the cylindrical plasma 50 as described above, the magnetic field in the axial direction of the cylindrical plasma 50 becomes stronger. As shown in FIG.
A part of 0 runs straight in the Z-axis direction at the part indicated by arrow C.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、円柱プ
ラズマの一部がZ軸方向に走ると、図13に示すよう
に、形成されたシートプラズマはその幅方向の中央部が
高くなり、幅方向の密度分布において均一性が得られな
いという問題があった。
However, when a part of the columnar plasma runs in the Z-axis direction, as shown in FIG. 13, the formed sheet plasma has its central portion higher in the width direction and has a higher height in the width direction. There is a problem that uniformity cannot be obtained in the density distribution.

【0009】それ故、本発明の課題は、特に幅方向の密
度分布を均一にすることのできるシートプラズマ生成方
法及びその装置を提供することにある。
SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide a sheet plasma generating method and an apparatus thereof capable of making the density distribution particularly in the width direction uniform.

【0010】[0010]

【課題を解決するための手段】本発明は、磁場中の放電
により形成された円柱プラズマを挟むように永久磁石を
配置し、該永久磁石を同極同士対向させて反発磁場によ
り、円柱プラズマからシートプラズマを生成する方法に
おいて、前記永久磁石として、シートプラズマの厚み方
向に対向配置された一対の第1の永久磁石とシートプラ
ズマの幅方向の両端に対向配置された一対の第2の永久
磁石とを用いてこれらの第1、第2の永久磁石から少し
離れるプラズマガン側に、これら第1、第2の永久磁石
による磁場と円柱プラズマの磁場との合成磁場の強さを
零もしくは零に近い磁場領域を作ると共に、その領域の
円柱プラズマの軸上に幅方向に長いカスプ磁場領域を形
成し、該カスプ磁場領域にプラズマを閉じ込め、閉じ込
めたプラズマを前記第1、第2の永久磁石の領域でこれ
ら第1、第2の永久磁石により規制しつつシート状に形
成するようにし、しかもその領域を等電位にして磁場の
バランスをとって厚みが均一なシートプラズマを形成す
ることを特徴とする。
According to the present invention, a permanent magnet is arranged so as to sandwich a cylindrical plasma formed by a discharge in a magnetic field, and the permanent magnets are made to face each other with the same polarity to generate a repulsive magnetic field. In the method for generating a sheet plasma, as the permanent magnets, a pair of first permanent magnets opposed to each other in a thickness direction of the sheet plasma and a pair of second permanent magnets opposed to both ends in a width direction of the sheet plasma. the first of these with bets, the plasma gun side slightly away from the second permanent magnets, these first, the intensity of the synthesized magnetic field with the magnetic field of the second magnetic field and a cylindrical plasma by the permanent magnets zero or zero with make close magnetic field region, to form a long cusp magnetic field region on the shaft in the width direction of the cylindrical plasma in that region, confining the plasma in the cusp magnetic field region, before confinement plasma First, which in the region of the second permanent magnet
It is characterized in that the sheet is formed into a sheet while being regulated by the first and second permanent magnets, and furthermore, the region is made equipotential to balance the magnetic field to form a sheet plasma having a uniform thickness.

【0011】また、本発明によるシートプラズマ生成装
置は、磁場中の放電により形成された円柱プラズマを挟
むように永久磁石を配置し、該永久磁石を同極同士を対
向させて反発磁場により、円柱プラズマからシートプラ
ズマを生成する装置において、プラズマガンから発生さ
れたプラズマを一定方向に導くと共に磁場の強さをコン
トロール可能な電磁石を真空容器に配設し、前記シート
プラズマの厚み方向に対向する一対の第1の永久磁石と
シートプラズマの幅方向の両端において対向する一対の
第2の永久磁石とを真空容器内に配設して成り、これら
第1、第2の永久磁石の近傍に等電位の金属板をシート
プラズマを囲むように配置したことを特徴とする。
Further, in the sheet plasma generating apparatus according to the present invention, a permanent magnet is arranged so as to sandwich a cylindrical plasma formed by a discharge in a magnetic field, and the permanent magnets are made to have the same poles opposed to each other by a repulsive magnetic field. In an apparatus for generating sheet plasma from plasma, an electromagnet that guides plasma generated from a plasma gun in a fixed direction and controls the strength of a magnetic field is disposed in a vacuum container, and a pair of sheets facing the thickness direction of the sheet plasma is provided. And a pair of second permanent magnets facing each other at both ends in the width direction of the sheet plasma are disposed in a vacuum vessel.
An equipotential metal plate is arranged near the first and second permanent magnets so as to surround the sheet plasma.

