JP2908777B1 - Large depth circular shaft model experiment method and its apparatus - Google Patents

Large depth circular shaft model experiment method and its apparatus

Info

Publication number
JP2908777B1
JP2908777B1 JP36763797A JP36763797A JP2908777B1 JP 2908777 B1 JP2908777 B1 JP 2908777B1 JP 36763797 A JP36763797 A JP 36763797A JP 36763797 A JP36763797 A JP 36763797A JP 2908777 B1 JP2908777 B1 JP 2908777B1
Authority
JP
Japan
Prior art keywords
model
shaft
ground
test
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36763797A
Other languages
Japanese (ja)
Other versions
JPH11194705A (en
Inventor
眞一郎 今村
利侑 藤井
寿 野本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NISHIMATSU KENSETSU KK
Original Assignee
NISHIMATSU KENSETSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NISHIMATSU KENSETSU KK filed Critical NISHIMATSU KENSETSU KK
Priority to JP36763797A priority Critical patent/JP2908777B1/en
Application granted granted Critical
Publication of JP2908777B1 publication Critical patent/JP2908777B1/en
Publication of JPH11194705A publication Critical patent/JPH11194705A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

【要約】 【課題】 遠心力場で三次元の立坑に作用する実際の大
深度の土圧分布や周辺地盤の変形・破壊挙動を相似的に
実現できる大深度円形立坑模型実験方法及び装置を提供
する。 【解決手段】 試験土槽(100)内に模型地盤(A)
を収納し、該模型地盤(A)内に縦複数割り形状の1/
nの縮小模型円形立坑体(200)を埋入して、この試
験土槽(100)を遠心力載荷装置(10)に搭載して
所定の遠心力場を与える。そして模型立坑体(200)
の径を試験土槽(100)の外に設けられた駆動装置
(300)で変更して、模型立坑体(200)の表面に
設けた土圧計(S10,S10,S10・・・)、及び
模型地盤(A)内の適所に設けた土圧計(S11,S1
1,S11・・・)で大深度の土圧分布や周辺地盤の変
形・破壊挙動を測定する。
Abstract: PROBLEM TO BE SOLVED: To provide a large-scale circular shaft model test method and apparatus capable of realizing an actual large-depth earth pressure distribution acting on a three-dimensional shaft in a centrifugal force field and deformation / destruction behavior of surrounding ground in a similar manner. I do. SOLUTION: A model ground (A) is placed in a test soil tank (100).
Is stored in the model ground (A).
Then, the test soil tank (100) is mounted on the centrifugal force loading device (10), and a predetermined centrifugal force field is given. And the model shaft (200)
Is changed by a driving device (300) provided outside the test soil tank (100), and an earth pressure gauge (S10, S10, S10...) Provided on the surface of the model shaft (200), and Earth pressure gauges (S11, S1) installed at appropriate places in the model ground (A)
(1, S11...) Measure the earth pressure distribution at a large depth and the deformation and fracture behavior of the surrounding ground.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、遠心力載荷装置を
使用して大深度円形立坑(本願では、便宜上円形立坑と
したが、断面矩形等の立坑でも実質的に同じで、非円形
の立坑を除外するものではない。)に作用する荷重と周
辺地盤の挙動を実験的に確認するための大深度円形立坑
模型実方法及びその実験装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a deep vertical circular shaft using a centrifugal force loading device (in the present application, a circular vertical shaft is used for convenience, but a vertical shaft having a rectangular section or the like is substantially the same, and a non-circular vertical shaft is used). The present invention relates to a method for actualizing a large-scale circular shaft model for experimentally confirming the load acting on the ground and the behavior of the surrounding ground, and an experimental apparatus therefor.

【0002】近年、都市とその近郊で、掘削深さが50
mを超えるような大規模かつ大深度の立坑の構築工事が
20例を超え、益々その必要性が増す傾向にある。この
ような要望に伴い、大深度の土留工法や立坑の合理的か
つ経済的な設計を行なうために、従来の設計、施工の基
準を見直すことが急務となっている。
In recent years, excavation depths of up to 50
The construction of a large-scale and deep shaft exceeding 20 m exceeds 20 cases, and the necessity for the construction tends to increase more and more. In response to such demands, it is urgently necessary to review the conventional design and construction standards in order to design a deep soil retaining method and a rational and economical design of a shaft.

【0003】しかしながら、大深度の立坑に作用する実
際の土圧分布や周辺地盤の変形、破壊メカニズム等につ
いては、実測データも少ないことから、充分明らかにさ
れていない現状にあるといえる。現状の設計では、仮設
時(立坑内掘削時)の土圧算定には、深さ方向に直線的
に大きくなる二次元のランキン−レザールの土圧式か、
経験的な側圧係数の土圧式が用いられ、本設時(完成
時)の土圧算定には、同様に深さ方向に直線的に大きく
なる土圧分布の静止土圧式に頼っているもので、このよ
うな土圧算定式の適用に対しては無論疑問が指摘されて
いるものである。
However, the actual earth pressure distribution acting on a shaft at a large depth, the deformation of the surrounding ground, the mechanism of destruction, and the like are not sufficiently clarified because there are few measured data. In the current design, when calculating the earth pressure at the time of temporary construction (during excavation in a shaft), the two-dimensional Rankin-Lessar earth pressure formula that increases linearly in the depth direction is used.
The empirical earth pressure equation of the lateral pressure coefficient is used, and the earth pressure calculation at the time of construction (at the time of completion) relies on the static earth pressure equation of the earth pressure distribution, which similarly increases linearly in the depth direction. However, it has been pointed out that such an application of the earth pressure calculation formula is questionable.

【0004】そこで、従来縮小模型実験装置で大深度の
構築物に作用する壁面土圧を解明する方法がいくつか提
案され、この縮小模型実験は重力場と遠心力場における
実験に大別される。
[0004] In view of the above, there have been proposed several methods for elucidating the earth pressure acting on a structure at a large depth using a conventional reduced model experiment apparatus, and the reduced model experiments are roughly classified into experiments in a gravitational field and a centrifugal force field.

【0005】そして、従来縮小模型実験装置での大深度
の円形立坑に作用する壁面土圧の解明実験の多くは重力
場で行なわれており、この重力場での実験は、土槽中に
周方向に複数分割し縮径可能な模型立坑体を埋入して、
この模型立坑体の内側にはリング状ゴム容器を収納し、
このゴム容器内に水を注排水して模型立坑体の径を変更
できるようになし、さらに、ゴム容器の内側に水を満た
して、このゴム容器の内側の水位の変化で土圧を計測し
て求めるようになしてある。
[0005] Many of the conventional experiments for elucidating the earth pressure acting on a circular shaft at a large depth with a reduced model experimental device are performed in a gravitational field. Insert a model shaft that can be divided into multiple parts in the direction and can be reduced in diameter,
A ring-shaped rubber container is housed inside this model shaft,
Water is poured into and drained from the rubber container so that the diameter of the model shaft can be changed.Further, the inside of the rubber container is filled with water, and the earth pressure is measured by changing the water level inside the rubber container. And ask for it.

【0006】しかし、上記重力場による実験では、模型
地盤の作成法に問題を有し、さらには模型立坑体との境
界条件、応力レベル等の相似性について問題点を有する
ことが知られているので、実際の土圧分布と同等には扱
えないという問題点を有している。
[0006] However, it is known that the above-mentioned experiment using the gravitational field has a problem in the method of preparing the model ground, and further has a problem in the similarity of the boundary condition with the model shaft, the stress level, and the like. Therefore, there is a problem that it cannot be treated as equivalent to the actual earth pressure distribution.

【0007】そこで、最近は遠心力場における実験装置
が注目されているが、従来この種の実験装置では、剛な
二次元の鉛直壁に作用する土圧測定程度しか行なわれて
おらず、三次元構造物である円形立坑等の設計荷重の考
え方を検証し、見直しをはかるまでの研究レベルにまで
は達していないものである。
Therefore, recently, an experimental apparatus in a centrifugal force field has attracted attention. However, in this type of experimental apparatus, only the measurement of the earth pressure acting on a rigid two-dimensional vertical wall has been performed. The concept of the design load of the original shaft, such as a circular shaft, has been verified and has not reached the research level until it is reviewed.

【0008】[0008]

【発明が解決しようとする課題】そこで本発明は、遠心
力場で三次元の立坑に作用する実際の大深度の土圧分布
や周辺地盤の変形・破壊挙動を相似的に実現できる大深
度円形立坑模型実験装置を提供することを課題としたも
のである。さらには、立坑の周辺に杭基礎構造物やトン
ネル等の地中構造物の模型を埋設して、近接構造物への
影響をも実験的に確認できるようになした大深度円形立
坑模型実験装置を提供することを課題としたものであ
る。
SUMMARY OF THE INVENTION Accordingly, the present invention is directed to a large-diameter circular cylinder capable of realizing an actual large-depth earth pressure distribution acting on a three-dimensional shaft in a centrifugal force field and deformation / fracture behavior of the surrounding ground in a similar manner. It is an object to provide a shaft model experiment device. Furthermore, a large-scale circular shaft model experiment device that buries a model of an underground structure such as a pile foundation structure or a tunnel around the shaft to enable the effect on nearby structures to be experimentally confirmed. It is an object to provide

【0009】[0009]

【課題を解決するための手段】上記課題を達成するた
め、本発明は、試験土槽100内に模型地盤Aを収納
し、該模型地盤A内に縦複数割り形状の1/nの縮小模
型円形立坑体200を埋入して、この試験土槽100を
遠心力載荷装置10に搭載して所定の遠心力場を与え、
上記模型立坑体200の径を試験土槽100の外に設け
られた駆動装置300で変更して、模型立坑体200の
表面に設けた土圧計S10,S10,S10・・・、及
び模型地盤A内の適所に設けた土圧計S11,S11,
S11・・・で大深度の土圧分布や周辺地盤の変形・破
壊挙動を測定する技術的手段を講じたものである。
According to the present invention, a model ground A is housed in a test earth tank 100, and the model ground A is reduced to 1 / n of a plurality of vertically divided shapes in the model ground A. The circular shaft 200 is embedded, and the test soil tank 100 is mounted on the centrifugal force loading device 10 to give a predetermined centrifugal force field,
The diameter of the model shaft 200 is changed by a driving device 300 provided outside the test earth tank 100, and the earth pressure gauges S10, S10, S10... Provided on the surface of the model shaft 200 and the model ground A Earth pressure gauges S11, S11,
In S11, technical means for measuring the earth pressure distribution at a large depth and the deformation / destruction behavior of the surrounding ground were taken.

【0010】次ぎに、「請求項2」の発明は、遠心力載
荷装置10に搭載する模型地盤Aを収納した試験土槽1
00と、該模型地盤A内に埋入する縦複数割り形状の1
/nの縮小模型円形立坑体200と、試験土槽100の
外に設けられ上記模型立坑体200の径を変更する駆動
装置300とで構成し、上記模型地盤A内の適所に土圧
計S11,S11,S11・・・を、模型立坑体200
の表面に土圧計S10,S10,S10・・・を設けて
なる技術的手段を講じたものである。
Next, a second aspect of the present invention is a test earth tank 1 containing a model ground A mounted on a centrifugal force loading device 10.
00 and one of a plurality of vertically divided shapes to be embedded in the model ground A.
/ N reduced model circular shaft 200, and a driving device 300 provided outside the test earth tank 100 and changing the diameter of the model shaft 200, and the earth pressure gauge S11, S11, S11...
Are provided with earth pressure gauges S10, S10, S10...