【0012】[0012]

【実施例】以下に本発明の一実施例について説明する。
図1は本発明のシートプラズマ生成装置の断面図、図2
は図1におけるA−A線断面図である。図1,2におい
て、1は基台、2は基台1上に載置された真空容器、3
は円柱プラズマをつくるプラズマガン、4は磁力の強さ
をコントロール可能なリング状の外部電磁石、5も磁力
の強さをコントロール可能なリング状の内部電磁石、1
0は円柱プラズマをシートプラズマに成形するための永
久磁石取付装置である。6は真空容器2内におけるプラ
ズマガン3の対向側に設けられた永久磁石を組み込んだ
陽極である。外部電磁石4、内部電磁石5は共に、プラ
ズマガン3と陽極6とを結ぶ中心線に沿って図1中、右
から左に向かう磁束を発生させる。
An embodiment of the present invention will be described below.
FIG. 1 is a sectional view of a sheet plasma generating apparatus of the present invention, and FIG.
FIG. 2 is a sectional view taken along line AA in FIG. 1. 1 and 2, 1 is a base, 2 is a vacuum vessel mounted on the base 1, 3
Is a plasma gun that produces a cylindrical plasma, 4 is a ring-shaped external electromagnet that can control the strength of magnetic force, 5 is also a ring-shaped internal electromagnet that can control the strength of magnetic force, 1
Reference numeral 0 denotes a permanent magnet mounting device for forming a cylindrical plasma into a sheet plasma. Reference numeral 6 denotes an anode incorporating a permanent magnet provided on the side opposite to the plasma gun 3 in the vacuum vessel 2. Both the external electromagnet 4 and the internal electromagnet 5 generate a magnetic flux from right to left in FIG. 1 along a center line connecting the plasma gun 3 and the anode 6.

【0013】永久磁石取付装置10は、真空容器2の床
面に固定された台11と、台11に立設された2本のガ
イド柱12と、ガイド柱12のそれぞれの上端を連結支
持する連結板13と、前記ガイド柱12のほぼ中央部に
設けられ、左右の永久磁石15を支持している2つの第
1の支持部材13と、該第1の支持部材13を挟む様
に、かつ、前記ガイド柱12に摺動可能に支持され、上
下の永久磁石16を支持している2つの第2の支持部材
14と、これら2つの第2の支持部材14を近づけた
り、遠ざけたりする駆動機構17と、前記永久磁石1
5,16の磁極面に絶縁体を介して取付けられた金属板
18とから構成されている。金属板18は互いに短絡す
る様に金属線等で連結されている。対向する永久磁石1
5,16は、互いに同じ極性が向い合うように配設され
ている。
The permanent magnet mounting device 10 supports a table 11 fixed to the floor of the vacuum vessel 2, two guide columns 12 erected on the table 11, and an upper end of each of the guide columns 12. A connecting plate 13, two first supporting members 13 provided substantially at the center of the guide column 12 and supporting the left and right permanent magnets 15, and sandwiching the first supporting member 13; , Two second support members 14 slidably supported by the guide columns 12 and supporting the upper and lower permanent magnets 16, and a drive for moving the two second support members 14 closer to or farther away from each other. Mechanism 17 and the permanent magnet 1
And a metal plate 18 attached to the magnetic pole surfaces 5 and 16 via an insulator. The metal plates 18 are connected by metal wires or the like so as to be short-circuited to each other. Opposing permanent magnet 1
5, 5 are arranged so that the same polarity faces each other.