【0011】それ故、「請求項1」及び「請求項2」の
発明は、遠心力載荷装置10で重力加速度のn倍の遠心
加速度場(本願では「遠心力場」と称する。)を与える
ことで、縮小模型円形立坑体200に実物と同じ自重応
力状態を再現する作用を呈するものである。
Therefore, the inventions of claims 1 and 2 provide a centrifugal acceleration field (referred to as a “centrifugal force field” in this application) that is n times the gravitational acceleration in the centrifugal force loading device 10. Accordingly, the reduced model circular shaft 200 has an effect of reproducing the same weight stress state as the real one.

【0012】また、本発明法は、縮小模型円形立坑体2
00を縦複数割り形状の1/nとなし、この模型立坑体
200の径を変更する駆動装置300を有してなるの
で、遠心力載荷状態で縮小模型立坑体200を縮小する
ことで、構造物に作用する荷重や、土圧が静止状態(受
働土圧)より破壊するときの土圧に近い主働状態といわ
れる主働土圧及び周辺地盤の挙動をも確認できる作用を
呈するものである。
Also, the method of the present invention provides a reduced model circular shaft 2
00 is defined as 1 / n of the vertically divided shape, and a drive device 300 for changing the diameter of the model shaft 200 is provided. Therefore, the structure of the model shaft 200 is reduced by reducing the model shaft 200 under centrifugal load. The present invention has an effect capable of confirming the load acting on the object, the active earth pressure which is referred to as the active state close to the earth pressure when the earth pressure breaks from the stationary state (the passive earth pressure), and the behavior of the surrounding ground.

【0013】また、模型立坑体200の径を拡縮するこ
とで、模型立坑体200を振動させることができ、地震
時の影響を確認できる作用を呈するものである。
Further, by expanding and contracting the diameter of the model shaft 200, the model shaft 200 can be vibrated, and the effect of confirming the influence during an earthquake can be exhibited.

【0014】次ぎに、「請求項3」の発明は、遠心力載
荷装置10に搭載する模型地盤Aを収納した試験土槽1
00と、該模型地盤A内に埋入する縦複数割り形状の1
/nの縮小模型円形立坑体200と、試験土槽100の
外に設けられ上記模型立坑体200の径を変更する駆動
装置300とで構成し、上記縮小模型円形立坑体200
内には、この縮小模型円形立坑体200の内周面に圧接
して分割間隙部SP1,SP1,SP1・・・を塞ぐ板
バネ体203,203,203・・・を収納し、上記模
型地盤A内の適所に土圧計S11,S11,S11・・
・を、模型立坑体200の表面に土圧計S10,S1
0,S10・・・を設けてなる技術的手段を講じたもの
である。
Next, a third aspect of the present invention is a test soil tank 1 containing a model ground A mounted on a centrifugal force loading device 10.
00 and one of a plurality of vertically divided shapes to be embedded in the model ground A.
/ N, and a driving device 300 that is provided outside the test earth tank 100 and that changes the diameter of the model shaft 200, and the reduced model circular shaft 200
, Which are pressed against the inner peripheral surface of the reduced model circular shaft 200 to close the divided gaps SP1, SP1, SP1,. Earth pressure gauges S11, S11, S11 ...
And the earth pressure gauges S10 and S1 on the surface of the model shaft 200.
0, S10... Are provided.

【0015】それ故、本発明大深度円形立坑模型実験装
置は、上記作用に加え、縮小模型円形立坑体200内
に、この縮小模型円形立坑体200の内周面に圧接して
分割間隙部を塞ぐ板バネ体203,203,203・・
・を収納してあるので、縮小模型円形立坑体200の分
割間隙より模型地盤が該縮小模型円形立坑体200内に
流入することが防止される作用を呈するものである。
Therefore, in addition to the above operation, the large-depth circular shaft model experimental apparatus according to the present invention presses the inside of the reduced model circular shaft 200 against the inner peripheral surface of the reduced model circular shaft 200 to form the divided gap. The leaf spring body 203 to be closed 203, 203, 203 ...
Is stored, so that the model ground is prevented from flowing into the reduced model circular shaft 200 from the divided gap of the reduced model circular shaft 200.

【0016】次ぎに、「請求項4」の発明は、遠心力載
荷装置10に搭載する模型地盤Aを収納した試験土槽1
00と、該模型地盤A内に埋入する縦二つ割り形状の1
/nの縮小模型円形立坑体200と、試験土槽100の
外に設けられ上記模型立坑体200の径を変更する駆動
装置300とで構成し、上記模型立坑体200は、一方
を固定側立坑部202として試験土槽100に固定し、
他方側を移動側立坑部201として上記駆動装置300
で固定側立坑部202に対して接離方向に移動可能とな
し、上記縮小模型円形立坑体200内には、この縮小模
型円形立坑体200の内周面に圧接して分割間隙部SP
1,SP1を塞ぐ板バネ体203,203を収納し、上
記模型地盤A内の適所に土圧計S11,S11,S11
・・・を、模型立坑体200の表面に土圧計S10,S
10,S10・・・を設けてなる技術的手段を講じたも
のである。
Next, according to the invention of claim 4, a test soil tank 1 containing a model ground A mounted on a centrifugal force loading device 10 is provided.
00 and a vertically split shape 1 embedded in the model ground A.
/ N reduced model circular shaft 200, and a driving device 300 provided outside the test earth tank 100 and changing the diameter of the model shaft 200. One of the model shaft 200 is a fixed shaft. The part 202 is fixed to the test tank 100,
The other side of the driving device 300
Is movable in the direction of coming and going with respect to the fixed-side shaft portion 202, and the reduced model circular shaft 200 is pressed into contact with the inner peripheral surface of the reduced model circular shaft 200 to divide the gap SP.
1, a leaf spring body 203 for closing SP1 is housed, and an earth pressure gauge S11, S11, S11 is placed at an appropriate place in the model ground A.
... are provided on the surface of the model shaft 200 with the earth pressure gauges S10, S
10, S10... Are provided by technical means.

【0017】それ故、本発明大深度円形立坑模型実験装
置は、上記作用に加え、模型立坑体200は、一方を固
定側立坑部202として試験土槽100に固定し、他方
側を移動側立坑部201として上記駆動装置300で固
定側立坑部202に対して接離方向に移動可能となして
あるので、該模型立坑体200は正確な縮径をすること
はできないが、縦一軸方向部位では縮径ができる作用を
呈する。そして、この種の円形立坑に作用する土圧は軸
対象に作用するので、移動側立坑部201のみの移動と
いう簡易な構成で実際の主働土圧を確認できる作用を呈
するものである。
Therefore, in addition to the above-described operation, the large-scale circular shaft model experiment apparatus of the present invention has a model shaft 200 fixed to the test earth tank 100 as one fixed shaft portion 202 and a movable shaft shaft as the other side. The model shaft 200 cannot be accurately reduced in diameter since the model shaft 200 can be moved in the direction of contact and separation with respect to the fixed shaft portion 202 by the driving device 300 as the portion 201. It has the effect of reducing the diameter. Since the earth pressure acting on this kind of circular shaft acts on the axis symmetrical, the actual main earth pressure can be confirmed with a simple configuration in which only the moving shaft section 201 moves.

【0018】次ぎに、「請求項5」の発明は、遠心力載
荷装置10に搭載する模型地盤Aを収納した試験土槽1
00と、該模型地盤A内に埋入する縦二つ割り形状の1
/nの縮小円形模型立坑体200と、試験土槽100の
外に設けられ上記模型立坑体200の一方を移動する駆
動装置300とで構成し、上記試験土槽100は上部を
開口した容器状に構成すると共に、その底面101の下
方に駆動源収納室102を設け、上記模型立坑体200
は一方を固定側立坑部202として試験土槽100の底
面101上に立設固定し、他方側を移動側立坑部201
として下端部を底面101に設けた通孔103より下方
に貫出して固定側立坑部202に対して接離方向に移動
可能に配設し、上記模型地盤A内の適所に土圧計S1
1,S11,S11・・・を、上記移動側立坑部201
の周面とこの移動側立坑部201の移動方向を向く直径
線との交点部位とには土圧計S10,S10,S10・
・・を設け、また、上記駆動装置300は、前記駆動源
収納室102に収納される下部駆動装置部300aと、
模型地盤Aの上方に設けられる上部駆動装置部300b
とで構成し、上記下部駆動装置部300aは前記駆動源
収納室102内に設けたモータ301と、このモータ3
01によって回転すると共に模型立坑体200の縦中心
軸と直交方向を向く螺子棒302と、移動側立坑部20
1の下端突出部に固定して螺子棒302の回転で螺進退
するナット303とで構成し、上記上部駆動装置部30
0bは、前記螺子棒302と平行に配した第二螺子棒3
04と、移動側立坑部201の模型地盤Aの上方に突出
する部位に固定されて該第二螺子棒304の回転で螺進
退する第二ナット305とで構成し、上記下部駆動装置
部300aと上部駆動装置部300bとは、螺子棒30
2と第二螺子棒304との夫々の一端を試験土槽100
の側面外方に遊挿貫出して、両貫出部をタイミングベル
ト306等の伝動装置で連結し、さらに、上記縮小模型
円形立坑体200内には、この縮小模型円形立坑体20
0の内周面に圧接して分割間隙部を塞ぐ板バネ体20
3,203を収納してなる技術的手段を講じたものであ
る。
Next, the invention of claim 5 relates to a test earth tank 1 containing a model ground A mounted on a centrifugal force loading device 10.
00 and a vertically split shape 1 embedded in the model ground A.
/ N, and a drive unit 300 provided outside the test shaft 100 and moving one side of the model shaft 200, and the test soil bath 100 is a container having an open top. And a drive source storage chamber 102 is provided below a bottom surface 101 of the model shaft 200.
Is fixed upright on the bottom surface 101 of the test soil tank 100 as one fixed side shaft portion 202, and the other side is the movable side shaft portion 201
The lower end is disposed so as to protrude below the through-hole 103 provided on the bottom surface 101 so as to be movable toward and away from the fixed shaft portion 202, and the earth pressure gauge S1 is placed at an appropriate position in the model ground A.
, S11, S11,...
At the intersection between the peripheral surface of the shaft and the diameter line facing the moving direction of the moving-side shaft part 201, the earth pressure gauges S10, S10, S10.
Is provided, and the driving device 300 includes a lower driving device portion 300a housed in the driving source housing chamber 102;
Upper drive unit 300b provided above model ground A
The lower drive unit 300a includes a motor 301 provided in the drive source storage chamber 102 and a motor 3
01 and a screw rod 302 rotating in the direction perpendicular to the longitudinal center axis of the model shaft 200, and the moving-side shaft 20
And a nut 303 which is fixed to the lower end projection and which reciprocates with the rotation of the screw rod 302.
0b is a second screw rod 3 arranged in parallel with the screw rod 302.
04, and a second nut 305 fixed to a portion of the movable shaft 201 protruding above the model ground A and reciprocating with the rotation of the second screw rod 304. The upper drive unit 300b includes the screw rod 30
2 and one end of the second screw rod 304 are connected to the test earth tank 100, respectively.
, And the two projecting portions are connected by a transmission such as a timing belt 306. Further, the reduced model circular shaft 200 is inserted into the reduced model circular shaft 200.
Leaf spring body 20 that presses against the inner peripheral surface of block 0 to close the divided gap
In this case, technical means for accommodating 3,203 are taken.

【0019】それ故、本発明大深度円形立坑模型実験装
置は、上記作用に加え、駆動装置300を試験土槽10
0の外に設けたので、模型地盤A内に何ら支障物が無く
周辺地盤の挙動を乱さない実際の地盤の挙動を確認でき
る作用を呈するものであり、さらには、立坑の周辺に杭
基礎構造物やトンネル等の地中構造物の模型を埋設し
て、近接構造物への影響をも実験的に確認できる作用を
呈するものである。
Therefore, in addition to the above operation, the large-depth circular shaft model experimental apparatus of the present invention can
0, there is no obstruction in the model ground A, so that the behavior of the actual ground which does not disturb the behavior of the surrounding ground can be confirmed. Furthermore, the pile foundation structure is provided around the shaft. By embedding a model of an underground structure such as an object or a tunnel, an effect of being able to experimentally confirm the influence on a nearby structure is exhibited.

【0020】次ぎに、「請求項6」の発明は、遠心力載
荷装置10に搭載する模型地盤Aを収納した試験土槽1
00と、該模型地盤A内に埋入する縦二つ割り形状の1
/nの縮小円形模型立坑体200と、試験土槽100の
外に設けられ上記模型立坑体200の一方を移動する駆
動装置300とで構成し、上記試験土槽100は上部を
開口した容器状に構成すると共に、その底面101の下
方に駆動源収納室102を設け、上記模型立坑体200
は一方を固定側立坑部202として試験土槽100の底
面101上に立設固定し、他方側を移動側立坑部201
として下端部を底面101に設けた通孔より下方に貫出
して固定側立坑部202に対して接離方向に移動可能に
配設し、上記模型地盤A内の適所に土圧計S11,S1
1,S11・・・を、上記移動側立坑部201の周面と
この移動側立坑部201の移動方向を向く直径線との交
点部位とには土圧計S10,S10,S10・・・を、
模型地盤Aの上方に適所には該模型地盤Aの上面との距
離を測定する測距計S21,S22,S23・・・を設
け、また、上記駆動装置300は、前記駆動源収納室1
02に収納される下部駆動装置部300aと、模型地盤
Aの上方に設けられる上部駆動装置部300bとで構成
し、上記下部駆動装置部300aは前記駆動源収納室1
02内に設けたモータ301と、このモータ301によ
って回転すると共に模型立坑体200の縦中心軸と直交
方向を向く螺子棒302と、移動側立坑部201の下端
突出部に固定して螺子棒302の回転で螺進退するナッ
ト303と、このナット303を固定側立坑部202に
対して接離方向にのみ案内する一対の案内レール30
7,307とで構成し、上記上部駆動装置部300b
は、前記螺子棒302と平行に配した第二螺子棒304
と、移動側立坑部201の模型地盤Aの上方に突出する
部位に固定されて該第二螺子棒304の回転で螺進退す
る第二ナット305とで構成し、上記下部駆動装置部3
00aと上部駆動装置部300bとは、螺子棒302と
第二螺子棒304との夫々の一端を試験土槽100の側
面外方に遊挿貫出して、両貫出部をタイミングベルト3
06等の伝動装置で連結し、上記ナット303の下方と
移動側立坑部201の上方とには、変位位置測定計S3
1,S32を設け、さらに、上記縮小模型円形立坑体2
00内には、この縮小模型円形立坑体200の内周面に
圧接して分割間隙部を塞ぐ板バネ体203,203を収
納してなる技術的手段を講じたものである。
Next, according to the invention of claim 6, the test soil tank 1 containing the model ground A to be mounted on the centrifugal force loading device 10 is provided.
00 and a vertically split shape 1 embedded in the model ground A.
/ N, and a drive unit 300 provided outside the test shaft 100 and moving one side of the model shaft 200, and the test soil bath 100 is a container having an open top. And a drive source storage chamber 102 is provided below a bottom surface 101 of the model shaft 200.
Is fixed upright on the bottom surface 101 of the test soil tank 100 as one fixed side shaft portion 202, and the other side is the movable side shaft portion 201
The lower end is disposed so as to protrude below the through hole provided in the bottom surface 101 so as to be movable toward and away from the fixed-side shaft portion 202, and the earth pressure gauges S 11, S 1 are provided at appropriate places in the model ground A.
, S11,... At the intersection of the peripheral surface of the movable shaft section 201 and the diameter line facing the moving direction of the movable shaft section 201, earth pressure gauges S10, S10, S10.
A distance meter S21, S22, S23... For measuring the distance to the upper surface of the model ground A is provided at an appropriate place above the model ground A.
02 and an upper drive unit 300b provided above the model ground A. The lower drive unit 300a is provided in the drive source storage chamber 1
02, a screw rod 302 rotated by the motor 301 and oriented in a direction perpendicular to the longitudinal center axis of the model shaft 200, and a screw rod 302 fixed to the lower end protruding portion of the movable shaft portion 201. And a pair of guide rails 30 that guide the nut 303 only in the direction of contact and separation with respect to the fixed shaft 202.
7, 307, and the upper drive unit 300b
Is a second screw rod 304 arranged in parallel with the screw rod 302.
And a second nut 305 which is fixed to a portion of the movable shaft portion 201 projecting above the model ground A and which advances and retreats by rotation of the second screw rod 304.
00a and the upper drive unit 300b, one end of each of the screw rod 302 and the second screw rod 304 is freely inserted and protruded outside the side surface of the test soil tank 100, and both protruding parts are connected to the timing belt 3
06, and a displacement position measuring instrument S3 is provided below the nut 303 and above the moving side shaft section 201.
1, S32, and the reduced model circular shaft 2
In 00, a technical means is provided in which leaf spring bodies 203, 203 for pressing the inner peripheral surface of the reduced model circular shaft 200 to close the divided gap portion are housed.

【0021】それ故、本発明大深度円形立坑模型実験装
置は、模型地盤Aの上方に適所には該模型地盤Aの上面
との距離を測定する複数の測距計S21,S22,S2
3・・・を設けてあるので、立坑変形に伴う立坑周辺の
地表面に対する影響を実験できる作用を呈する。
Therefore, the large-scale circular shaft model experiment apparatus of the present invention comprises a plurality of rangefinders S21, S22, S2 for measuring the distance to the upper surface of the model ground A above the model ground A at an appropriate position.
Since 3 is provided, the effect of being able to test the influence on the ground surface around the shaft due to the shaft deformation is exhibited.

【0022】また、本発明はナット303の下方と移動
側立坑部201の上方とに、変位位置測定計S31,S
32を設けてあるので、移動側立坑部201の移動量を
確認できる作用を呈するものである。
Further, according to the present invention, the displacement position meters S31 and S31 are provided below the nut 303 and above the moving-side shaft portion 201.
Since 32 is provided, the function of confirming the movement amount of the moving-side shaft portion 201 is exhibited.

【0023】[0023]

【発明の実施の態様】次ぎに、本発明の実施の態様を添
付図面に基づいて詳細に説明する。図中、10が従来公
知な遠心力載荷装置で、本体11内に図示はしていない
が駆動装置が収納され垂直軸12を高速回転するように
なしてある。そして、この垂直軸12には水平軸13が
取り付けられ、該水平軸13の両端には該水平軸13と
直交する水平軸14a,14bで載置台15a,15b
を設けている。
Next, embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the figure, reference numeral 10 denotes a conventionally known centrifugal force loading device. Although not shown in the figure, a driving device is accommodated in the main body 11 so that the vertical shaft 12 rotates at high speed. A horizontal shaft 13 is attached to the vertical shaft 12. At both ends of the horizontal shaft 13, mounting tables 15a, 15b are mounted by horizontal shafts 14a, 14b orthogonal to the horizontal shaft 13.
Is provided.

【0024】上記載置台15a,15bには、一方に本
発明大深度円形立坑模型実験装置100Aを載せ、他方
にバランスウエイト16を載せ、水平軸13が高速回転
すると該載置台15a,15bは「図1」に破線で示す
ように水平状態となり、本発明大深度円形立坑模型実験
装置100Aに所定の遠心力場(一例としての本実施態
様では598m/S2(60g)、但し、システム可動
確認予備実験では785m/S2(80g))が載荷さ
れるようになしてある。
On the mounting tables 15a and 15b, the large-scale circular shaft model experimental apparatus 100A of the present invention is mounted on one side, and the balance weight 16 is mounted on the other. When the horizontal shaft 13 rotates at high speed, the mounting tables 15a and 15b As shown by a broken line in FIG. 1 ", the centrifugal force field (598 m / S 2 (60 g in this embodiment as an example) in the present embodiment as an example, In the preliminary experiment, 785 m / S 2 (80 g)) was loaded.

【0025】また、図示はしていないが、本発明大深度
円形立坑模型実験装置100Aには電源供給、信号取り
出しの電線が連結され、これらは垂直軸12の上部に設
けた図示しないスリップリングを介して電気的に連結さ
れ、電源装置及びコンピュータ等の制御及び信号値整理
・表示装置Cに連結してある。
Although not shown, power supply and signal extraction wires are connected to the large-scale circular shaft model experimental apparatus 100A of the present invention, and these are provided with a slip ring (not shown) provided above the vertical shaft 12. And a control and signal value arrangement / display device C such as a power supply device and a computer.

【0026】そして、本発明法は、上記のような遠心力
載荷装置を使用するもので、別途試験土槽100を用意
し、この試験土槽100内に模型地盤Aを収納する。な
お、この試験土槽100と模型地盤Aに関しての説明は
後記するものとする。
In the method of the present invention, a centrifugal force loading device as described above is used. A test soil tank 100 is separately prepared, and the model ground A is stored in the test soil tank 100. The test tank 100 and the model ground A will be described later.

【0027】そして、上記模型地盤A内に縦複数割り形
状の1/nの縮小模型円形立坑体200を埋入して、こ
の試験土槽100を「図1」に示すように大深度円形立
坑模型実験装置100aとして遠心力載荷装置10に搭
載して、所定の遠心力場を与え、上記模型立坑体200
の径を試験土槽100の外に設けられた駆動装置300
で変更して、模型立坑体200の表面に設けた土圧計S
10,S10,S10・・・、及び模型地盤A内の適所
に設けた土圧計S11,S11,S11・・・で大深度
の土圧分布や周辺地盤の変形・破壊挙動を測定する。
Then, a 1 / n reduced model circular shaft 200 having a vertically divided shape is embedded in the model ground A, and the test soil tank 100 is placed in a large depth circular shaft as shown in FIG. The model experimental apparatus 100a is mounted on the centrifugal force loading apparatus 10 to give a predetermined centrifugal force field, and the model shaft 200
Drive 300 provided outside test soil tank 100
And the earth pressure gauge S provided on the surface of the model shaft 200
, And soil pressure gauges S11, S11, S11... Provided at appropriate places in the model ground A measure the earth pressure distribution at a large depth and the deformation / destruction behavior of the surrounding ground.