【0014】本実施例では、プラズマガン3からの円柱
プラズマをとり囲む様に四方向に互いに同じ極性の磁極
を向き合せた永久磁石15,16を配置しており、この
永久磁石15,16と外部電磁石4,内部電磁石5の磁
場によりカスプ磁場を作ってプラズマビームを閉じ込
め、かつ幅方向のプラズマ拡散を行う。この時の閉じ込
めの磁場勾配は、0.2×103 〜5.0×104 (G
/m)である。
In the present embodiment, permanent magnets 15 and 16 having magnetic poles of the same polarity facing each other are arranged in four directions so as to surround the cylindrical plasma from the plasma gun 3. A cusp magnetic field is created by the magnetic field of the external electromagnet 4 and the internal electromagnet 5 to confine the plasma beam and perform plasma diffusion in the width direction. The magnetic field gradient for confinement at this time is 0.2 × 10 3 to 5.0 × 10 4 (G
/ M).

【0015】また、永久磁石15、16の近傍で閉じ込
めたプラズマを取り囲む様に金属板18を配置し、プラ
ズマに面する金属板18を全て等電位になる様に短絡
し、これらを真空容器2の電位とは分離できる様に抵抗
を介して真空容器2に結線する。
A metal plate 18 is arranged so as to surround the plasma confined in the vicinity of the permanent magnets 15 and 16, and all the metal plates 18 facing the plasma are short-circuited so as to have the same potential. Is connected to the vacuum vessel 2 via a resistor so that it can be separated from the potential.

【0016】図3を参照して、本実施例では、外部電磁
石4の電流をコントロールして、永久磁石15,16か
ら少し離れるプラズマガン3側の領域Aでの磁場の強さ
について、円柱プラズマの軸方向における磁場の強さと
永久磁石15,16による同方向の磁場の強さをほぼ同
じにして零又は零近傍になるようにしている。
Referring to FIG. 3, in the present embodiment, the current of the external electromagnet 4 is controlled to determine the strength of the magnetic field in the region A on the side of the plasma gun 3 slightly away from the permanent magnets 15 and 16 so as to determine the strength of the cylindrical plasma. And the strength of the magnetic field in the same direction by the permanent magnets 15 and 16 is made substantially equal to zero or near zero.

【0017】実施例では金属板18は永久磁石15,1
6に個別に設けられているが、1枚板で製作されていて
も良い。また、シートプラズマの端付近の密度を微調整
する為に、プラズマの閉じ込め部からシート状に流出す
る部分の幅方向の両端に微調整用の電極を設置し、この
電位を変更することで端付近の密度を変化させることが
可能である。
In the embodiment, the metal plate 18 is provided with the permanent magnets 15 and 1.
6 are provided individually, but may be made of a single plate. In addition, in order to finely adjust the density near the edge of the sheet plasma, electrodes for fine adjustment are installed at both ends in the width direction of the portion flowing out of the plasma confinement portion in a sheet shape, and this potential is changed by changing the potential. It is possible to change the density in the vicinity.

【0018】なお、実施例は金属板18を等電位にして
厚みがより均一なシートプラズマを形成するようにした
が、幅方向の金属板18の内側に電位を変更できるよう
に別の金属板を追加して、上下方向の金属板18との電
位差をつけて、シートプラズマの形状を変更できるよう
にしても良い。また、各金属板18を等電位にせずに、
それぞれ金属板18の電位を変更できるようにしても良
い。
In this embodiment, the metal plate 18 is made to have the same potential to form a sheet plasma having a more uniform thickness. May be added to make it possible to change the shape of the sheet plasma by giving a potential difference to the metal plate 18 in the vertical direction. Also, without making each metal plate 18 equal potential,
The potential of each metal plate 18 may be changed.