【0028】したがって、本発明法によると、前記した
ように重力加速度のn倍の遠心力場を与えることで、縮
小模型円形立坑体200に実物と同じ自重応力状態を再
現でき、縮小模型円形立坑体200を縦複数割り形状の
1/nとなし、この模型立坑体200の径を変更する駆
動装置300を有してなるので、遠心力載荷状態で縮小
模型立坑体200を縮小することで、構造物に作用する
荷重や、土圧が静止状態(受働土圧)より破壊するとき
の土圧に近い主働状態といわれる主働土圧及び周辺地盤
の挙動をも確認できるものであり、さらには模型立坑体
200の径を拡縮することで地震時の影響を確認できる
ものである。なお、n倍の遠心力場での実際の場合と模
型の場合との相似則は次ぎに示す「表1」の通りであ
る。
Therefore, according to the method of the present invention, by applying the centrifugal force field which is n times the gravitational acceleration as described above, the reduced model circular shaft 200 can reproduce the same self-weight stress state as the actual model, and the reduced model circular shaft can be reproduced. Since the body 200 is formed as 1 / n of a vertically divided shape and has a driving device 300 for changing the diameter of the model shaft 200, by reducing the reduced model shaft 200 in a centrifugal load state, It can also confirm the load acting on the structure, the active earth pressure, which is said to be the active state close to the earth pressure when the earth pressure breaks from the static state (the passive earth pressure), and the behavior of the surrounding ground. By expanding and contracting the diameter of the model shaft 200, the influence at the time of an earthquake can be confirmed. The similarity between the actual case and the model case in the n-fold centrifugal force field is as shown in Table 1 below.

【0029】 [0029]

【表1】[Table 1]

【0030】次ぎに、「請求項2」の発明は、上記大深
度円形立坑模型実験法を実施する装置で、上記遠心力載
荷装置10に搭載する模型地盤Aを収納した試験土槽1
00と、該模型地盤A内に埋入する縦複数割り形状の1
/nの縮小模型円形立坑体200と、試験土槽100の
外に設けられ上記模型立坑体200の径を変更する駆動
装置300とで構成してある。
Next, a second aspect of the present invention is an apparatus for performing the above-described large-scale circular shaft model experiment method, wherein the test earth tank 1 containing the model ground A to be mounted on the centrifugal force loading device 10 is provided.
00 and one of a plurality of vertically divided shapes to be embedded in the model ground A.
/ N, and a driving device 300 provided outside the test earth tank 100 and changing the diameter of the model shaft 200.

【0031】上記試験土槽100は、遠心力載荷装置1
0に搭載できる質量に制約があり、軽量化をはかる必要
性があるため、本実施態様ではジュラルミン(アルミ)
を使用して上部が開口した箱状に構成してある。なお、
この試験土槽100の部材はより大型の遠心力載荷装置
10を使用すれば鋼材でもよく、さらには、より強度の
高いチタンや各種合金を使用してもよいのは無論であ
る。また、該試験土槽100の部材をアクリル製とする
ことで模型地盤A内の歪みの変化を確認できるようにな
してもよいものである。
The test tank 100 is a centrifugal force loading device 1
In this embodiment, duralumin (aluminum) is used because there is a restriction on the mass that can be mounted on the zero and it is necessary to reduce the weight.
To form a box with an open top. In addition,
The member of the test tank 100 may be a steel material if a larger centrifugal force loading device 10 is used, and it is a matter of course that titanium or various alloys having higher strength may be used. The test soil tank 100 may be made of acrylic so that a change in strain in the model ground A can be confirmed.

【0032】また、上記試験土槽100は、図示実施態
様では、その底面101の下方に駆動源収納室102を
設けてあり、この駆動源収納室102に、後記する駆動
装置300の一部を収納するようになしてある。なお、
図示はしていないが、この試験土槽100は螺子止め等
で前記した載置台15a,15bのいずれか一方に強固
に固定できるようになしてあるのは無論である。
In the illustrated embodiment, the test soil tank 100 is provided with a drive source storage chamber 102 below a bottom surface 101. In the drive source storage chamber 102, a part of a driving device 300 described later is provided. It is designed to be stored. In addition,
Although not shown, it is a matter of course that the test tank 100 can be firmly fixed to one of the mounting tables 15a and 15b by screwing or the like.

【0033】また、上記模型地盤Aは、試料土として砂
の他、粘土、互層等、実際の地層に近い地盤を作成すれ
ばよい。
The model ground A may be made of a soil close to the actual ground, such as sand, clay, alternate layers, etc., in addition to sand as the sample soil.

【0034】そして、上記模型地盤A内に埋入する縦複
数割り形状の1/nの縮小模型円形立坑体200は、適
宜材質を使用すればよいが、本実施態様ではジュラルミ
ンを使用した。そして、その表面を滑らかに仕上げた
が、実際には立坑表面と地盤との間には摩擦力が働くと
考えられ、該縮小模型円形立坑体200の表面加工を荒
い加工とすることで、この摩擦力を再現するようになす
ことが望ましいのは無論である。
The 1 / n reduced model circular shaft 200 having a plurality of vertically divided shapes to be buried in the model ground A may be made of any appropriate material. In this embodiment, duralumin is used. And, although the surface was finished smoothly, it is considered that frictional force actually acts between the shaft surface and the ground, and the surface processing of the reduced model circular shaft 200 is roughened, Of course, it is desirable to reproduce the frictional force.

【0035】上記縮小模型円形立坑体200を1/nと
したのは、本実施態様では60Gの遠心力を載荷するよ
うになしているので1/60とするもので、縮小率は載
荷する遠心力に応じて決定すればよい。
The reason why the reduced model circular shaft 200 is set to 1 / n is that the centrifugal force of 60 G is loaded in the present embodiment, so that it is 1/60. What is necessary is just to determine according to force.

【0036】また、上記縮小模型円形立坑体200を縦
複数割り形状となしたのは、受働土圧の計測の他、その
径を縮小して主働土圧をも測定するためで、縦複数割り
形状の分断部には「図4」に示す(図では2分割)よう
に、適宜な分割間隙部SP1,SP1,SP1・・・を
設けて、この分割間隙部SP1,SP1,SP1・・・
を狭めることで縮径可能となしてある。
The reason why the reduced model circular shaft 200 is divided into a plurality of vertically divided shapes is to measure the passive earth pressure and also reduce the diameter to measure the active earth pressure. As shown in FIG. 4 (divided into two in the figure), appropriate divided gaps SP1, SP1, SP1,... Are provided in the divided portions of the shape, and the divided gaps SP1, SP1, SP1,.
The diameter can be reduced by narrowing.

【0037】無論上記縮小模型円形立坑体200は縮径
のみではなく、拡径も可能で、縮径と拡径とを所定の間
隔で繰り返すと、地震、または施工途中での振動等の影
響で縮小模型円形立坑体200に加わる土圧や、周辺地
盤の動向が確認できるものである。また、図示はしてい
ないが、縦複数分割したものを、さらに横複数に分割す
ることで実際の立坑の変形を忠実に再現できるもであ
る。
Needless to say, the reduced model circular shaft 200 can not only be reduced in diameter but also can be expanded. If the reduction and expansion are repeated at a predetermined interval, it may be affected by an earthquake or vibration during construction. The earth pressure applied to the reduced model circular shaft 200 and the movement of the surrounding ground can be confirmed. Although not shown in the drawings, the actual vertical shaft deformation can be faithfully reproduced by further dividing the vertically divided one into a plurality of horizontally.

【0038】上記分割間隙部SP1,SP1,SP1・
・・より試料土が縮小模型円形立坑体200内に流入す
ると、実際の土圧との相似性が失われるため、「請求項
3」の発明では、上記縮小模型円形立坑体200内に
は、この縮小模型円形立坑体200の内周面に圧接して
分割間隙部SP1,SP1,SP1・・・を塞ぐ板バネ
体203,203,203・・・を収納してある。
The divided gaps SP1, SP1, SP1,.
.. When the sample soil flows into the reduced model circular shaft 200, the similarity with the actual earth pressure is lost. Therefore, according to the invention of claim 3, the reduced model circular shaft 200 includes: The leaf spring bodies 203, 203, 203,... Which press the inner peripheral surface of the reduced model circular shaft 200 to close the divided gaps SP1, SP1, SP1,.

【0039】上記板バネ体203,203,203・・
・は、縮小模型円形立坑体200の内周面に圧接して分
割間隙部SP1,SP1,SP1・・・を塞ぐものであ
ればよいが、図示実施態様では、「図4」に最も明らか
に示すように、両端の一部が内外に重なる断面略楕円状
となし、湾曲した面の一部が分割間隙部SP1の間から
外方に突出するようになしてある。したがって、分割間
隙部SP1を狭めたり広げたりする場合は、この板バネ
体203をバネ力に抗して変形させなくてはならず、所
定の圧接力で密閉性が確保されると共に、後記する移動
側立坑部201に加わる土圧の反力を該板バネ体203
に持たせて該移動側立坑部201の移動を精度よく行な
えるようになしている。
The leaf springs 203, 203, 203,...
May be any as long as it presses against the inner peripheral surface of the reduced model circular shaft 200 to close the divided gaps SP1, SP1, SP1,..., But in the illustrated embodiment, it is most apparent in FIG. As shown, a part of both ends is formed in a substantially elliptical cross section which overlaps inside and outside, and a part of the curved surface is projected outward from between the divided gap portions SP1. Therefore, when narrowing or widening the divided gap portion SP1, the leaf spring body 203 must be deformed against the spring force, and the hermeticity is ensured by a predetermined pressing force, and will be described later. The reaction force of the earth pressure applied to the moving-side shaft section 201 is applied to the leaf spring body 203.
To move the moving-side shaft section 201 with high precision.

【0040】また、上記縮小模型円形立坑体200の縦
分割数は適宜でよいが、本実施態様及び、「請求項4」
乃至「請求項6」の発明では、2分割としてある。すな
わち、上記模型立坑体200は、一方を固定側立坑部2
02として試験土槽100に固定し、他方側を移動側立
坑部201として上記駆動装置300で固定側立坑部2
02に対して接離方向(「図2」乃至「図4」左右方向
で、縮径する際は移動側立坑部201を図示状態より
「図2」乃至「図4」右方向)に移動可能となしてあ
る。
Further, the number of vertical divisions of the reduced model circular shaft 200 may be arbitrary, but this embodiment and "Claim 4"
In the invention of claim 6, it is divided into two. That is, one side of the model shaft 200 is fixed shaft 2
02 is fixed to the test soil tank 100, and the other side is the moving-side shaft section 201, and the fixed-side shaft section 2 is driven by the driving device 300.
02 (in FIG. 2 to FIG. 4, left and right directions, and when reducing the diameter, the movable shaft 201 can be moved in the direction shown in FIG. 2 to FIG. 4 to the right). It has been done.

【0041】上記縮小模型円形立坑体200を二分割と
したのは、前記もした通り、この種、円形立坑に作用す
る土圧は軸対象に作用するので、移動側立坑部201の
みの移動という簡易な構成で実際の主働土圧を確認でき
ることになるからである。
As described above, the reduced model circular shaft 200 is divided into two parts. Since the earth pressure acting on the circular shaft acts on the axial shaft as described above, the movement of the movable side shaft portion 201 alone is referred to as the movement. This is because the actual active earth pressure can be confirmed with a simple configuration.

【0042】さらに、上記駆動装置300は、本実施態
様のモータ301の他、リンク機構、カム機構を始め、
流体圧等を使用して行なえばよいが、本実施態様及び
「請求項4」乃至「請求項6」では、前記駆動源収納室
102に収納される下部駆動装置部300aと、模型地
盤Aの上方に設けられる上部駆動装置部300bとで構
成している。
Further, the driving device 300 includes a link mechanism and a cam mechanism in addition to the motor 301 of this embodiment.
In this embodiment and “Claim 4” to “Claim 6”, the lower drive unit 300a housed in the drive source housing chamber 102 and the model ground A The upper drive unit 300b is provided above.

【0043】そして、上記下部駆動装置部300aは前
記駆動源収納室102内に設けたモータ301と、この
モータ301によって回転すると共に模型立坑体200
の縦中心軸と直交方向を向く螺子棒302と、移動側立
坑部201の下端突出部に固定して螺子棒302の回転
で螺進退するナット303とで構成している。
The lower drive unit 300a is provided with a motor 301 provided in the drive source accommodating chamber 102.
And a nut 303 fixed to the lower end protruding portion of the movable shaft portion 201 and screwed forward and backward by the rotation of the screw bar 302.

【0044】すなわち、モータ301によって螺子棒3
02を回転することで、ナット303が螺進退して、こ
のナット303に連結した移動側立坑部201が「図
2」乃至「図4」左右方向に移動するようになしてあ
る。なお、モータ301と螺子棒302との間には減速
器308aとトルクリミッター308bとを介装し、回
転数を落し(1/10〜1/200)て、トルクを約1
0〜200倍にして高い遠心力場でもナット303を駆
動できるようになし、かつ、送り精度も向上させてい
る。
That is, the screw 301
By rotating 02, the nut 303 advances and retreats, and the movable shaft section 201 connected to the nut 303 moves in the left-right direction in FIGS. 2 to 4. Note that a speed reducer 308a and a torque limiter 308b are interposed between the motor 301 and the screw rod 302 to reduce the rotation speed (1/10 to 1/200) and reduce the torque by about 1
The nut 303 can be driven even in a high centrifugal force field of 0 to 200 times, and the feed accuracy is improved.

【0045】また、上記上部駆動装置部300bは、前
記螺子棒302と平行に配した第二螺子棒304と、移
動側立坑部201の模型地盤Aの上方に突出する部位に
固定されて該第二螺子棒304の回転で螺進退する第二
ナット305とで構成してある。すなわち、この第二螺
子棒304が回転することで第二ナット305が螺進退
して移動側立坑部201の上部も移動するようになして
ある。
The upper drive unit 300b is fixed to a second screw rod 304 arranged in parallel with the screw rod 302 and a portion of the movable shaft 201 protruding above the model ground A, and And a second nut 305 that advances and retreats with the rotation of the two screw rods 304. In other words, the rotation of the second screw rod 304 causes the second nut 305 to advance and retreat, and the upper part of the movable shaft section 201 also moves.

【0046】そして、上記下部駆動装置部300aと上
部駆動装置部300bとは、螺子棒302と第二螺子棒
304との夫々の一端を試験土槽100の側面外方に遊
挿貫出して、両貫出部をタイミングベルト306とプー
リ306a,306a等の伝動装置で連結してある。
The lower drive unit 300a and the upper drive unit 300b allow one end of each of the screw rod 302 and the second screw rod 304 to be freely inserted and protruded outside the side surface of the test soil tank 100, Both projecting portions are connected to the timing belt 306 by a transmission such as pulleys 306a, 306a.

【0047】すなわち、上記螺子棒302と第二螺子棒
304とを同調して回転するようになし、ナット303
と第二ナット305とを同方向に同距離、同速で移動す
るようになして、移動側立坑部201が直立した状態で
固定側立坑部202に対して接離方向にのみ移動し、さ
らに、この移動側立坑部201の上下両端がナット30
3と第二ナット305とで保持されて駆動装置300以
外の外力では変位しづらいようになしてある。
That is, the screw rod 302 and the second screw rod 304 are rotated synchronously, and the nut 303
And the second nut 305 are moved in the same direction at the same distance and at the same speed, so that the moving-side shaft portion 201 moves only in the direction of contact and separation with respect to the fixed-side shaft portion 202 with the moving-side shaft portion 201 standing upright. The upper and lower ends of the movable shaft section 201 are provided with nuts 30.
3 and the second nut 305 so as to be hardly displaced by an external force other than the driving device 300.

【0048】なお、図示実施態様では、固定側立坑部2
02には反力受け401,402,403を設けて、駆
動装置300による反力、及び立坑外部からの土圧に対
し移動側立坑部201を精度よく移動・維持できるよう
になしてある。なお、この反力受け401,402,4
03は必要に応じて設ければよいの無論で、模型地盤A
内に設けることは、厳格には自然の地盤に対しての相違
点となるが、実際にこの反力受け401,402,40
3を設けた場合と設けない場合とを比較したところでは
反力受け401,402,403を設けた場合の方が測
定精度が高いものであった。
In the illustrated embodiment, the fixed shaft 2
02 is provided with reaction force receivers 401, 402, and 403 so that the movable shaft portion 201 can be accurately moved and maintained with respect to the reaction force by the driving device 300 and the earth pressure from outside the shaft. The reaction force receivers 401, 402, 4
Needless to say, 03 should be provided as needed.
Strictly speaking, there is a difference with respect to the natural ground, but actually this reaction force receiver 401, 402, 40
3, the measurement accuracy was higher when the reaction force receivers 401, 402, and 403 were provided.

【0049】なお、移動側立坑部201の直立性をより
確実にするため、「請求項6」の発明では、ナット30
3を固定側立坑部202に対して接離方向にのみ案内す
る一対の案内レール307,307を設けてある。この
案内レール307,307は図示例では明示していない
が、「図3」を参照すると、ナット303の両側に溝を
設け、その両側には先端が該溝に嵌入するレール30
7,307をナット303に平行な状態に試験土槽10
0に固定して設けてある。
In order to further secure the uprightness of the movable shaft section 201, the nut 30 according to the invention of claim 6 is used.
3 is provided with a pair of guide rails 307, 307 for guiding the shaft 3 to the fixed side shaft portion 202 only in the direction of contact and separation. Although the guide rails 307 and 307 are not shown in the illustrated example, referring to FIG. 3, grooves are provided on both sides of the nut 303, and rails 30 whose tips fit into the grooves are provided on both sides.
7 and 307 are parallel to the nut 303 and the test soil tank 10
It is fixed at 0.

【0050】上記において、移動側立坑部201は直立
性を確保するとしたが、実際の立坑は無論鉛直に構築す
るよう勤めているが、掘削誤差や掘削時に加わる偏荷重
等で必ずしも鉛直の場合のみとは限らない。そこで、下
部駆動装置部300aと上部駆動装置部300bとを別
個の駆動源で駆動したり、上記プーリ306a,306
aの径に相違を持たせることで移動側立坑部201を適
宜傾斜可能となしてより忠実に実際の立坑を模すことも
無論差し支えないものである。
In the above description, it is assumed that the moving-side shaft section 201 secures the uprightness. However, it is obvious that the actual shaft is working so as to be constructed vertically, but only when the vertical shaft is necessarily vertical due to excavation errors and unbalanced load applied during excavation. Not necessarily. Therefore, the lower drive unit 300a and the upper drive unit 300b are driven by separate drive sources, or the pulleys 306a and 306
By making the diameter of a different, the moving-side vertical shaft portion 201 can be appropriately inclined so that the actual vertical shaft can be more faithfully simulated.

【0051】そして、上記模型地盤A内の適所に土圧計
S11,S11,S11・・・を、模型立坑体200の
表面に土圧計S10,S10,S10・・・を設けてな
る。
The earth pressure gauges S11, S11, S11... Are provided at appropriate places in the model ground A, and the earth pressure gauges S10, S10, S10.

【0052】上記土圧計S11,S10は図示例では門
型一方向のロードセルを使用し、適所に埋設すればよい
が、模型立坑体200に取り付けるものは、移動側立坑
部201の周面とこの移動側立坑部201の移動方向を
向く直径線との交点部位に上下方向に適宜な間隔を設け
て、浅部より深部まで測定出来るように該移動側立坑部
201の表面に埋設してある。なお、この土圧計S1
0,S11は門型、ダイヤフラム型、曲げ型、剪断型、
圧縮型等の適宜なものを使用してよいのは無論である。
なお、「図1」例での土圧計S11は横長方形が水平方
向、縦長方形が鉛直方向、丸形が接線方向の土圧を測定
するようになしてある。
In the illustrated example, the earth pressure gauges S11 and S10 use a gate-type one-way load cell, and may be buried in an appropriate place. An appropriate interval is provided in the vertical direction at a point of intersection with the diameter line in the moving direction of the moving-side shaft portion 201, and the moving-side shaft portion 201 is buried in the surface of the moving-side shaft portion 201 so that measurement can be performed from a shallow portion to a deep portion. The earth pressure gauge S1
0, S11 are gate type, diaphragm type, bending type, shear type,
It goes without saying that an appropriate one such as a compression type may be used.
The earth pressure gauge S11 in the example of FIG. 1 measures the earth pressure in a horizontal rectangle in the horizontal direction, the vertical rectangle in the vertical direction, and the circular shape in the tangential direction.

【0053】なお、土圧計S10は固定側立坑部202
にも設けてもよく、さらには、該移動側立坑部201の
表面の一部にはCCDカメラ等を設けて地盤の破壊の挙
動を目視可能としてもよいものである。
The earth pressure gauge S10 is mounted on the fixed shaft section 202.
In addition, a CCD camera or the like may be provided on a part of the surface of the movable shaft section 201 so that the behavior of the ground destruction can be visually checked.

【0054】また、「請求項6」の発明は、さらに、地
表面の変位を測定する測距計S21,S22,S23・
・・と、移動側立坑部201の変位量を測定する変位位
置測定計S31,S32を設けている。
The invention according to claim 6 further includes a range finder S 21, S 22, S 23.
, And displacement position measuring instruments S31 and S32 for measuring the displacement amount of the moving shaft section 201 are provided.