【0019】従来の方法と比較すると、従来の方法で
は、永久磁石を用いて円柱プラズマをシートプラズマに
する事は同じであるが、この時の磁場分布はプラズマ内
の電子の軌道を規制している磁力線の束を横に押し拡げ
る様に偏平化している。一方、本発明では、永久磁石1
5,16から少し離れるプラズマガン3側の円柱プラズ
マの軸上に軸方向に長いカスプ磁場領域を作り、電子を
一旦、このカスプ磁場領域に閉じ込め、幅方向に拡散さ
せてプラズマ溜りを作った後、この領域からカスプ磁場
に沿って、幅方向に一様に漏れ出した電子流がシートプ
ラズマを生成するところに特徴がある。この時の磁場分
布は図3のようになる。図3には、永久磁石15、16
からの磁束のみならず、外部電磁石4、内部電磁石5か
らの磁束も示されている。
Compared with the conventional method, in the conventional method, the cylindrical plasma is converted into the sheet plasma using the permanent magnet, but the magnetic field distribution at this time restricts the trajectory of the electrons in the plasma. It is flattened so that the bundle of lines of magnetic force that are present is pushed out to the side. On the other hand, in the present invention, the permanent magnet 1
After a long cusp magnetic field region is created in the axial direction on the axis of the cylindrical plasma on the side of the plasma gun 3 slightly away from 5 and 16, electrons are once confined in this cusp magnetic field region and diffused in the width direction to form a plasma pool. It is characterized in that the electron flow leaking uniformly from the region along the cusp magnetic field in the width direction generates sheet plasma. The magnetic field distribution at this time is as shown in FIG. FIG. 3 shows permanent magnets 15 and 16.
The magnetic flux from the external electromagnet 4 and the internal electromagnet 5 as well as the magnetic flux from the external electromagnet 4 are shown.

【0020】なお、永久磁石の鉄心を分割せず、図4の
様に円柱プラズマの軸心方向から見て筒状の鉄心20と
し、この鉄心20の外周に永久磁石15´、16´を設
けても良い。このようにすれば、シートプラズマの周囲
の磁場の強さが均一になりやすい。
The iron core of the permanent magnet is not divided, but is made into a cylindrical iron core 20 as seen from the axial direction of the cylindrical plasma as shown in FIG. 4, and permanent magnets 15 'and 16' are provided on the outer periphery of the iron core 20. May be. In this case, the strength of the magnetic field around the sheet plasma tends to be uniform.

【0021】また、永久磁石15、16は単体で形成さ
れているが、図5に示す如く、永久磁石15”、16”
を複数に分割して、これらの永久磁石15”、16”を
鉄心21、22で挟むようにしても良い。鉄心22は必
ずしも磁性体でなくても良く、SUS等の非磁性体でも
良い。鉄心21はプラズマが通る側で鉄心22は支持部
材13、14側である。
Although the permanent magnets 15 and 16 are formed as a single unit, as shown in FIG. 5, the permanent magnets 15 "and 16"
May be divided into plural parts, and these permanent magnets 15 ″, 16 ″ may be sandwiched between iron cores 21, 22. The iron core 22 does not necessarily have to be a magnetic material, and may be a non-magnetic material such as SUS. The iron core 21 is on the side where the plasma passes, and the iron core 22 is on the support members 13 and 14 side.

【0022】永久磁石を単体で大きく製作できない場
合、小さい複数の永久磁石を鉄心で挟持して単体の大き
い永久磁石と同程度の能力を持たせることができる。い
ずれにしても、鉄心を設けることによりそれぞれの小さ
い永久磁石の磁力が鉄心により均一化される。
When a large permanent magnet cannot be manufactured by itself, a plurality of small permanent magnets can be sandwiched between iron cores to have the same performance as a single large permanent magnet. In any case, by providing the iron core, the magnetic force of each small permanent magnet is made uniform by the iron core.