【0055】上記測距計S21,S22,S23・・・
は、模型地盤Aの上方に配設され、模型地盤Aの上面と
の距離を測定するようになしてある。この測距計S2
1,S22,S23・・・は、レーザ測距計等が使用で
きる。なお、この測距計S21,S22,S23・・・
は、模型立坑体200の〜外周縁から所定距離離れた部
位までの影響を測定出来るようになすため、または同時
に複数ケ所の変位を測定するため複数個を並置して設け
ることが望ましい。また、この測距計S21,S22,
S23・・・を模型立坑体200の中心軸を通る方向で
移動側立坑部201の移動方向に設けたガイドレール
(図示せず)上を、シーケンサ制御で移動可能に配設す
ると任意の位置を測定したり、所定の距離を連続して測
定できてより望ましいものである。
The rangefinders S21, S22, S23...
Is arranged above the model ground A and measures the distance from the upper surface of the model ground A. This rangefinder S2
For 1, S22, S23,..., A laser range finder or the like can be used. In addition, this rangefinder S21, S22, S23 ...
It is desirable to provide a plurality of juxtapositions in parallel so as to measure the influence of the model shaft 200 to a portion away from the outer peripheral edge by a predetermined distance, or to measure displacements at a plurality of locations at the same time. In addition, the rangefinders S21, S22,
If S23... Is disposed on a guide rail (not shown) provided in the moving direction of the moving shaft section 201 in a direction passing through the central axis of the model shaft 200, and it is movably arranged by sequencer control, an arbitrary position is obtained. It is more desirable to be able to measure or continuously measure a predetermined distance.

【0056】また、上記変位位置測定計S31,S32
は、移動側立坑部201の変位の精度管理に使用するも
ので、実施態様では固定側にマイクロリニアエンコーダ
と称する回折光干渉方式のものを上記ナット303の下
方と移動側立坑部201の上方とに固定し、ナット30
3と移動側立坑部201との移動部材に「図2」に示す
スケールM,Mを取り付けてある。
The displacement position measuring devices S31, S32
Is used for precision control of the displacement of the movable shaft section 201. In the embodiment, a fixed-side diffractive light interference type called a micro linear encoder is used below the nut 303 and above the movable shaft section 201. To the nut 30
Scales M, M shown in FIG. 2 are attached to the moving members of the shaft 3 and the moving shaft section 201.

【0057】なお、図示はしていないが、本実施態様で
は、タイミングベルト306には従来公知なテンション
調整装置を設けて送り精度を向上させてあり、また、移
動側立坑部201と測距計S21,S22,S23・・
・とには、リミットスイッチを配して所定以上の移動を
防止できるようになしてある。
Although not shown, in the present embodiment, the timing belt 306 is provided with a conventionally known tension adjusting device to improve the feeding accuracy. In addition, the movable side shaft portion 201 and the range finder are provided. S21, S22, S23 ...
In the and, a limit switch is provided to prevent a movement exceeding a predetermined value.

【0058】なお、図中、309,309は螺子棒30
2及び第二螺子棒304の軸受を示すものである。
In the figure, 309 and 309 are screw rods 30.
3 shows a bearing of the second and second screw rods 304.

【0059】[0059]

【発明の効果】本発明は上記のごときであるので、遠心
力載荷状態で1/nの縮小模型円形立坑体200を使用
して、実際の大深度の土圧を実験的に測定できる大深度
円形立坑模型実験方法及び装置を提供できるものであ
る。
Since the present invention is as described above, the actual deep earth pressure can be experimentally measured by using the 1 / n reduced model circular shaft 200 under the centrifugal load. It is possible to provide a circular shaft model experiment method and apparatus.

【0060】また、本発明は、縮小模型円形立坑体20
0を拡縮径可能となしたので静止土圧、主働土圧ばかり
か受働土圧をも測定でき、さらに、模型地盤Aにも土圧
計S11,S11,S11・・・を設けてなるので周辺
地盤の土圧変化をも測定できる大深度円形立坑模型実験
装置を提供できるものである。
The present invention also relates to a reduced model circular shaft 20
0 can be expanded and reduced, so that not only the static earth pressure, the active earth pressure but also the passive earth pressure can be measured. Further, since the model ground A is provided with the earth pressure gauges S11, S11, S11. It is possible to provide a large-scale circular shaft model experiment device capable of measuring a change in earth pressure at the same time.

【0061】また、本発明は移動側立坑部201を傾斜
させると、実際の立坑の掘削誤差や施工時の偏荷重を再
現でき、また、縮小模型円形立坑体200の拡縮径を繰
り返すことで地震の影響をも確認できる大深度円形立坑
模型実験装置を提供できるものである。
Further, according to the present invention, when the movable shaft section 201 is inclined, an actual excavation error of the shaft and an eccentric load at the time of construction can be reproduced. It is possible to provide a large-scale circular shaft model experiment device capable of confirming the influence of the above.

【0062】なお、「請求項2」の発明は、駆動装置3
00を試験土槽100の外に設け地盤内に余計な駆動機
構を設置しないようになしたので、半無次元地盤での実
際の土圧分布を測定でき、さらには、縮小模型円形立坑
体200の周辺に杭基礎構造物やトンネル等の地中構造
物の模型を埋設しすれば、近接構造物への影響をも実験
的に確認できる大深度円形立坑模型実験装置を提供でき
るものである。
It should be noted that the second aspect of the present invention relates to a driving device 3
00 is provided outside the test tank 100 so that no extra drive mechanism is installed in the ground, so that the actual earth pressure distribution on the semi-dimensional ground can be measured. When a model of an underground structure such as a pile foundation structure or a tunnel is buried in the vicinity of the building, it is possible to provide a large-depth circular shaft model test apparatus capable of experimentally confirming the influence on adjacent structures.

【0063】また、「請求項3」の発明は、縮小模型円
形立坑体200の内周面に圧接して分割間隙部SP1,
SP1,SP1・・・を塞ぐ板バネ体203,203,
201・・・を収納してあるので、上記効果に加えて、
模型地盤Aが縮小模型円形立坑体200内に流入せずよ
り正確な測定のできる大深度円形立坑模型実験装置を提
供できるものである。
In addition, the invention of claim 3 provides a method of contacting the inner peripheral surface of the reduced model circular shaft 200 with the divided gap SP1,
SP1, SP1,...
Because 201 ... is stored, in addition to the above effects,
It is possible to provide a large-depth circular shaft model experiment apparatus capable of performing more accurate measurement without the model ground A flowing into the reduced model circular shaft 200.

【0064】また、「請求項4」の発明は、縮小模型円
形立坑体200を縦二つ割り形状として、移動側立坑部
201の移動方向を向く直径線との交点部位とには土圧
計S10,S10,S10・・・を設けてあるので、上
記効果に加え軸対象に作用する土圧を正確に測定できる
大深度円形立坑模型実験装置を提供できるものである。
Further, the invention of claim 4 provides that the reduced model circular shaft 200 is divided into two vertical parts, and the earth pressure gauges S10 and S10 are provided at the intersection with the diameter line of the moving shaft 201 in the moving direction. , S10,..., Provide a large-depth circular shaft model experiment apparatus capable of accurately measuring the earth pressure acting on the axial object in addition to the above-described effects.

【0065】また、「請求項4」の発明は、駆動装置3
00は、前記駆動源収納室102に収納される下部駆動
装置部300aと、模型地盤Aの上方に設けられる上部
駆動装置部300bとで構成し、上記下部駆動装置部3
00aは前記駆動源収納室102内に設けたモータ30
1と、このモータ301によって回転すると共に模型立
坑体200の縦中心軸と直交方向を向く螺子棒302
と、移動側立坑部201の下端突出部に固定して螺子棒
302の回転で螺進退するナット303とで構成し、上
記上部駆動装置部300bは、前記螺子棒302と平行
に配した第二螺子棒304と、移動側立坑部201の模
型地盤Aの上方に突出する部位に固定されて該第二螺子
棒304の回転で螺進退する第二ナット305とで構成
し、上記下部駆動装置部300aと上部駆動装置部30
0bとは、螺子棒302と第二螺子棒304との夫々の
一端を試験土槽100の側面外方に遊挿貫出して、両貫
出部をタイミングベルト306等の伝動装置で連結して
あるので、上記効果に加えきわめて精度のよい移動側立
坑部201の移動が行なえ、この移動側立坑部201が
移動位置で強固に保持できる大深度円形立坑模型実験装
置を提供できるものである。
Further, the invention of claim 4 provides the driving device 3
Reference numeral 00 denotes a lower drive unit 300a housed in the drive source storage chamber 102 and an upper drive unit 300b provided above the model ground A.
00a is a motor 30 provided in the drive source storage chamber 102.
1 and a screw rod 302 rotated by the motor 301 and oriented in a direction orthogonal to the longitudinal center axis of the model shaft 200.
And a nut 303 fixed to the lower end protruding portion of the movable shaft portion 201 and reciprocated by the rotation of the screw rod 302. The upper drive device 300b is arranged in parallel with the screw rod 302. The lower drive unit includes a screw rod 304 and a second nut 305 fixed to a portion of the movable shaft 201 protruding above the model ground A and reciprocating with the rotation of the second screw rod 304. 300a and upper drive unit 30
0b means that one end of each of the screw rod 302 and the second screw rod 304 is loosely inserted and protruded to the outside of the side surface of the test soil tank 100, and both protruding portions are connected by a transmission such as a timing belt 306. Therefore, in addition to the above-described effects, extremely accurate movement of the moving-side shaft portion 201 can be performed, and a large-depth circular shaft model experiment device capable of firmly holding the moving-side shaft portion 201 at the moving position can be provided.

【0066】また、「請求項5」の発明は、模型地盤A
の上方に適所には該模型地盤Aの上面との距離を測定す
る複数の測距計S21,S22,S23・・・を設けて
あるので、立坑変形に伴う立坑周辺の地表面に対する影
響を測量できる実験できる大深度円形立坑模型実験装置
を提供できるものである。
Further, the invention of claim 5 relates to the model ground A
A plurality of distance measuring devices S21, S22, S23... For measuring the distance from the upper surface of the model ground A are provided at appropriate places above the ground, so that the influence of the deformation of the shaft on the ground surface around the shaft is measured. It is possible to provide a large-scale circular shaft model experiment device capable of conducting experiments.

【0067】また、本発明はナット303の下方と移動
側立坑部201の上方とに、変位位置測定計S31,S
32を設けてあるので、移動側立坑部201の制御を確
実に行なえる大深度円形立坑模型実験装置を提供できる
ものである。
Further, according to the present invention, the displacement position measuring devices S31 and S31 are provided below the nut 303 and above the moving-side vertical shaft portion 201.
Since the 32 is provided, it is possible to provide a large-depth circular shaft model test apparatus capable of reliably controlling the moving-side shaft section 201.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の位置実施態様を示す正面図である。FIG. 1 is a front view showing a position embodiment of the present invention.

【図2】本発明大深度円形立坑模型実験装置の要部縦断
面図である。
FIG. 2 is a longitudinal sectional view of a main part of the large-scale circular shaft model test apparatus of the present invention.

【図3】本発明大深度円形立坑模型実験装置の要部底面
図である。
FIG. 3 is a bottom view of a main part of the large-scale circular shaft model experiment apparatus of the present invention.

【図4】本発明に使用される縮小模型円形立坑体部の平
面図である。
FIG. 4 is a plan view of a reduced model circular shaft used in the present invention.

【符号の説明】[Explanation of symbols]

A 模型地盤 10 遠心力載荷装置 100 試験土槽 101 底面 102 駆動源収納室 200 縮小円形模型立坑体 201 移動側立坑部 202 固定側立坑部 203 板バネ体 300 駆動装置 300a 下部駆動装置部 300b 上部駆動装置部 301 モータ 302 螺子棒 303 ナット 304 第二螺子棒 305 第二ナット 306 タイミングベルト 307 案内レール S10 土圧計 S11 土圧計 S21 測距計 S22 測距計 S23 測距計 S31 変位位置測定計 S32 変位位置測定計 A Model ground 10 Centrifugal force loading device 100 Test earth tank 101 Bottom surface 102 Drive source storage room 200 Reduced circular model shaft 201 Moving side shaft 202 Fixed side shaft 203 Leaf spring body 300 Drive 300a Lower drive 300b Upper drive Device part 301 Motor 302 Screw rod 303 Nut 304 Second screw rod 305 Second nut 306 Timing belt 307 Guide rail S10 Soil pressure gauge S11 Soil pressure gauge S21 Distance measuring instrument S22 Distance measuring instrument S23 Distance measuring instrument S31 Displacement measuring instrument S32 Displacement position Measuring instrument

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−176534(JP,A) 特開 平4−13946(JP,A) (58)調査した分野(Int.Cl.6,DB名) G09B 25/00 G09B 9/00 G01M 7/02 G01M 19/00 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-2-176534 (JP, A) JP-A-4-13946 (JP, A) (58) Fields investigated (Int.Cl. 6 , DB name) G09B 25/00 G09B 9/00 G01M 7/02 G01M 19/00

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 試験土槽(100)内に模型地盤(A)
を収納し、該模型地盤(A)内に縦複数割り形状の1/
nの縮小模型円形立坑体(200)を埋入して、この試
験土槽(100)を遠心力載荷装置(10)に搭載して
所定の遠心力場を与え、 上記模型立坑体(200)の径を試験土槽(100)の
外に設けられた駆動装置(300)で変更して、模型立
坑体(200)の表面に設けた土圧計(S10,S1
0,S10・・・)、及び模型地盤(A)内の適所に設
けた土圧計(S11,S11,S11・・・)で大深度
の土圧分布や周辺地盤の変形・破壊挙動を測定する大深
度円形立坑模型実験方法。
1. A model ground (A) in a test soil tank (100).
Is stored in the model ground (A).
Then, the test model tank (100) is mounted on the centrifugal force loading device (10) to give a predetermined centrifugal force field. Is changed by a driving device (300) provided outside the test soil tank (100), and the earth pressure gauges (S10, S1) provided on the surface of the model shaft (200) are changed.
0, S10...) And the earth pressure gauge (S11, S11, S11...) Provided at an appropriate place in the model ground (A) to measure the earth pressure distribution at a large depth and the deformation and fracture behavior of the surrounding ground. Large depth circular shaft model test method.
【請求項2】 遠心力載荷装置(10)に搭載する模型
地盤(A)を収納した試験土槽(100)と、該模型地
盤(A)内に埋入する縦複数割り形状の1/nの縮小模
型円形立坑体(200)と、試験土槽(100)の外に
設けられ上記模型立坑体(200)の径を変更する駆動
装置(300)とで構成し、 上記模型地盤(A)内の適所に土圧計(S11,S1
1,S11・・・)を、模型立坑体(200)の表面に
土圧計(S10,S10,S10・・・)を設けてなる
大深度円形立坑模型実験装置。
2. A test soil tank (100) containing a model ground (A) mounted on a centrifugal force loading device (10), and a 1 / n of a plurality of vertically divided shapes embedded in the model ground (A). And a drive unit (300) provided outside the test soil tank (100) to change the diameter of the model shaft (200), and the model ground (A) Soil pressure gauge (S11, S1
, S11...) Are provided on the surface of a model shaft (200) with earth pressure gauges (S10, S10, S10...).
【請求項3】 遠心力載荷装置(10)に搭載する模型
地盤(A)を収納した試験土槽(100)と、該模型地
盤(A)内に埋入する縦複数割り形状の1/nの縮小模
型円形立坑体(200)と、試験土槽(100)の外に
設けられ上記模型立坑体(200)の径を変更する駆動
装置(300)とで構成し、 上記縮小模型円形立坑体(200)内には、この縮小模
型円形立坑体(200)の内周面に圧接して分割間隙部
(SP1,SP1,SP1・・・)を塞ぐ板バネ体(2
03,203,203・・・)を収納し、 上記模型地盤(A)内の適所に土圧計(S11,S1
1,S11・・・)を、模型立坑体(200)の表面に
土圧計(S10,S10,S10・・・)を設けてなる
大深度円形立坑模型実験装置。
3. A test soil tank (100) containing a model ground (A) mounted on a centrifugal force loading device (10), and a 1 / n of a plurality of vertically divided shapes embedded in the model ground (A). And a drive unit (300) provided outside the test tank (100) for changing the diameter of the model shaft (200). A leaf spring body (2) that presses against the inner peripheral surface of the reduced model circular shaft body (200) to close the divided gaps (SP1, SP1, SP1,...) Inside (200).
03, 203, 203...), And the earth pressure gauges (S11, S1) are put in place in the model ground (A).
, S11...) Are provided on the surface of a model shaft (200) with earth pressure gauges (S10, S10, S10...).
【請求項4】 遠心力載荷装置(10)に搭載する模型
地盤(A)を収納した試験土槽(100)と、該模型地
盤(A)内に埋入する縦二つ割り形状の1/nの縮小模
型円形立坑体(200)と、試験土槽(100)の外に
設けられ上記模型立坑体(200)の径を変更する駆動
装置(300)とで構成し、 上記模型立坑体(200)は、一方を固定側立坑部(2
02)として試験土槽(100)に固定し、他方側を移
動側立坑部(201)として上記駆動装置(300)で
固定側立坑部(202)に対して接離方向に移動可能と
なし、 上記縮小模型円形立坑体(200)内には、この縮小模
型円形立坑体(200)の内周面に圧接して分割間隙部
(SP1,SP1)を塞ぐ板バネ体(203,203)
を収納し、 上記模型地盤(A)内の適所に土圧計(S11,S1
1,S11・・・)を、上記移動側立坑部(201)の
周面とこの移動側立坑部(201)の移動方向を向く直
径線との交点部位とには土圧計(S10,S10,S1
0・・・)を設けてなる大深度円形立坑模型実験装置。
4. A test soil tank (100) containing a model ground (A) to be mounted on a centrifugal force loading device (10), and 1 / n of a vertically split shape embedded in the model ground (A). A reduced model circular shaft (200) and a driving device (300) provided outside the test earthen tank (100) for changing the diameter of the model shaft (200); Is one of the fixed shafts (2
02) and fixed to the test earth tank (100), and the other side can be moved in the direction of moving toward and away from the fixed shaft (202) by the driving device (300) as the movable shaft (201). A leaf spring body (203, 203) in the reduced model circular shaft (200) that presses against the inner peripheral surface of the reduced model circular shaft (200) to close the divided gap (SP1, SP1).
And the earth pressure gauges (S11, S1) are put in place in the model ground (A).
, S11...) At the intersection of the peripheral surface of the moving shaft (201) and the diameter line facing the moving direction of the moving shaft (201). S1
0 ...), a large-scale circular shaft model experimental device.
【請求項5】 遠心力載荷装置(10)に搭載する模型
地盤(A)を収納した試験土槽(100)と、該模型地
盤(A)内に埋入する縦二つ割り形状の1/nの縮小円
形模型立坑体(200)と、試験土槽(100)の外に
設けられ上記模型立坑体(200)の一方を移動する駆
動装置(300)とで構成し、 上記試験土槽(100)は上部を開口した容器状に構成
すると共に、その底面(101)の下方に駆動源収納室
(102)を設け、 上記模型立坑体(200)は一方を固定側立坑部(20
2)として試験土槽(100)の底面(101)上に立
設固定し、他方側を移動側立坑部(201)として下端
部を底面(101)に設けた通孔(103)より下方に
貫出して固定側立坑部(202)に対して接離方向に移
動可能に配設し、 上記模型地盤(A)内の適所に土圧計(S11,S1
1,S11・・・)を、上記移動側立坑部(201)の
周面とこの移動側立坑部(201)の移動方向を向く直
径線との交点部位とには土圧計(S10,S10,S1
0・・・)を設け、 また、上記駆動装置(300)は、前記駆動源収納室
(102)に収納される下部駆動装置部(300a)
と、模型地盤(A)の上方に設けられる上部駆動装置部
(300b)とで構成し、 上記下部駆動装置部(300a)は前記駆動源収納室
(102)内に設けたモータ(301)と、このモータ
(301)によって回転すると共に模型立坑体(20
0)の縦中心軸と直交方向を向く螺子棒(302)と、
移動側立坑部(201)の下端突出部に固定して螺子棒
(302)の回転で螺進退するナット(303)とで構
成し、 上記上部駆動装置部(300b)は、前記螺子棒(30
2)と平行に配した第二螺子棒(304)と、移動側立
坑部(201)の模型地盤(A)の上方に突出する部位
に固定されて該第二螺子棒(304)の回転で螺進退す
る第二ナット(305)とで構成し、 上記下部駆動装置部(300a)と上部駆動装置部(3
00b)とは、螺子棒(302)と第二螺子棒(30
4)との夫々の一端を試験土槽(100)の側面外方に
遊挿貫出して、両貫出部をタイミングベルト(306)
等の伝動装置で連結し、 さらに、上記縮小模型円形立坑体(200)内には、こ
の縮小模型円形立坑体(200)の内周面に圧接して分
割間隙部を塞ぐ板バネ体(203,203)を収納して
なる大深度円形立坑模型実験装置。
5. A test soil tank (100) containing a model ground (A) to be mounted on a centrifugal force loading device (10), and 1 / n of a vertically split shape embedded in the model ground (A). The test earth tank (100) comprising a reduced circular model shaft (200) and a driving device (300) provided outside the test earth tank (100) and moving one of the model shafts (200). Is configured in a container shape with an open top, and a drive source storage chamber (102) is provided below the bottom surface (101). One of the model shafts (200) has a fixed shaft (20).
As 2), it is erected and fixed on the bottom surface (101) of the test soil tank (100), and the other side is lower than the through hole (103) provided on the bottom surface (101) with the lower end as the movable shaft (201). An earth pressure gauge (S11, S1) is provided at an appropriate place in the model ground (A) so as to protrude and move in the direction of contact and separation with respect to the fixed shaft (202).
, S11...) At the intersection of the peripheral surface of the moving shaft (201) and the diameter line facing the moving direction of the moving shaft (201). S1
0 ...), and the drive device (300) is a lower drive device portion (300a) housed in the drive source housing chamber (102).
And an upper drive unit (300b) provided above the model ground (A). The lower drive unit (300a) includes a motor (301) provided in the drive source storage chamber (102). And the model shaft (20) rotated by the motor (301).
A screw rod (302) oriented in a direction orthogonal to the vertical center axis of 0);
A nut (303) fixed to the lower end protruding portion of the moving shaft (201) and reciprocating by rotating the screw rod (302). The upper drive unit (300b) includes the screw rod (30).
A second screw rod (304) arranged in parallel with 2) and a portion of the movable shaft (201) protruding above the model ground (A) and being rotated by rotation of the second screw rod (304). The lower drive unit (300a) and the upper drive unit (3).
00b) means the screw rod (302) and the second screw rod (30).
4), one end of each is loosely inserted and protrudes outside the side surface of the test soil tank (100), and both protruding portions are timing belts (306).
Further, inside the reduced model circular shaft (200), a leaf spring body (203) presses against the inner peripheral surface of the reduced model circular shaft (200) to close the divided gap. , 203) is a large-scale circular shaft model experimental device.
【請求項6】 遠心力載荷装置(10)に搭載する模型
地盤(A)を収納した試験土槽(100)と、該模型地
盤(A)内に埋入する縦二つ割り形状の1/nの縮小円
形模型立坑体(200)と、試験土槽(100)の外に
設けられ上記模型立坑体(200)の一方を移動する駆
動装置(300)とで構成し、 上記試験土槽(100)は上部を開口した容器状に構成
すると共に、その底面(101)の下方に駆動源収納室
(102)を設け、 上記模型立坑体(200)は一方を固定側立坑部(20
2)として試験土槽(100)の底面(101)上に立
設固定し、他方側を移動側立坑部(201)として下端
部を底面(101)に設けた通孔より下方に貫出して固
定側立坑部(202)に対して接離方向に移動可能に配
設し、 上記模型地盤(A)内の適所に土圧計(S11,S1
1,S11・・・)を、上記移動側立坑部(201)の
周面とこの移動側立坑部(201)の移動方向を向く直
径線との交点部位とには土圧計(S10,S10,S1
0・・・)を、模型地盤(A)の上方に適所には該模型
地盤(A)の上面との距離を測定する測距計(S21,
S22,S23・・・)を設け、 また、上記駆動装置(300)は、前記駆動源収納室
(102)に収納される下部駆動装置部(300a)
と、模型地盤(A)の上方に設けられる上部駆動装置部
(300b)とで構成し、 上記下部駆動装置部(300a)は前記駆動源収納室
(102)内に設けたモータ(301)と、このモータ
(301)によって回転すると共に模型立坑体(20
0)の縦中心軸と直交方向を向く螺子棒(302)と、
移動側立坑部(201)の下端突出部に固定して螺子棒
(302)の回転で螺進退するナット(303)と、こ
のナット(303)を固定側立坑部(202)に対して
接離方向にのみ案内する一対の案内レール(307,3
07)とで構成し、 上記上部駆動装置部(300b)は、前記螺子棒(30
2)と平行に配した第二螺子棒(304)と、移動側立
坑部(201)の模型地盤(A)の上方に突出する部位
に固定されて該第二螺子棒(304)の回転で螺進退す
る第二ナット(305)とで構成し、 上記下部駆動装置部(300a)と上部駆動装置部(3
00b)とは、螺子棒(302)と第二螺子棒(30
4)との夫々の一端を試験土槽(100)の側面外方に
遊挿貫出して、両貫出部をタイミングベルト(306)
等の伝動装置で連結し、 上記ナット(303)の下方と移動側立坑部(201)
の上方とには、変位位置測定計(S31,S32)を設
け、 さらに、上記縮小模型円形立坑体(200)内には、こ
の縮小模型円形立坑体(200)の内周面に圧接して分
割間隙部を塞ぐ板バネ体(203,203)を収納して
なる大深度円形立坑模型実験装置。
6. A test soil tank (100) containing a model ground (A) mounted on a centrifugal force loading device (10), and 1 / n of a vertically split shape embedded in the model ground (A). The test earth tank (100) comprising a reduced circular model shaft (200) and a driving device (300) provided outside the test earth tank (100) and moving one of the model shafts (200). Is configured in a container shape with an open top, and a drive source storage chamber (102) is provided below the bottom surface (101). One of the model shafts (200) has a fixed shaft (20).
As 2), it is erected on the bottom surface (101) of the test earthen tank (100), and the other side is formed as a movable shaft (201), and the lower end protrudes downward from a through hole provided in the bottom surface (101). An earth pressure gauge (S11, S1) is provided at an appropriate position in the model ground (A) so as to be movable in the direction of contact and separation with respect to the fixed shaft (202).
, S11...) At the intersection of the peripheral surface of the moving shaft (201) and the diameter line facing the moving direction of the moving shaft (201). S1
0 ...) is placed above the model ground (A) at a suitable position, and a distance meter (S21,
S22, S23...), And the driving device (300) is a lower driving device portion (300a) housed in the driving source housing chamber (102).
And an upper drive unit (300b) provided above the model ground (A). The lower drive unit (300a) includes a motor (301) provided in the drive source storage chamber (102). And the model shaft (20) rotated by the motor (301).
A screw rod (302) oriented in a direction orthogonal to the vertical center axis of 0);
A nut (303) fixed to the lower end protruding portion of the movable shaft (201) and advanced and retracted by the rotation of the screw rod (302), and this nut (303) is moved toward and away from the fixed shaft (202). Guide rails (307, 3)
07), and the upper drive unit (300b) includes the screw rod (30).
A second screw rod (304) arranged in parallel with 2) and a portion of the movable shaft (201) protruding above the model ground (A) and being rotated by rotation of the second screw rod (304). The lower drive unit (300a) and the upper drive unit (3).
00b) means the screw rod (302) and the second screw rod (30).
4), one end of each is loosely inserted and protrudes outside the side surface of the test soil tank (100), and both protruding portions are timing belts (306).
And the like, and the lower part of the nut (303) and the moving-side shaft (201)
A displacement position measuring instrument (S31, S32) is provided above the above, and further, in the reduced model circular shaft (200), the inner peripheral surface of the reduced model circular shaft (200) is pressed. A large-depth circular shaft model experimental device containing a leaf spring body (203, 203) that closes the divided gap.
JP36763797A 1997-12-26 1997-12-26 Large depth circular shaft model experiment method and its apparatus Expired - Fee Related JP2908777B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36763797A JP2908777B1 (en) 1997-12-26 1997-12-26 Large depth circular shaft model experiment method and its apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36763797A JP2908777B1 (en) 1997-12-26 1997-12-26 Large depth circular shaft model experiment method and its apparatus