【0023】図6は図3に示した磁場分布の測定結果を
示した図であり、磁場分布曲線C1は外部電磁石4、内
部電磁石5を使用せずに永久磁石15,16のみを使用
した場合の特性である。一方、磁場分布曲線C2は外部
電磁石4、内部電磁石5を加えた場合の特性で、本実施
例では図3に示す領域Aで磁場が零に近くなるようにコ
ントロールしている。このようにして領域Aの円柱プラ
ズマの軸上にカスプ磁場をつくる。その結果得られるシ
ートプラズマの幅方向の密度分布は、図7に示すように
なる。また、磁場分布は図3と同じで、各金属板18の
電位を各自独立させ、それぞれ別の電位を持たせた場合
のシートプラズマの幅方向の密度分布を図8に示す。
FIG. 6 is a diagram showing the measurement results of the magnetic field distribution shown in FIG. 3. The magnetic field distribution curve C1 is obtained when only the permanent magnets 15 and 16 are used without using the external electromagnet 4 and the internal electromagnet 5. It is the characteristic of. On the other hand, the magnetic field distribution curve C2 is a characteristic when the external electromagnet 4 and the internal electromagnet 5 are added. In the present embodiment, the magnetic field is controlled so that the magnetic field is close to zero in the area A shown in FIG. In this way, a cusp magnetic field is created on the axis of the cylindrical plasma in the region A. The resulting density distribution in the width direction of the sheet plasma is as shown in FIG. The magnetic field distribution is the same as that of FIG. 3, and FIG. 8 shows the density distribution of the sheet plasma in the width direction when the potentials of the metal plates 18 are made independent and each has a different potential.

【0024】本実施例において、領域Aで磁場が零に近
く、しかもカスプ磁場が形成されているので、円柱プラ
ズマが永久磁石15,16間で圧縮される前に領域Aで
プラズマが閉じ込められ、閉じ込められたプラズマが永
久磁石15,16に外形を規制されつつシート状にな
る。
In this embodiment, since the magnetic field is close to zero in the region A and a cusp magnetic field is formed, the plasma is confined in the region A before the cylindrical plasma is compressed between the permanent magnets 15 and 16, The confined plasma becomes a sheet while its outer shape is regulated by the permanent magnets 15 and 16.

【0025】これに対し、従来の方法では円柱プラズマ
が軸方向に走ってしまうのでシートの幅方向中央部が高
くなっている。
On the other hand, in the conventional method, since the columnar plasma runs in the axial direction, the central portion in the width direction of the sheet is high.

【0026】加えて、本実施例では厚み方向だけでなく
幅方向にも永久磁石を使用しているので、上下方向の永
久磁石で圧縮された円柱プラズマがある一定の範囲で幅
方向について規制されるのでよりシートの厚みが均一に
なる。
In addition, in this embodiment, since the permanent magnets are used not only in the thickness direction but also in the width direction, the cylindrical plasma compressed by the permanent magnets in the vertical direction is restricted in the width direction within a certain range. Therefore, the thickness of the sheet becomes more uniform.

【0027】また、永久磁石を支持する支持部材13,
14又は金属板18同士を等電位にしているので、その
付近のプラズマが一方向に集中して引寄せられることは
ない。しかも、金属板18を設けておけばプラズマの拡
散を防げる。
Further, a support member 13 for supporting a permanent magnet,
Since the electrodes 14 or the metal plates 18 are at the same potential, the plasma in the vicinity is not concentrated and drawn in one direction. In addition, if the metal plate 18 is provided, diffusion of plasma can be prevented.

【0028】[0028]

【発明の効果】以上説明したきたように本発明によれ
ば、シートプラズマ内の幅方向の密度分布においてより
均一性の高いシートプラズマを得ることができる。
As described above, according to the present invention, it is possible to obtain a sheet plasma having higher uniformity in the density distribution in the width direction of the sheet plasma.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す断面図である。FIG. 1 is a sectional view showing an embodiment of the present invention.

【図2】図1のA−A線による断面図である。FIG. 2 is a sectional view taken along line AA of FIG.

【図3】本発明装置の主要部における磁場分布を示した
図である。
FIG. 3 is a diagram showing a magnetic field distribution in a main part of the device of the present invention.

【図4】図1に示された永久磁石の他の例を示した図で
ある。
FIG. 4 is a view showing another example of the permanent magnet shown in FIG. 1;

【図5】図1に示された永久磁石の更に他の例を示した
図である。
FIG. 5 is a view showing still another example of the permanent magnet shown in FIG. 1;

【図6】図3に示された磁場分布の測定結果を示した図
である。
6 is a diagram showing a measurement result of the magnetic field distribution shown in FIG.

【図7】本発明により得られるシートプラズマの幅方向
の密度分布の測定結果を示した図である。
FIG. 7 is a view showing a measurement result of a density distribution in a width direction of a sheet plasma obtained by the present invention.

【図8】本発明の変形例により得られるシートプラズマ
の幅方向の密度分布の測定結果を示した図である。
FIG. 8 is a view showing a measurement result of a density distribution in a width direction of a sheet plasma obtained by a modification of the present invention.

【図9】従来のシートプラズマ生成方法を説明するため
の概略構成図である。
FIG. 9 is a schematic configuration diagram for explaining a conventional sheet plasma generation method.

【図10】図9に示された構成を別方向から見た図であ
る。
FIG. 10 is a diagram of the configuration shown in FIG. 9 as viewed from another direction.

【図11】初期の軸方向磁場BZ0の強さを変えて実験し
たZ方向の磁場分布の測定結果を示した図である。
FIG. 11 is a diagram showing the measurement results of the magnetic field distribution in the Z direction, which was tested by changing the strength of the initial axial magnetic field B Z0 .

【図12】従来例の主要部における磁場分布を示した図
である。
FIG. 12 is a diagram showing a magnetic field distribution in a main part of a conventional example.

【図13】従来例により得られるシートプラズマの幅方
向の密度分布の測定結果を示した図である。
FIG. 13 is a diagram showing a measurement result of a density distribution in a width direction of a sheet plasma obtained by a conventional example.

【符号の説明】[Explanation of symbols]

1 基台 2 真空容器 3 プラズマガン 4 外部電磁石 5 内部電磁石 6 永久磁石 10 永久磁石取付装置 11 台 12 ガイド柱 13 第1の支持部材 14 第2の支持部材 15、16 永久磁石 17 駆動機構 18 金属板 DESCRIPTION OF SYMBOLS 1 Base 2 Vacuum container 3 Plasma gun 4 External electromagnet 5 Internal electromagnet 6 Permanent magnet 10 Permanent magnet mounting device 11 Unit 12 Guide pillar 13 First support member 14 Second support member 15, 16 Permanent magnet 17 Drive mechanism 18 Metal Board

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 磁場中の放電により形成された円柱プラ
ズマを挟むように永久磁石を配置し、該永久磁石を同極
同士対向させて反発磁場により、円柱プラズマからシー
トプラズマを生成する方法において、前記永久磁石とし
て、シートプラズマの厚み方向に対向配置された一対の
第1の永久磁石とシートプラズマの幅方向の両端に対向
配置された一対の第2の永久磁石とを用いてこれらの
1、第2の永久磁石から少し離れるプラズマガン側に、
これら第1、第2の永久磁石による磁場と円柱プラズマ
の磁場との合成磁場の強さを零もしくは零に近い磁場領
域を作ると共に、その領域の円柱プラズマの軸上に幅方
向に長いカスプ磁場領域を形成し、該カスプ磁場領域に
プラズマを閉じ込め、閉じ込めたプラズマを前記第1、
第2の永久磁石の領域でこれら第1、第2の永久磁石に
より規制しつつシート状に形成するようにし、しかもそ
の領域を等電位にして磁場のバランスをとって厚みが均
一なシートプラズマを形成することを特徴とするシート
プラズマ生成方法。
1. A method of generating a sheet plasma from a columnar plasma by disposing a permanent magnet so as to sandwich a columnar plasma formed by a discharge in a magnetic field, causing the permanent magnets to face each other with the same polarity, and using a repulsive magnetic field. As the permanent magnets, a pair of first permanent magnets opposed to each other in the thickness direction of the sheet plasma and a pair of second permanent magnets opposed to both ends in the width direction of the sheet plasma are used .
1. On the plasma gun side, which is slightly away from the second permanent magnet,
The magnetic field generated by the first and second permanent magnets and the magnetic field of the columnar plasma are used to form a magnetic field region of zero or near zero, and a cusp magnetic field that is long in the width direction on the axis of the columnar plasma in that region. Forming a region, confining the plasma in the cusp field region, and confining the confined plasma to the first,
In the area of the second permanent magnet, the first and second permanent magnets are regulated to form a sheet while being regulated by the first and second permanent magnets, and the area is equipotential to balance the magnetic field to generate a sheet plasma having a uniform thickness. Forming a sheet plasma.
【請求項2】 記第1,第2の永久磁石は、円柱プラ
ズマの軸心方向から見て筒状の鉄心の周囲に設けられて
おりこれら第1、第2の永久磁石の磁場を前記鉄心を
用いて厚み方向及び幅方向の磁場としても作用させるこ
とによりカスプ磁場領域を形成する請求項1記載のシー
トプラズマ生成方法。
2. A pre-Symbol first, second permanent magnet is provided around the tubular core when viewed from the axial direction of the circular pillar plasma
Cage, these first sheet plasma generating method according to claim 1, wherein also form cusp magnetic field region by applying a magnetic field of the second permanent magnet as a magnetic field in the thickness direction and the width direction by using the core.
【請求項3】 前記領域を等電位にするために、絶縁体
を介して前記第1、第2の永久磁石に金属部材を独立し
て設け、各々の金属部材の電位を調整することでシート
プラズマの端部付近の密度分布の微調整を行わせしめる
ようにした請求項1記載のシートプラズマの生成方法。
3. A sheet is provided by independently providing a metal member to the first and second permanent magnets via an insulator so as to make the region have the same potential, and adjusting the potential of each metal member. 2. The sheet plasma generation method according to claim 1, wherein the density distribution near the edge of the plasma is finely adjusted.
【請求項4】 磁場中の放電により形成された円柱プラ
ズマを挟むように永久磁石を配置し、該永久磁石を同極
同士を対向させて反発磁場により、円柱プラズマからシ
ートプラズマを生成する装置において、プラズマガンか
ら発生されたプラズマを一定方向に導くと共に磁場の強
さをコントロール可能な電磁石を真空容器に配設し、前
記シートプラズマの厚み方向に対向する一対の第1の永
久磁石とシートプラズマの幅方向の両端において対向す
る一対の第2の永久磁石とを真空容器内に配設して成
り、これら第1、第2の永久磁石の近傍に等電位の金属
板をシートプラズマを囲むように配置したことを特徴と
するシートプラズマ生成装置。
4. An apparatus for generating a sheet plasma from a cylindrical plasma by a repulsive magnetic field by disposing a permanent magnet so as to sandwich a cylindrical plasma formed by a discharge in a magnetic field and facing the permanent magnets with the same poles facing each other. An electromagnet that guides plasma generated from a plasma gun in a certain direction and controls the strength of a magnetic field is disposed in a vacuum vessel, and a pair of first permanent magnets and a pair of sheet magnets facing in a thickness direction of the sheet plasma. And a pair of second permanent magnets facing each other at both ends in the width direction are disposed in a vacuum vessel, and an equipotential metal plate is arranged near the first and second permanent magnets so as to surround the sheet plasma. A sheet plasma generating apparatus, wherein:
【請求項5】 記第1、第2の永久磁石、円柱プラ
ズマの軸心方向から見て筒状の鉄心の周囲に設けられて
いる請求項4記載のシートプラズマ生成装置。
5. Before Symbol first, second permanent magnet is provided around the tubular core when viewed from the axial direction of the cylinder plasma
Sheet plasma generating apparatus according to claim 4, wherein there.
JP5136009A 1993-06-07 1993-06-07 Sheet plasma generation method and apparatus Expired - Fee Related JP2909694B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5136009A JP2909694B2 (en) 1993-06-07 1993-06-07 Sheet plasma generation method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5136009A JP2909694B2 (en) 1993-06-07 1993-06-07 Sheet plasma generation method and apparatus

Publications (2)

Publication Number Publication Date
JPH06349593A JPH06349593A (en) 1994-12-22
JP2909694B2 true JP2909694B2 (en) 1999-06-23

Family

ID=15165056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5136009A Expired - Fee Related JP2909694B2 (en) 1993-06-07 1993-06-07 Sheet plasma generation method and apparatus

Country Status (1)

Country Link
JP (1) JP2909694B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4728089B2 (en) * 2005-10-25 2011-07-20 キヤノンアネルバ株式会社 Sheet plasma generator and film forming apparatus
CN101652498B (en) * 2007-04-24 2011-06-15 佳能安内华股份有限公司 Plasma generation device, and method and apparatus for forming film using the same
US7692139B2 (en) * 2007-10-15 2010-04-06 Varian Semiconductor Equipment Associates, Inc. Techniques for commensurate cusp-field for effective ion beam neutralization
JP2009235497A (en) * 2008-03-27 2009-10-15 Shinmaywa Industries Ltd Sputtering system
JP4660570B2 (en) * 2008-04-15 2011-03-30 キヤノンアネルバ株式会社 Vacuum film forming apparatus and film forming method

Also Published As

Publication number Publication date
JPH06349593A (en) 1994-12-22

Similar Documents

Publication Publication Date Title
EP0473097B1 (en) System for irradiating a surface with atomic and molecular ions using two dimensional magnetic scanning
JP3975363B2 (en) System and method for generating an oscillating magnetic field in a working gap useful for irradiating surfaces with atomic and molecular ions
KR100926398B1 (en) Controlling the characteristics of ribbon-shaped implanter ion-beams
US7078713B2 (en) Electromagnetic regulator assembly for adjusting and controlling the current uniformity of continuous ion beams
EP2302664A1 (en) Multicolumn electron beam exposure apparatus and magnetic field generating apparatus
WO2012102092A1 (en) Magnetic field generation device for magnetron sputtering
CN112038039B (en) Magnetic field generating device and transmission electron microscope sample rod capable of applying magnetic field
JP2909694B2 (en) Sheet plasma generation method and apparatus
JP4338302B2 (en) Electromagnet device
JPH0660393B2 (en) Plasma concentrated high-speed sputter device
JP3867668B2 (en) Bending electromagnet, charged particle transport path, and circular accelerator
US5757121A (en) Apparatus for reducing deflection aberration in a CRT
JP4515852B2 (en) Apparatus and method for generating mirror magnetic field for confining plasma used in ECR ion source
JPH03257159A (en) Sputtering device formed by using dipole ring type magnetic circuit
JPH09102291A (en) Objective lens and charge particle beam device
US3324433A (en) Electron lens system excited by at least one permanent magnet
TW548664B (en) Split magnetic lens for controlling a charged particle beam
JP3932886B2 (en) Inductively coupled plasma generating apparatus and plasma processing apparatus
JP4860594B2 (en) Sputtering equipment
JP3726290B2 (en) Active vibration control actuator
JPH0613226A (en) Electromagnet device
JPH08246170A (en) Ecr plasma-etching method and device therefor
JPH02204953A (en) Electromagnetic field lens
JPH04334899A (en) Charged particle deflecting magnet
JP2004192905A (en) Ion implanter

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990303

LAPS Cancellation because of no payment of annual fees