Publications (2)

Publication Number Publication Date
JP2908777B1 true JP2908777B1 (en) 1999-06-21
JPH11194705A JPH11194705A (en) 1999-07-21

Family

ID=18489818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36763797A Expired - Fee Related JP2908777B1 (en) 1997-12-26 1997-12-26 Large depth circular shaft model experiment method and its apparatus

Country Status (1)

Country Link
JP (1) JP2908777B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103411551A (en) * 2013-08-27 2013-11-27 西南交通大学 Soil body sample tiny deformation imaging detecting device and method
CN110805076A (en) * 2019-11-27 2020-02-18 福建工程学院 Test device and method for simulating reinforcement of passive area of foundation pit
CN111175154A (en) * 2020-01-13 2020-05-19 温州大学 Test device for realizing multi-body continuous impact of centrifugal machine

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100449533B1 (en) * 2002-08-12 2004-09-22 이은혜 The educational model test apparatus to observe mechanical behaviour of soil structure
KR200461188Y1 (en) 2010-06-01 2012-06-26 (주)미래세움 The experience system for the understang of centrifugal force
CN102855804B (en) * 2012-08-27 2015-09-09 温州大学 Building wind load Integrative Experimental Teaching device
CN103035155A (en) * 2012-12-26 2013-04-10 浙江大学 Demonstration and display teaching device for soil engineering centrifugal simulation technology test
CN109035998B (en) * 2018-10-22 2021-02-19 苏州大学 Demonstration device for effective stress variation effect
CN110243413B (en) * 2019-06-27 2021-04-16 浙江大学 Monitoring device and monitoring method for physical state of supergravity centrifugal model
CN114134946A (en) * 2021-11-23 2022-03-04 中国水利水电第七工程局有限公司 Device and method for testing influence of support expansion and contraction in foundation pit on adjacent vertical shaft
CN115762314B (en) * 2022-09-08 2023-10-03 防灾科技学院 Assembled section of jurisdiction tunnel structure destruction device under simulated cross fault strong shock effect

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103411551A (en) * 2013-08-27 2013-11-27 西南交通大学 Soil body sample tiny deformation imaging detecting device and method
CN110805076A (en) * 2019-11-27 2020-02-18 福建工程学院 Test device and method for simulating reinforcement of passive area of foundation pit
CN110805076B (en) * 2019-11-27 2024-05-03 福建工程学院 Test device and method for simulating reinforcement of passive area of foundation pit
CN111175154A (en) * 2020-01-13 2020-05-19 温州大学 Test device for realizing multi-body continuous impact of centrifugal machine
CN111175154B (en) * 2020-01-13 2023-01-03 温州大学 Test device for realizing multi-body continuous impact of centrifugal machine

Also Published As

Publication number Publication date
JPH11194705A (en) 1999-07-21

Similar Documents

Publication Publication Date Title
JP2908777B1 (en) Large depth circular shaft model experiment method and its apparatus
JP6622411B2 (en) Periodic structure used for three-way motion decoupling of shaking table model box
Chiang et al. Responses of single piles to tunneling-induced soil movements in sandy ground
US11085859B1 (en) Experimental system and method for simulating effect of fault stick-slip displacement on tunnel engineering
CN104374655B (en) A kind of shock vibration country rock testing equipment
Hans et al. A new device for investigating the hydro‐mechanical properties of rock joints
CN109706981B (en) Vibrating table model test system for high-steep slope pier foundation stress deformation characteristics
Biondi et al. Experimental study in the shaking table of the input motion characteristics in the dynamic SSI of a SDOF model
CN105651589A (en) Simulation testing method for testing stress state and response of deep rock mass
Van Laak¹ et al. Earthquake centrifuge modeling using a laminar box
JPWO2008117743A1 (en) Analysis system, analysis method, program, and mechanical apparatus
Massimino et al. Some aspects of DSSI in the dynamic response of fully-coupled soil-structure systems
CN104390858A (en) Simple device of shear rheometer
Pang et al. Strain evolution of saturated clays under cyclic loadings in three-dimensional stress condition
Motamed et al. Behaviour of pile group behind a sheet pile quay wall subjected to liquefaction-induced large ground deformation observed in shaking test in E-defense project
Ueng Shaking table tests for studies of soil liquefaction and soil-pile interaction
López‐Querol et al. Numerical modelling of dynamic consolidation on granular soils
CN103278385B (en) Testing device for rock collapse breakdown strength
CN111537217A (en) Model test system and method for gravity type anchorage stability research under seismic load
Taboada-Urtuzuastegui et al. Centrifuge modeling of seismic behavior of a slope in liquefiable soil
Jeong et al. Time-dependent behavior of pile groups by staged construction of an adjacent embankment on soft clay
CN205907728U (en) Embedded rock pile model test device
CN211014285U (en) Experimental device for be used for simulating to dig and establish cutting
JP2007024728A (en) Ground investigation device
CN113092148A (en) Tunnel excavation model experiment box capable of simulating faults with different inclination angles and using method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees