JP2908719B2 - Organic electrolyte secondary battery - Google Patents

Organic electrolyte secondary battery

Info

Publication number
JP2908719B2
JP2908719B2 JP7084844A JP8484495A JP2908719B2 JP 2908719 B2 JP2908719 B2 JP 2908719B2 JP 7084844 A JP7084844 A JP 7084844A JP 8484495 A JP8484495 A JP 8484495A JP 2908719 B2 JP2908719 B2 JP 2908719B2
Authority
JP
Japan
Prior art keywords
organic electrolyte
negative electrode
secondary battery
battery
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7084844A
Other languages
Japanese (ja)
Other versions
JPH08111238A (en
Inventor
房次 喜多
雅治 東口
幸治 村上
章 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27301473&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2908719(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP7084844A priority Critical patent/JP2908719B2/en
Publication of JPH08111238A publication Critical patent/JPH08111238A/en
Application granted granted Critical
Publication of JP2908719B2 publication Critical patent/JP2908719B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、安全性および貯蔵性
の改良された、電池性能にすぐれる有機電解液二次電池
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic electrolyte secondary battery having improved safety and storability and excellent battery performance.

【0002】[0002]

【従来の技術】有機電解液二次電池は、電解液の溶媒に
有機溶媒を用いた二次電池であつて、この種の二次電池
は、容量が大きく、かつ高電圧、高エネルギ―密度であ
ることから、その需要がますます増える傾向にある。
2. Description of the Related Art An organic electrolyte secondary battery is a secondary battery in which an organic solvent is used as a solvent for the electrolyte. This type of secondary battery has a large capacity, a high voltage and a high energy density. Therefore, the demand tends to increase more and more.

【0003】このような二次電池において、電解液の溶
媒としては、これまで、1,2−ジメトキシエタンやプ
ロピレンカ―ボネ―トなどの有機溶媒が用いられてきた
が、1,2−ジメトキシエタンは危険物第4類に属し、
引火点が低く、引火のおそれが大きいことから、最近で
は、電池の火災に対する安全性の面より、かかる可燃性
溶媒を用いることは、好まれない状況になつてきてい
る。
In such secondary batteries, organic solvents such as 1,2-dimethoxyethane and propylene carbonate have been used as a solvent for the electrolytic solution. Ethane belongs to Dangerous Goods Class 4,
Due to the low flash point and the high risk of ignition, use of such a flammable solvent has recently become unfavorable in terms of battery safety against fire.

【0004】一方、リン酸トリアルキルなどのリン酸ト
リエステルは、不燃性か、または難燃性(引火点が10
0℃以上)のために、有機電解液二次電池用の溶媒とし
て、とくに望ましいものである。
On the other hand, phosphate triesters such as trialkyl phosphate are nonflammable or nonflammable (having a flash point of 10
(0 ° C. or higher)), which is particularly desirable as a solvent for an organic electrolyte secondary battery.

【0005】[0005]

【発明が解決しようとする課題】しかし、リン酸トリエ
ステルを用いた電解液では、二酸化マンガンなどの活性
な正極活物質に対して、リチウムないしその合金を負極
として用いた場合に、負極リチウムと溶媒との反応が起
こつて、内部抵抗が著しく増大し、電池性能が劣化して
くるという貯蔵性の問題があつた。
However, in an electrolyte using a phosphoric acid triester, when lithium or an alloy thereof is used as a negative electrode with respect to an active positive electrode active material such as manganese dioxide, the negative electrode lithium is not used. There is a problem of storability that the reaction with the solvent occurs, the internal resistance is remarkably increased, and the battery performance is deteriorated.

【0006】この発明は、上記従来の問題点を解決し、
安全性および貯蔵性の改良された、電池性能にすぐれる
有機電解液二次電池を提供することを目的としている。
The present invention solves the above-mentioned conventional problems,
An object of the present invention is to provide an organic electrolyte secondary battery having improved safety and storage properties and excellent battery performance.

【0007】[0007]

【課題を解決するための手段】この発明者らは、上記の
目的を達成するため、鋭意検討した結果、有機電解液の
主溶媒にリン酸トリエステルを用いる一方、負極にリチ
ウムまたはその合金に代えて炭素材料を用いることによ
り、安全性および貯蔵性にすぐれた有機電解液二次電池
が得られ、とくに炭素材料からなる負極を特定の表面状
態としたり、電解液中に二酸化炭素を溶解させることに
より、閉路電圧、リテンシヨン(充電容量と放電容量と
の差)、放電容量などの電池性能にすぐれた上記二次電
池が得られることを知り、この発明を完成するに至つ
た。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to achieve the above object, and as a result, while using phosphoric acid triester as the main solvent of the organic electrolyte, lithium or its alloy was used for the negative electrode. By using a carbon material instead, an organic electrolyte secondary battery with excellent safety and storability can be obtained, in particular, a negative electrode made of a carbon material is brought into a specific surface state, or carbon dioxide is dissolved in the electrolyte. As a result, it was found that the above-mentioned secondary battery having excellent battery performance such as a closed circuit voltage, a retention (difference between a charged capacity and a discharged capacity), and a discharged capacity was obtained, and the present invention was completed.

【0008】すなわち、この発明は、正極、負極および
有機電解液を有する有機電解液二次電池において、有機
電解液の主溶媒としてリン酸トリエステルを用い、かつ
負極が炭素材料を構成要素とすることを特徴とする有機
電解液二次電池に係るものであり、とくに、負極表面の
XPS分析の炭素の285eV付近のピ―ク強度(I
285 )と炭素の284eVから289eV付近のピ―ク
強度の合計(Ic)の比I285 /Icが0.5以下であ
る構成、また負極表面のXPS分析のリンの135eV
付近のピ―ク強度(I135 )と炭素の284eVから2
89eV付近のピ―ク強度の合計(Ic)の比I135
Icが0.05以上で、かつこの比が負極内部の上記同
様の比より大きい構成、さらには有機電解液に二酸化炭
素を溶解させてなる構成を、それぞれ好ましき態様とし
ている。
That is, the present invention relates to an organic electrolyte secondary battery having a positive electrode, a negative electrode and an organic electrolyte, wherein a phosphate triester is used as a main solvent of the organic electrolyte and the negative electrode is made of a carbon material. In particular, the present invention relates to an organic electrolyte secondary battery characterized by a peak intensity (I) of about 285 eV of carbon by XPS analysis on the surface of a negative electrode.
285) and peak near 289eV from 284eV carbon - configuration ratio I 285 / Ic of the total click intensity (Ic) is 0.5 or less, also the phosphorus XPS analysis of the anode surface 135eV
From the peak intensity (I 135 ) and 284 eV of carbon,
The ratio of the total peak intensity (Ic) near 89 eV, I 135 /
A preferred embodiment has a configuration in which Ic is 0.05 or more and the ratio is larger than the above-described ratio inside the negative electrode, and further, a configuration in which carbon dioxide is dissolved in an organic electrolyte solution.

【0009】[0009]

【発明の構成・作用】この発明において、負極には、炭
素材料を構成要素として、これに結着剤などを適宜加え
たものを合剤とし、この合剤を銅箔などの集電材料を芯
材として成形体に仕上げたものが用いられる。ここで、
炭素材料としては、リチウムイオンをド―プ、脱ド―プ
できるものであればよく、たとえば、黒鉛、熱分解炭素
類、コ―クス類、ガラス状炭素類、有機高分子化合物の
焼成体、メソカ―ボンマイクロビ―ズ、炭素繊維、活性
炭などを用いることができる。
In the present invention, the negative electrode is composed of a carbon material as a constituent element and a binder to which a binder or the like is appropriately added to form a mixture. The mixture is formed of a current collecting material such as a copper foil. As the core material, a finished product is used. here,
As the carbon material, any material capable of doping and undoping lithium ions may be used, such as graphite, pyrolytic carbons, cokes, glassy carbons, and a fired body of an organic polymer compound, Mesocarbon microbeads, carbon fiber, activated carbon and the like can be used.

【0010】このような炭素材料は、たとえば、重質
油、コ―ルタ―ル、ピツチ系繊維などを加熱処理して炭
化し、微粉砕することによつて得られる。すなわち、上
記の原料を加熱すると、温度の上昇とともに芳香環が形
成されて縮合多環芳香環構造となり、これをさらに70
0℃以上に加熱して、一部が黒鉛類似構造となるまで処
理したのち、粉砕し乾燥して、負極活物質前駆体として
用いる。
[0010] Such a carbon material is obtained by, for example, heat-treating heavy oil, coal tar, pitch fiber or the like, carbonizing it, and pulverizing it. That is, when the above-mentioned raw material is heated, an aromatic ring is formed with an increase in temperature to form a condensed polycyclic aromatic ring structure.
After heating to 0 ° C. or higher to partially treat the graphite-like structure, it is pulverized and dried, and used as a negative electrode active material precursor.

【0011】この負極活物質前駆体は、(002)面の
面間距離d002 が3.3Å以上、好ましくは3.35Å
以上、最も好ましくは3.36Å以上で、上限が3.5
Å以下、好ましくは3.45Å以下、より好ましくは
3.4Å以下であるのがよい。また、C軸方向の結晶子
の大きさLcは、30Å以上、好ましくは80Å以上、
より好ましくは250Å以上で、上限が1,000Å以
下、好ましくは500Å以下であるのがよい。平均粒径
としては、8〜15μm、とくに10〜13μmである
のが好ましく、純度としては99.9%以上であるのが
好ましい。
The negative electrode active material precursor has an interplanar distance d 002 of the (002) plane of 3.3 ° or more, preferably 3.35 °.
Or more, most preferably 3.36 ° or more, and the upper limit is 3.5
Å, preferably 3.45 Å or less, more preferably 3.4 Å or less. The crystallite size Lc in the C-axis direction is 30 ° or more, preferably 80 ° or more,
It is more preferably at least 250 ° and the upper limit is at most 1,000 °, preferably at most 500 °. The average particle size is preferably 8 to 15 μm, particularly preferably 10 to 13 μm, and the purity is preferably 99.9% or more.

【0012】このような負極活物質前駆体の使用によ
り、電解液の主溶媒としてリン酸トリエステルを用いた
有機電解液二次電池の貯蔵性が改良されて、内部抵抗の
経時的な増大が抑えられて、すぐれた電池性能が得られ
るが、この電池性能をさらに改良するため、この負極活
物質前駆体またはこれを用いて前記負極形態にしたもの
に対し、さらに適宜の表面処理を施すのが望ましい。
By using such a negative electrode active material precursor, the storability of an organic electrolyte secondary battery using a phosphoric acid triester as a main solvent of the electrolyte is improved, and the internal resistance is increased with time. It is possible to obtain excellent battery performance by suppressing it, but in order to further improve the battery performance, the negative electrode active material precursor or the negative electrode using the same is further subjected to an appropriate surface treatment. Is desirable.

【0013】表面処理の一例としては、上記の被処理物
をカ―ボン処理液に浸漬し、その中でアルカリ金属イオ
ンをド―プしたり、少量のLi元素と酸素元素やリン元
素などが含まれる条件下で熱処理する方法が挙げられ
る。また、将来的には、炭素材料を合成する雰囲気を調
整することにより、上記の処理を行わなくても所望の表
面状態を得ることが可能になると考えられる。
As an example of the surface treatment, the object to be treated is immersed in a carbon treatment liquid, in which alkali metal ions are doped, and a small amount of Li element, oxygen element, phosphorus element and the like are removed. A method of performing a heat treatment under the included conditions may be mentioned. In the future, by adjusting the atmosphere for synthesizing the carbon material, it is considered that a desired surface state can be obtained without performing the above treatment.

【0014】ここでは、負極活物質前駆体を用いた負極
をカ―ボン処理液中で処理する例について、説明する。
カ―ボン処理液中における電解質の濃度としては、とく
に限定されるものではないが、通常、カ―ボン処理液
は、有機溶媒に電解質として金属塩を0.01〜4モル
/リツトル、とくに0.5〜1.5モル/リツトル程度
溶解させてなるものが好ましく用いられる。また、この
カ―ボン処理液中に二酸化炭素を溶解させてなるものを
用いると、負極表面と電解液との反応性がより抑えられ
た負極を形成できるので、好ましい。
Here, an example in which a negative electrode using a negative electrode active material precursor is treated in a carbon treatment liquid will be described.
Although the concentration of the electrolyte in the carbon treatment liquid is not particularly limited, usually, the carbon treatment liquid contains 0.01 to 4 mol / liter, particularly 0 to 4 mol / liter of a metal salt as an electrolyte in an organic solvent. What dissolves about 0.5 to 1.5 mol / liter is preferably used. Further, it is preferable to use a solution obtained by dissolving carbon dioxide in the carbon treatment liquid, because a negative electrode in which the reactivity between the negative electrode surface and the electrolytic solution is further suppressed can be formed.

【0015】処理液の溶媒には、たとえば、リン酸トリ
エステルと誘電率の高いエステルとの混合溶媒が好まし
く用いられる。リン酸トリエステルとしては、リン酸ト
リメチル、リン酸トリエチル、リン酸トリブチルなどの
リン酸トリアルキルが、また誘電率の高いエステルとし
ては、エチレンカ―ボネ―ト、プロピレンカンボネ―
ト、ブチレンカ―ボネ―ト、γ−ブチロラクトンなど
が、挙げられる。
As a solvent for the treatment liquid, for example, a mixed solvent of a phosphoric acid triester and an ester having a high dielectric constant is preferably used. Triester phosphates include trialkyl phosphates such as trimethyl phosphate, triethyl phosphate, and tributyl phosphate. Esters having a high dielectric constant include ethylene carbonate and propylene carbonate.
Butylene carbonate, γ-butyrolactone, and the like.

【0016】また、処理液の電解質としては、LiCl
4 、LiPF6 、LiBF4 、LiAsF6 、LiS
bF6 、LiCF3 SO3 、LiCF3 CO2 などや、
その他Li224 (SO32 、LiN(CF3
22 、LiC(CF3 SO23 、LiCn 2n+1
SO3 (n>=2)などがある。
The electrolyte of the treatment liquid is LiCl
O 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiS
bF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 and the like,
Other Li 2 C 2 F 4 (SO 3 ) 2 , LiN (CF 3 S
O 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiC n F 2n + 1
SO 3 (n> = 2).

【0017】このような表面処理を施すと、負極活物質
前駆体の表面に存在していた水素結合(C−H)が減少
し、C*−OR、C*(=O)−OR、C*−(OR)
(OR´)、C*=Oなどの官能基(ここで、C*は負
極表面の炭素原子を示し、R,R´はH、炭素数1〜1
0のアルキル基またはアルカリ金属である)が増え、そ
の結果、負極の表面状態として、XPS分析の炭素の2
85eV付近のピ―ク強度(I285 )と炭素の284e
Vから289eV付近のピ―ク強度の合計(Ic)の比
285 /Icが、0.5以下、好ましくは0.1以下と
なり、この場合、負極表面と電解液との反応性がさらに
一層抑制されて、貯蔵性の向上により一段と好ましい結
果が得られ、またより高い閉路電圧が得られるようにな
る。
By performing such a surface treatment, the hydrogen bonds (CH) existing on the surface of the negative electrode active material precursor are reduced, and C * -OR, C * (= O) -OR, C *-(OR)
(OR ′), functional groups such as C * = O (where C * indicates a carbon atom on the surface of the negative electrode, R and R ′ are H, and have 1 to 1 carbon atoms).
0, an alkyl group or an alkali metal), and as a result, the surface state of the negative electrode becomes 2% of carbon in the XPS analysis.
Peak intensity (I 285 ) near 85 eV and 284 e of carbon
The ratio I 285 / Ic of the total peak intensity (Ic) from V to around 289 eV becomes 0.5 or less, preferably 0.1 or less. In this case, the reactivity between the negative electrode surface and the electrolyte further increases. As a result, more favorable results can be obtained due to the improvement in storability, and a higher closed circuit voltage can be obtained.

【0018】また、処理液中にリン酸トリアルキルなど
のリン系物質を含ませておくことにより、負極表面での
リン元素量が多くなり、その結果、負極の表面状態とし
て、XPS分析のリンの135eV付近のピ―ク強度
(I135 )と炭素の284eVから289eV付近のピ
―ク強度の合計(Ic)の比I135 /Icが0.05以
上、好ましくは0.1以上、より好ましくは0.2以上
で、かつこの比が負極内部の上記同様の比より大きくな
り、この場合、貯蔵性の向上に加え、リテンシヨン(充
電容量と放電容量との差)が小さくなるという効果が得
られる。
Further, by including a phosphorus-based substance such as trialkyl phosphate in the treatment solution, the amount of phosphorus element on the surface of the negative electrode is increased, and as a result, the surface state of the negative electrode is reduced by the XPS analysis. The ratio I 135 / Ic of the peak intensity (I 135 ) around 135 eV to the total (Ic) of the peak intensity around 284 eV to 289 eV of carbon is 0.05 or more, preferably 0.1 or more, more preferably Is 0.2 or more, and this ratio is larger than the above-mentioned ratio inside the negative electrode. In this case, in addition to the improvement in storage property, the effect of reducing the retention (difference between charge capacity and discharge capacity) is obtained. Can be

【0019】なお、負極表面の比I135 /Icが、負極
内部の上記同様の比、つまり2KeV,7〜8μAのア
ルゴンイオンスパツタで10分間エツチングしたのちの
負極内部の比I135 /Icより大きくなる度合いは、負
極表面の比I135 /Icを1としたとき、負極内部の比
135 /Icが0.95以下、好ましくは0.9以下、
より好ましくは0.7以下となる程度である。
The ratio I 135 / Ic of the negative electrode surface is the same as the above ratio inside the negative electrode, that is, the ratio I 135 / Ic inside the negative electrode after etching with an argon ion sputter of 2 KeV and 7 to 8 μA for 10 minutes. When the ratio I 135 / Ic of the negative electrode surface is set to 1, the ratio I 135 / Ic inside the negative electrode is 0.95 or less, preferably 0.9 or less.
It is more preferably about 0.7 or less.

【0020】この発明において、正極には、二酸化マン
ガン、五酸化バナジウム、クロム酸化物、LiNiO2
などのリチウムニツケル酸化物、LiCoO2 などのリ
チウムコバルト酸化物、LiMn2 4 などのリチウム
マンガン酸化物などの金属酸化物、または二硫化チタ
ン、二硫化モリブデンなどの金属硫化物、あるいはこれ
らの正極活物質に導電助剤やポリテトラフルオロエチレ
ンなどの結着剤などを適宜添加した合剤を、ステンレス
鋼製網などの集電材料を芯材として、成形体に仕上げた
ものが用いられる。
In the present invention, manganese dioxide, vanadium pentoxide, chromium oxide, LiNiO 2
Such as lithium nickel oxide, lithium cobalt oxide such as LiCoO 2 , lithium manganese oxide such as LiMn 2 O 4 , or metal sulfide such as titanium disulfide and molybdenum disulfide, or a positive electrode thereof A mixture obtained by appropriately adding a conductive additive, a binder such as polytetrafluoroethylene, or the like to the active material, and finishing the formed body with a current collector material such as a stainless steel net as a core material is used.

【0021】この発明において、有機電解液は、有機溶
媒に電解質を溶解させることによつて調製される。有機
溶媒としては、一般式:(RO)3 P=O(ただし、R
は有機基で、3個の有機基は同一であつても異なつてい
てもよい)で表されるリン酸トリエステル、好ましくは
Rが炭素数1〜6のアルキル基であるリン酸トリアルキ
ル、たとえば、リン酸トリメチル、リン酸トリエチル、
リン酸トリプロピル、リン酸トリブチルなどが、主溶媒
として用いられる。ここで、主溶媒とは、有機電解液の
溶媒の全部がリン酸トリエステルであつてもよいし、ま
た有機電解液の溶媒の大部分がリン酸トリエステルであ
つて、他の溶媒を一部併用してもよいという意味であ
る。
In the present invention, the organic electrolyte is prepared by dissolving the electrolyte in an organic solvent. As the organic solvent, the general formula: (RO) 3 P = O (where R
Is an organic group, and the three organic groups may be the same or different), preferably a trialkyl phosphate wherein R is an alkyl group having 1 to 6 carbon atoms For example, trimethyl phosphate, triethyl phosphate,
Tripropyl phosphate, tributyl phosphate and the like are used as the main solvent. Here, the main solvent may be such that all of the solvent of the organic electrolyte is phosphate triester, or that most of the solvent of the organic electrolyte is phosphate triester, and the other solvent is one. It means that some parts may be used together.

【0022】他の有機溶媒を併用する場合、リン酸トリ
エステルは有機電解液の全溶媒中、40体積%以上、好
ましくは60体積%以上、より好ましくは90体積%以
上であるのがよい。リン酸トリエステルの占める割合が
多いと、この溶媒の有する不燃性ないしは難燃性である
という特性が十分に発揮され、火災に対する安全性が向
上する。一方、放電性能などを考えると、リン酸トリエ
ステルに基づく火災に対する安全性が確保できる範囲内
で、他の溶媒を併用するのが好ましい。
When another organic solvent is used in combination, the content of the phosphoric acid triester should be at least 40% by volume, preferably at least 60% by volume, more preferably at least 90% by volume, based on the total solvent of the organic electrolytic solution. When the proportion of the phosphoric acid triester is large, the non-flammable or flame-retardant property of the solvent is sufficiently exhibited, and the fire safety is improved. On the other hand, considering the discharge performance and the like, it is preferable to use another solvent in combination as long as safety against fire based on phosphoric acid triester can be ensured.

【0023】他の溶媒としては、誘電率30以上、とく
に50以上のエステルが好ましい。この溶媒を用いる
と、電解質の溶解性の高い難燃性電解液が得られ、また
負極の炭素材料表面と電解液との反応活性点がより低減
される。すなわち、リン酸トリエステルと上記誘電率の
高いエステルを併用すると、電解質の溶解性が向上し、
伝導度も高くなり、容量も向上し、とくに負極にC軸方
向の結晶子の大きさLcが30Å以上、好ましくは80
Å以上、とりわけ250Å以上であるような炭素材料を
用いたときには、容量が著しく向上するため、望まし
い。
As the other solvent, an ester having a dielectric constant of 30 or more, particularly preferably 50 or more, is preferable. When this solvent is used, a flame-retardant electrolytic solution having high solubility of the electrolyte can be obtained, and the active site of the reaction between the carbon material surface of the negative electrode and the electrolytic solution can be further reduced. That is, when the phosphoric acid triester and the ester having a high dielectric constant are used in combination, the solubility of the electrolyte is improved,
The conductivity is also increased, and the capacity is also improved. In particular, the size Lc of the crystallite in the C-axis direction in the negative electrode is 30 ° or more, preferably 80 °
It is desirable to use a carbon material having a thickness of Å or more, especially 250 ° or more, since the capacity is remarkably improved.

【0024】このような誘電率の高いエステルとして
は、炭素数2〜10、好ましくは2〜6のアルキレンカ
―ボネ―トが用いられる。たとえば、エチレンカ―ボネ
―ト、プロピレンカ―ボネ―ト、ブチレンカ―ボネ―
ト、γ―ブチロラクトン、エチレングリコ―ルサルフア
イトなどが挙げられる。これらの中でも、とくに環状構
造のものが好ましく、とりわけ環状のカ―ボネ―トが好
ましい。最も好ましいエステルは、エチレンカ―ボネ―
トであり、その誘電率は95である。
As such an ester having a high dielectric constant, an alkylene carbonate having 2 to 10 carbon atoms, preferably 2 to 6 carbon atoms, is used. For example, ethylene carbonate, propylene carbonate, butylene carbonate
G, butyrolactone, ethylene glycol sulfite and the like. Among them, those having a cyclic structure are particularly preferable, and a cyclic carbonate is particularly preferable. The most preferred ester is ethylene carbonate
And its dielectric constant is 95.

【0025】これら誘電率の高いエステルは、放電性能
の改善のために用いられるが、後述のように、電解液中
に二酸化炭素を溶解させる場合は、この溶解によつて十
分な高容量化が達成されるから、上記誘電率の高いエス
テルは、安全性を考慮した、できるだけ少ない量に抑え
ておくのが望ましい。すなわち、上記誘電率の高いエス
テルは、可燃性であるので、リン酸トリエステルとの併
用にあたり、安全性の面から少ない方が好ましく、一般
には、上記誘電率の高いエステルは電解液の全溶媒中1
0体積%以下が好ましく、より好ましくは5体積%以
下、さらに好ましくは3体積%以下である。これらの誘
電率の高いエステルによる容量の向上は、上記エステル
が電解液の全溶媒中1体積%以上になると現れるように
なり、2体積%に達すると著しい向上がみられるように
なる。
These esters having a high dielectric constant are used for improving the discharge performance. However, when carbon dioxide is dissolved in the electrolytic solution, a sufficiently high capacity can be obtained by the dissolution as described later. To achieve this, it is desirable to keep the amount of the above-mentioned ester having a high dielectric constant as small as possible in consideration of safety. That is, since the ester having a high dielectric constant is flammable, it is preferable that the ester having a high dielectric constant be used in combination with a phosphoric acid triester from the viewpoint of safety. Middle one
It is preferably 0% by volume or less, more preferably 5% by volume or less, and still more preferably 3% by volume or less. The capacity improvement by these esters having a high dielectric constant appears when the amount of the ester is 1% by volume or more in the total solvent of the electrolytic solution, and when the amount of the ester reaches 2% by volume, a remarkable improvement is observed.

【0026】このように、有機電解液中に二酸化炭素を
溶解させる場合は、上記の誘電率の高いエステルとリン
酸トリエステルとの併用にあたつて、誘電率の高いエス
テルは、電解液の全溶媒中1〜10体積%、とくに2〜
5体積%、とりわけ2〜3体積%であることが好まし
い。また、リン酸トリエステルと誘電率の高いエステル
の沸点の差は、150℃以下であることが好ましく、よ
り好ましくは100℃以下、さらに好ましくは50℃以
下、最も好ましくは10℃以下である。これは、可燃性
のエステルと難燃性のリン酸トリエステルとが共沸した
方が、エステルが引火しにくくなるからである。
As described above, when carbon dioxide is dissolved in an organic electrolytic solution, when the ester having a high dielectric constant and the phosphoric acid triester are used in combination, the ester having a high dielectric constant is dissolved in the electrolytic solution. 1 to 10% by volume in all solvents, especially 2 to
Preferably it is 5% by volume, especially 2-3% by volume. The difference in boiling point between the phosphoric acid triester and the ester having a high dielectric constant is preferably 150 ° C. or less, more preferably 100 ° C. or less, further preferably 50 ° C. or less, and most preferably 10 ° C. or less. This is because the flammable ester and the flame-retardant phosphoric acid triester azeotropically make the ester less likely to ignite.

【0027】このような誘電率の高いエステルのほか
に、1,2−ジメトキシエタン、1,3−ジオキソラ
ン、テトラヒドロフラン、2−メチル−テトラヒドロフ
ラン、ジエチルエ―テルなども併用できる。また、アミ
ンイミド系有機溶媒や、含イオウまたは含フツ素系有機
溶媒などを併用してもよい。ただし、これらの溶媒も、
電解液の全溶媒中10体積%以下であることが好まし
い。
In addition to such an ester having a high dielectric constant, 1,2-dimethoxyethane, 1,3-dioxolan, tetrahydrofuran, 2-methyl-tetrahydrofuran, diethyl ether and the like can be used in combination. Further, an amine imide-based organic solvent, a sulfur-containing or fluorine-containing organic solvent, or the like may be used in combination. However, these solvents also
It is preferably 10% by volume or less in the total solvent of the electrolytic solution.

【0028】電解液の電解質としては、たとえば、Li
ClO4 、LiPF6 、LiBF4、LiAsF6 、L
iSbF6 、LiCF3 SO3 、LiC49 SO3
LiCF3 CO2 、Li224 (SO32 、Li
N(CF3 SO22 、LiC(CF3 SO23 、L
iCn 2n+1SO3 (n≧2)などが、単独でまたは2
種以上混合して用いられる。中でも、LiPF6 やLi
49 SO3 は充放電特性が良好なため、好ましく用
いられる。これら電解質の電解液中の濃度は、とくに限
定されるものではないが、通常0.1〜2モル/リツト
ル、好ましくは0.4〜lモル/リツトル程度であるの
がよい。
As the electrolyte of the electrolytic solution, for example, Li
ClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 , L
iSbF 6 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 ,
LiCF 3 CO 2 , Li 2 C 2 F 4 (SO 3 ) 2 , Li
N (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , L
iC n F 2n + 1 SO 3 (n ≧ 2) alone or 2
Used as a mixture of more than one species. Among them, LiPF 6 and Li
C 4 F 9 SO 3 is preferably used because of its good charge / discharge characteristics. The concentration of these electrolytes in the electrolyte is not particularly limited, but is usually about 0.1 to 2 mol / liter, preferably about 0.4 to 1 mol / liter.

【0029】この発明において、このような有機電解液
中に二酸化炭素を溶解させると、高容量化が達成される
ので、とくに好ましい。これは、負極に炭素材料を用い
たときでも、これと有機電解液の溶媒との反応がなお起
こり、その反応生成物によつて、充放電反応が阻害され
たり、容量が低下する傾向がみられる。しかし、有機電
解液に二酸化炭素を溶解させると、炭素材料の表面に有
機・無機の炭酸塩やリン酸塩などの薄い複合膜が生成
し、この複合膜により炭素材料と電解液の溶媒との反応
が抑制され、しかもその複合膜が充放電反応に悪影響を
及ぼさず、また容量の低下を引き起こさないため、正極
材料、負極材料の有する能力を最大限に発揮させること
ができ、電池の容量を向上させるものと考えられる。
In the present invention, it is particularly preferable to dissolve carbon dioxide in such an organic electrolytic solution because a high capacity can be achieved. This is because even when a carbon material is used for the negative electrode, a reaction between the carbon material and the solvent of the organic electrolyte still occurs, and the reaction product tends to hinder the charge / discharge reaction or decrease the capacity. Can be However, when carbon dioxide is dissolved in the organic electrolyte, a thin composite film of organic or inorganic carbonate or phosphate is formed on the surface of the carbon material. The reaction is suppressed, and the composite film does not adversely affect the charge / discharge reaction and does not cause a decrease in capacity, so that the ability of the positive electrode material and the negative electrode material can be maximized and the capacity of the battery can be reduced. It is thought to improve.

【0030】また、二酸化炭素の溶解は、正極活物質と
してLiNiO2 、LiCoO2 、LiMn2 4 など
の充電時の閉路電圧がLi基準で4V以上を示すリチウ
ム複合酸化物を用いたときに、有効である。これらの正
極活物質は高電圧であり、通常の条件では有機電解液が
酸化され放電性能が低下するが、有機電解液中に耐酸化
性のすぐれた二酸化炭素を溶解させると、二酸化炭素が
正極表面での酸化による電解液の分解を抑制する。とく
にLiNiO2 は他の金属酸化物より電解液との反応性
面から使用できなかつたが、このようなLiNiO2
場合でも有機電解液との反応が抑制されて、電池の高容
量化が達成される。
The dissolution of carbon dioxide is determined by using a lithium composite oxide, such as LiNiO 2 , LiCoO 2 , or LiMn 2 O 4 , having a closed circuit voltage of 4 V or more based on Li as a positive electrode active material. It is valid. These positive electrode active materials have a high voltage, and under normal conditions, the organic electrolyte is oxidized and the discharge performance deteriorates.However, when carbon dioxide having excellent oxidation resistance is dissolved in the organic electrolyte, the carbon dioxide becomes a positive electrode. Suppress decomposition of the electrolyte due to oxidation on the surface. In particular, LiNiO 2 cannot be used from the viewpoint of reactivity with the electrolyte than other metal oxides. However, even in the case of such LiNiO 2 , the reaction with the organic electrolyte is suppressed, and a high capacity battery is achieved. Is done.

【0031】有機電解液に溶解させる二酸化炭素の量と
しては、電池内の有機電解液に対して、0.03モル/
リツトル(有機電解液1リツトルに対して二酸化炭素が
0.03モル)以上が好ましく、より好ましくは0.1
モル/リツトル以上、さらに好ましくは0.3モル/リ
ツトル以上である。二酸化炭素の量が多いほど、炭素材
料の反応活性をより安定して引き出し、また正極活物質
の有機電解液への反応性を抑制するが、多くなりすぎる
と、有機電解液中から蒸発して、電池の内圧を高めて電
池の破裂を引き起こす原因になる。したがつて、電池ケ
―スや封口部材の耐圧性を考慮すると、2モル/リツト
ル以下であるのが好ましい。ここで、電池内に入れられ
て有機電解液中に溶解していない二酸化炭素も、有機電
解液中で二酸化炭素が消費された場合や、低温にした場
合には、有機電解液中に溶解していくので、実質的に溶
解しているものとみなされる。
The amount of carbon dioxide dissolved in the organic electrolyte is 0.03 mol / mol with respect to the organic electrolyte in the battery.
The amount is preferably not less than 0.1 liter (carbon dioxide is 0.03 mol per liter of organic electrolyte), more preferably 0.1 liter.
It is at least mol / litre, more preferably at least 0.3 mol / litre. The larger the amount of carbon dioxide, the more stably the reaction activity of the carbon material is extracted, and the more the positive electrode active material is suppressed from reacting with the organic electrolyte. In such a case, the internal pressure of the battery may be increased to cause the battery to burst. Therefore, in consideration of the pressure resistance of the battery case and the sealing member, the amount is preferably 2 mol / liter or less. Here, carbon dioxide that has been put into the battery and has not been dissolved in the organic electrolyte also dissolves in the organic electrolyte when the carbon dioxide is consumed in the organic electrolyte or when the temperature is lowered. So that it is considered substantially dissolved.

【0032】二酸化炭素を有機電解液に溶解させる方法
としては、たとえば、有機電解液に二酸化炭素をバブリ
ングする方法や、液化二酸化炭素を溶解させる方法など
を採用できる。バブリングするときの二酸化炭素の圧力
は高い方が好ましい。また、有機電解液と二酸化炭素を
密閉加圧容器に入れ、圧力をかけて二酸化炭素を有機電
解液に溶解させる方法や、電池ケ―スにドライアイスを
入れたのち、封口する方法などを採用できるが、必ずし
もこれらによらなくともよい。
As a method of dissolving carbon dioxide in the organic electrolyte, for example, a method of bubbling carbon dioxide into the organic electrolyte, a method of dissolving liquefied carbon dioxide, and the like can be adopted. The pressure of carbon dioxide during bubbling is preferably higher. In addition, the method of putting the organic electrolyte solution and carbon dioxide in a closed pressurized container and applying pressure to dissolve the carbon dioxide in the organic electrolyte solution, or the method of putting dry ice in the battery case and sealing it, etc. are adopted. Yes, but not necessarily.

【0033】二酸化炭素溶解時の二酸化炭素分圧として
は、0.5Kgf/cm2 以上が好ましく、1.0Kgf/cm
2 以上がより好ましい。また、有機電解液の注入も二酸
化炭素を含む乾燥雰囲気で行うのが好ましい。さらに、
電解液注入時の有機電解液やその注入前の電池の温度
は、10℃以下であるのが好ましく、とくに−20℃以
下であるのが好ましい。ドライアイスや液化二酸化炭素
を使用すると、これらを満足しやすいので、好ましい。
また、ドライアイスを電池内に投入することも好まし
い。この場合、有機電解液中には入れないようにし、セ
パレ―タの上などに置くのが好ましい。投入後は、1分
以内に封口を行うのが好ましく、より好ましくは20秒
以内、さらに好ましくは10秒以内である。
The partial pressure of carbon dioxide during dissolution of carbon dioxide is preferably 0.5 kgf / cm 2 or more, and 1.0 kgf / cm 2 or more.
Two or more are more preferable. The injection of the organic electrolyte is also preferably performed in a dry atmosphere containing carbon dioxide. further,
The temperature of the organic electrolytic solution at the time of injecting the electrolyte and the temperature of the battery before the injection are preferably 10 ° C. or lower, particularly preferably −20 ° C. or lower. It is preferable to use dry ice or liquefied carbon dioxide because these are easily satisfied.
It is also preferable to put dry ice into the battery. In this case, it is preferable not to put it in the organic electrolytic solution and to put it on a separator or the like. After charging, it is preferable to seal within 1 minute, more preferably within 20 seconds, further preferably within 10 seconds.

【0034】二酸化炭素を溶解後の有機電解液を電池ケ
―ス内に注入する方法としては、たとえば、電池ケ―ス
および有機電解液を−20℃以下に数時間冷却したの
ち、その冷却した有機電解液を冷却した電池ケ―スに注
入する方法が採用できる。また、遠心分離機に電池ケ―
スをセツトし、有機電解液をすばやく注入する方法や、
電池ケ―スを真空にしたのち有機電解液を注入する方法
などを採用できるが、必ずしもこれらによらなくてもよ
い。
As a method of injecting the organic electrolytic solution after dissolving the carbon dioxide into the battery case, for example, the battery case and the organic electrolytic solution are cooled to -20 ° C. or lower for several hours and then cooled. A method of injecting the organic electrolyte into a cooled battery case can be adopted. Also, a battery case is attached to the centrifuge.
How to set the solution and quickly inject the organic electrolyte,
A method in which the battery case is evacuated and then an organic electrolytic solution is injected can be adopted, but this is not necessarily required.

【0035】この発明の有機電解液二次電池は、電池ケ
―ス内に、上記した正極と炭素材料を構成要素とする負
極とをセパレ―タを介して対向配置させるとともに、リ
ン酸トリエステルを主溶媒とした有機電解液を注入し、
好ましくはこれに二酸化炭素を溶解させてなるものであ
つて、その電池形態としては、筒形、ボタン形、コイン
形などの各種の形態が含まれるものである。
In the organic electrolyte secondary battery according to the present invention, the above-described positive electrode and the negative electrode comprising a carbon material as components are arranged in a battery case so as to face each other via a separator, and a phosphate triester is provided. Inject the organic electrolyte with the main solvent as
Preferably, carbon dioxide is dissolved in this, and the battery form includes various forms such as a tubular form, a button form, a coin form and the like.

【0036】[0036]

【実施例】つぎに、この発明の実施例を記載して、より
具体的に説明する。ただし、この発明は、以下の実施例
にのみ限定されるものではない。
Next, an embodiment of the present invention will be described in more detail. However, the present invention is not limited only to the following embodiments.

【0037】実施例1 LiC49 SO3 (以下、NFBという)をリン酸ト
リメチルに溶解させたのち、プロピレンカ―ボネ―ト
(以下、PCという)を加えて混合することにより、P
Cとリン酸トリメチルとの体積比1:2の混合溶媒にN
FBを0.6モル/リツトル溶解させた有機電解液を調
製した。
Example 1 LiC 4 F 9 SO 3 (hereinafter, referred to as NFB) was dissolved in trimethyl phosphate, and propylene carbonate (hereinafter, referred to as PC) was added thereto.
A mixed solvent of C and trimethyl phosphate in a volume ratio of 1: 2
An organic electrolyte in which FB was dissolved at 0.6 mol / liter was prepared.

【0038】また、リチウムコバルト酸化物(LiCo
2 )91重量部に黒鉛6重量部とポリフツ化ビニリデ
ン3重量部とを加えて混合し、溶剤で分散させてスラリ
―にした。この正極合剤スラリ―を、厚さ20μmの正
極集電体のアルミニウム箔の両面に均一に塗布して乾燥
し、その後ロ―ラ―プレス機により圧縮成形し、リ―ド
体の溶接を行い、帯状の正極を作製した。
Further, lithium cobalt oxide (LiCo
6 parts by weight of graphite and 3 parts by weight of polyvinylidene fluoride were added to 91 parts by weight of O 2 ), mixed and dispersed with a solvent to form a slurry. This positive electrode material mixture slurry is uniformly applied to both sides of the aluminum foil of the positive electrode current collector having a thickness of 20 μm, dried and then compression molded by a roller press machine, and the lead body is welded. Thus, a belt-shaped positive electrode was manufactured.

【0039】別に、(002)面の面間距離d002
3.43Åであるコ―クス90重量部と、結着剤として
のポリフツ化ビニリデン3重量部とを混合して負極合剤
とし、これを溶剤で分散させてスラリ―にした。この負
極合剤スラリ―を、負極集電体としての厚さが20μm
の帯状の銅箔の両面に均一に塗布して乾燥し、その後、
ロ―ラ―プレス機により圧縮成形したのち、リ―ド体を
溶接し、帯状の負極前駆体を作製した。
Separately, 90 parts by weight of coke having an inter-plane distance d 002 of (002) plane of 3.43 ° and 3 parts by weight of polyvinylidene fluoride as a binder were mixed to form a negative electrode mixture. This was dispersed in a solvent to form a slurry. This negative electrode mixture slurry has a thickness of 20 μm as a negative electrode current collector.
Uniformly applied on both sides of the strip of copper foil and dried, then
After compression molding with a roller press, the lead body was welded to produce a strip-shaped negative electrode precursor.

【0040】つぎに、負極前駆体の処理液を調製した。
すなわち、まず、NFBをリン酸トリメチルに溶解させ
たのち、エチレンカ―ボネ―ト(以下、ECという)を
加えて混合することにより、ECとリン酸トリメチルと
の体積比1:1の混合溶媒にNFBを0.6モル/リツ
トル溶解させてなる処理液を調製した。ついで、負極前
駆体の両側に上記の処理液を含浸させたポリプロピレン
製のセパレ―タを介してリ―ド体を圧着したLiフオイ
ルで挟み込み、ポリプロピレン製のホルダ―に入れ、負
極前駆体を正極、Li極を負極として、300mAで0
Vまで電極の炭素材料単位重量あたり250mAh/g
放電後、300mAで1.5Vまで充電させた。その
後、分解し、負極前駆体をジメチルカ―ボネ―トで洗浄
し、乾燥して、負極を作製した。
Next, a processing solution for the negative electrode precursor was prepared.
That is, first, NFB is dissolved in trimethyl phosphate, and then ethylene carbonate (hereinafter, referred to as EC) is added and mixed to obtain a mixed solvent of EC and trimethyl phosphate at a volume ratio of 1: 1. A treatment solution was prepared by dissolving 0.6 mol / liter of NFB. Next, a lead body was sandwiched between pressurized Li oils via a polypropylene separator impregnated with the above-mentioned treatment solution on both sides of the negative electrode precursor, and placed in a polypropylene holder. , Li electrode as a negative electrode and 0 at 300 mA
250mAh / g per unit weight of carbon material of electrode up to V
After discharging, the battery was charged to 1.5 V at 300 mA. Thereafter, the resultant was decomposed, the negative electrode precursor was washed with dimethyl carbonate, and dried to prepare a negative electrode.

【0041】つぎに、上記の帯状正極を、厚さが25μ
mの微孔性ポリプロピレンフイルムからなるセパレ―タ
を介して、上記シ―ト状負極と重ね、渦巻状に巻回して
渦巻状電極体としたのち、外径15mmの有底円筒状の電
池ケ―ス内に充てんし、正極および負極のリ―ド体の溶
接を行つたのち、前記の有機電解液を電池ケ―ス内に注
入した。ついで、電池ケ―スの開口部を封口し、電池の
予備充電を行い、筒形の有機電解液二次電池を作製し
た。
Next, the above-mentioned strip-shaped positive electrode was put in a thickness of 25 μm.
The sheet-shaped negative electrode is overlapped with a sheet-shaped negative electrode through a separator made of a microporous polypropylene film having a diameter of 15 m, and spirally wound to form a spiral electrode body. After filling the lead and welding the lead bodies of the positive electrode and the negative electrode, the above-mentioned organic electrolytic solution was injected into the battery case. Then, the opening of the battery case was sealed, and the battery was precharged to produce a cylindrical organic electrolyte secondary battery.

【0042】図1は、この発明の電池の模式図であり、
1は正極、2は負極である。なお、この図では、繁雑化
をさけるため、正極1や負極2の作製にあたつて使用し
た集電体などは図示していない。3はセパレ―タ、4は
有機電解液である。
FIG. 1 is a schematic view of a battery according to the present invention.
1 is a positive electrode, 2 is a negative electrode. In this figure, for the sake of simplicity, current collectors and the like used for producing the positive electrode 1 and the negative electrode 2 are not shown. 3 is a separator and 4 is an organic electrolyte.

【0043】5はステンレス鋼製の電池ケ―スであり、
負極端子を兼ねている。電池ケ―ス5の底部にはポリテ
トラフルオロエチレンシ―トからなる絶縁体6が配置さ
れ、また内周部にもポリテトラフルオロエチレンシ―ト
からなる絶縁体7が配置されている。正極1、負極2お
よびセパレ―タ3からなる渦巻状電極体や、有機電解液
4などは、この電池ケ―ス5内に収納されている。
5 is a stainless steel battery case,
Also serves as the negative terminal. An insulator 6 made of polytetrafluoroethylene sheet is arranged at the bottom of the battery case 5, and an insulator 7 made of polytetrafluoroethylene sheet is also arranged at the inner periphery. A spiral electrode body composed of a positive electrode 1, a negative electrode 2, and a separator 3, an organic electrolytic solution 4, and the like are housed in the battery case 5.

【0044】8はステンレス鋼製の封口板で、中央部に
ガス通気孔8aが設けられている。9はポリプロピレン
製の環状パツキング、10はチタン製の可撓性薄板であ
る。11は環状のポリプロピレン製の熱変形部材で、温
度によつて変形して、可撓性薄板10の破壊圧力を変え
る作用をする。
Reference numeral 8 denotes a stainless steel sealing plate having a gas vent 8a at the center. 9 is an annular packing made of polypropylene, and 10 is a flexible thin plate made of titanium. Reference numeral 11 denotes an annular polypropylene heat-deformable member which is deformed by temperature and has an effect of changing the breaking pressure of the flexible thin plate 10.

【0045】12はニツケルメツキを施した圧延鋼製の
端子板で、切刃12aとガス排出孔12bとが設けられ
ており、電池内部にガスが発生して内部圧力が上昇し、
この上昇により可撓性薄板10が変形したときに、上記
切刃12aによつて可撓性薄板10を破壊し、電池内部
のガスを上記ガス排出孔12bから電池外部に排出し
て、電池の破壊を防止できるように設計されている。
Reference numeral 12 denotes a nickel-plated rolled steel terminal plate provided with a cutting blade 12a and a gas discharge hole 12b, and gas is generated inside the battery to increase the internal pressure.
When the flexible thin plate 10 is deformed due to this rise, the flexible thin plate 10 is broken by the cutting blade 12a, and gas inside the battery is discharged to the outside of the battery from the gas discharge hole 12b, and the battery is removed. Designed to prevent destruction.

【0046】13は絶縁パツキング、14はリ―ド体
で、正極1と封口板8とを電気的に接続しており、端子
板12は封口板8との接触により正極端子として作用す
る。また、15は負極2と電池ケ―ス5とを電気的に接
続するリ―ド体である。
Reference numeral 13 denotes an insulating packing, 14 denotes a lead body, which electrically connects the positive electrode 1 and the sealing plate 8, and the terminal plate 12 functions as a positive terminal by contact with the sealing plate 8. Reference numeral 15 denotes a lead body for electrically connecting the negative electrode 2 and the battery case 5.

【0047】実施例2 負極前駆体を処理する際に、放電電気量を電極の炭素材
料単位重量あたり210mAh/gとした以外は、実施
例1と同様にして、筒形の有機電解液二次電池を作製し
た。
Example 2 The same procedure as in Example 1 was carried out except that the amount of discharge electricity was set to 210 mAh / g per unit weight of the carbon material of the electrode when treating the negative electrode precursor. A battery was manufactured.

【0048】実施例3 負極前駆体を処理する際に、放電電気量を電極の炭素材
料単位重量あたり50mAh/gとした以外は、実施例
1と同様にして、筒形の有機電解液二次電池を作製し
た。
Example 3 The same procedure as in Example 1 was carried out except that the amount of electric discharge was 50 mAh / g per unit weight of the carbon material of the electrode when the negative electrode precursor was treated. A battery was manufactured.

【0049】実施例4 負極前駆体を処理せずにそのまま負極として用いた以外
は、実施例1と同様にして、筒形の有機電解液二次電池
を作製した。
Example 4 A cylindrical organic electrolyte secondary battery was produced in the same manner as in Example 1 except that the negative electrode precursor was used as it was without treatment.

【0050】比較例1 負極として、金属リチウム板を用いた以外は、実施例1
と同様にして、筒形の有機電解液二次電池を作製した。
Comparative Example 1 Example 1 was repeated except that a lithium metal plate was used as the negative electrode.
In the same manner as in the above, a cylindrical organic electrolyte secondary battery was produced.

【0051】上記の実施例1〜4および比較例1の筒形
の有機電解液二次電池について、下記の要領で、貯蔵前
後の内部抵抗の変化率を調べた。また、貯蔵試験後の電
池の閉路電圧(0.3Aの定電流を10ms通電したと
きの最小の放電電圧)を調べた。これらの結果は、後記
の表1に示されるとおりであつた。
With respect to the cylindrical organic electrolyte secondary batteries of Examples 1 to 4 and Comparative Example 1, the rate of change in internal resistance before and after storage was examined in the following manner. Further, the closed circuit voltage of the battery after the storage test (the minimum discharge voltage when a constant current of 0.3 A was applied for 10 ms) was examined. These results were as shown in Table 1 below.

【0052】<内部抵抗の変化率>電池を、0.1Cで
4.1Vまで充電したのち、80℃で10日間貯蔵し、
貯蔵前後の1KHzのインピ―ダンスの変化を調べ、内
部抵抗の変化率を、下記の式により算出して、電池性能
の劣化を調べた。
<Rate of change in internal resistance> The battery was charged at 0.1 C to 4.1 V, and then stored at 80 ° C for 10 days.
The change in the impedance at 1 KHz before and after storage was examined, and the rate of change in the internal resistance was calculated by the following formula to examine the deterioration of the battery performance.

【0053】[0053]

【0054】表1 Table 1

【0055】上記の表1から明らかなように、比較例1
の有機電解液二次電池は、貯蔵後の内部抵抗が初期値に
比べ約11倍もの高い値となるが、実施例1〜4の各有
機電解液二次電池は、貯蔵後の内部抵抗の上昇が2〜4
割程度と少なく、しかも高い閉路電圧をも備えている。
また、実施例1〜4の各有機電解液二次電池について、
4Aを最大電池として−4Vまでの過放電を行つたが、
発火などを引き起こす電池は全くなく、安全性にすぐれ
ていた。
As is clear from Table 1 above, Comparative Example 1
Of the organic electrolyte secondary battery, the internal resistance after storage is about 11 times higher than the initial value, but each of the organic electrolyte secondary batteries of Examples 1 to 4, the internal resistance of the storage 2-4 rise
It is relatively low and has a high closing voltage.
Moreover, about each organic electrolyte secondary battery of Examples 1-4,
Overdischarge was performed up to -4V with 4A as the maximum battery.
There were no batteries that could cause ignition, etc., and the safety was excellent.

【0056】実施例5 NFBをリン酸トリメチルに溶解させたのち、ECを加
えて混合し、0.5モル/リツトルのNFB/EC:リ
ン酸トリメチル(体積比1:2)よりなる溶液、つま
り、ECとリン酸トリメチルの体積比1:2の混合溶媒
にNFBを0.5モル/リツトル溶解させてなる溶液を
調製し、これにさらに二酸化炭素を10分間バブリング
して、カ―ボン処理液とした。この処理液中の二酸化炭
素の溶解量は0.1モル/リツトルであつた。
Example 5 After dissolving NFB in trimethyl phosphate, EC was added and mixed, and a solution composed of 0.5 mol / liter of NFB / EC: trimethyl phosphate (volume ratio 1: 2), that is, A solution was prepared by dissolving 0.5 mol / liter of NFB in a mixed solvent of EC and trimethyl phosphate at a volume ratio of 1: 2, followed by bubbling carbon dioxide for 10 minutes. And The dissolved amount of carbon dioxide in this treatment liquid was 0.1 mol / liter.

【0057】つぎに、負極活物質前駆体として、(00
2)面の面間距離d002 が3.43Å、C軸方向の結晶
子の大きさLcが32Å、平均粒径が12μm、純度が
99%、Si含有率が10ppmの炭素90重量部を用
意し、ポリフツ化ビニリデン10重量部を結着剤とし
て、両者を混合して負極合剤としたのち、これをN−メ
チルピロリドンで分散してスラリ―状にした。
Next, as the negative electrode active material precursor, (00
2) 90 parts by weight of carbon having a plane-to-plane distance d 002 of 3.43 °, a crystallite size Lc in the C-axis direction of 32 °, an average particle size of 12 μm, a purity of 99%, and a Si content of 10 ppm are provided. Then, 10 parts by weight of polyvinylidene fluoride was used as a binder, the two were mixed to form a negative electrode mixture, and this was dispersed in N-methylpyrrolidone to form a slurry.

【0058】このスラリ―状負極合剤を、厚さが18μ
mの帯状の銅箔からなる負極集電体の両面に均一に塗布
して乾燥し、その後、ロ―ラ―プレス機により圧縮成形
し、リ―ド体を溶接して、帯状の電極体を作製した。こ
の電極体を、前記のカ―ボン処理液中でLiを対極とし
て48時間短絡させてリチウムをド―プし、つぎに、
1.5V(対Li/Li+ )の電圧を3日間かけて脱ド
―プし、真空乾燥して、帯状の負極を得た。
This slurry-shaped negative electrode mixture was coated with a thickness of 18 μm.
m is uniformly coated on both sides of a negative electrode current collector made of a copper foil in a strip shape, dried, and then compression molded by a roller press machine, and the lead body is welded to form a strip electrode body. Produced. This electrode body was short-circuited for 48 hours with Li as a counter electrode in the above-mentioned carbon treatment liquid to dope lithium, and then
A voltage of 1.5 V (vs. Li / Li + ) was removed for 3 days, followed by vacuum drying to obtain a strip-shaped negative electrode.

【0059】この負極について、0.5モル/リツトル
のNFB/EC:リン酸トリメチル(体積比1:2)よ
りなる溶液、つまり、ECとリン酸トリメチルの体積比
1:2の混合溶媒にNFBを0.5モル/リツトル溶解
させてなる溶液に、二酸化炭素を10分間バブリングし
たものを電解液(二酸化炭素の溶解量0.1モル/リツ
トル)として用い、モデルセルで評価したところ、負極
の1サイクル目のリテンシヨンは1.8%と少なかつ
た。
For this negative electrode, a solution consisting of 0.5 mol / liter of NFB / EC: trimethyl phosphate (volume ratio 1: 2), that is, a mixed solvent of EC and trimethyl phosphate in a volume ratio of 1: 2 was mixed with NFB. Was dissolved in a solution prepared by dissolving 0.5 mol / liter in a solution prepared by bubbling carbon dioxide for 10 minutes as an electrolyte (0.1 mol / liter of dissolved carbon dioxide). Retention in the first cycle was as low as 1.8%.

【0060】別に、LiCoO2 91重量部に黒鉛6重
量部とポリフツ化ビニリデン6重量部とを加えて混合
し、N−メチルピロリドンで溶解してスラリ―にした。
この正極合剤スラリ―を、厚さが20μmのアルミニウ
ム箔からなる正極集電体の両面に均一に塗布して乾燥
し、その後、ロ―ラ―プレス機により圧縮形成し、リ―
ド体の溶接を行い、帯状の正極を作製した。この正極
に、厚さが25μmの微孔性ポリプロピレンフイルムか
らなるセパレ―タを介して、前記の負極を重ね、渦巻状
に巻回して、渦巻状電極体とした。
Separately, 91 parts by weight of LiCoO 2, 6 parts by weight of graphite and 6 parts by weight of polyvinylidene fluoride were added, mixed and dissolved with N-methylpyrrolidone to form a slurry.
This positive electrode material mixture slurry is uniformly applied to both sides of a positive electrode current collector made of aluminum foil having a thickness of 20 μm, dried, and then compressed and formed by a roller press.
The strip body was welded to produce a belt-shaped positive electrode. The negative electrode was stacked on the positive electrode via a separator made of a microporous polypropylene film having a thickness of 25 μm and spirally wound to obtain a spiral electrode body.

【0061】この渦巻状電極体を、外径15mm、高さ4
0mmの有底円筒状の電池ケ―ス内に充填し、正極および
負極のリ―ド体の溶接を行つたのち、0.5モル/リツ
トルのNFB/EC:リン酸トリメチル(体積比1:
2)よりなる溶液に二酸化炭素を10分間バブリングし
たものを電解液(二酸化炭素の溶解量0.1モル/リツ
トル)として、この電解液を電池ケ―ス内に注入した。
なお、注入時は、電池ケ―スおよび電解液をドライアイ
スを用いて、−20〜−40℃に冷却して、まわりを二
酸化炭素乾燥雰囲気にしながら電解液を注入した。しか
るのち、常法にしたがつて、電池ケ―スの開口部を封口
し、図1に示す構造の筒形の有機電解液二次電池を作製
した。
The spiral electrode body is provided with an outer diameter of 15 mm and a height of 4 mm.
After filling a 0 mm bottomed cylindrical battery case and welding the positive and negative electrode leads, 0.5 mol / liter of NFB / EC: trimethyl phosphate (volume ratio 1:
A solution obtained by bubbling carbon dioxide into the solution obtained in 2) for 10 minutes was used as an electrolytic solution (0.1 mol / liter of dissolved carbon dioxide), and this electrolytic solution was injected into the battery case.
At the time of injection, the battery case and the electrolyte were cooled to −20 to −40 ° C. using dry ice, and the electrolyte was injected while the surroundings were in a carbon dioxide dry atmosphere. Thereafter, the opening of the battery case was sealed according to a conventional method to produce a cylindrical organic electrolyte secondary battery having the structure shown in FIG.

【0062】実施例6 負極活物質前駆体を用いて作製した帯状の電極体をカ―
ボン処理液中でLiを対極として短絡させる時間を、3
時間に変更した以外は、実施例5と同様に処理して、帯
状の負極を得た。また、この帯状の負極を用いて、実施
例5と同様の操作にて、筒形の有機電解液二次電池を作
製した。
Example 6 A strip-shaped electrode body produced by using a negative electrode active material precursor was carved.
The time for short-circuiting with Li as the counter electrode in
A strip-shaped negative electrode was obtained in the same manner as in Example 5, except that the time was changed. Further, using this band-shaped negative electrode, a cylindrical organic electrolyte secondary battery was manufactured in the same operation as in Example 5.

【0063】なお、上記の帯状の負極について、実施例
5と同様にして、0.5モル/リツトルのNFB/E
C:リン酸トリメチル(体積比1:2)よりなる溶液に
二酸化炭素を10分間バブリングした電解液(二酸化炭
素の溶解量0.1モル/リツトル)を用いて、モデルセ
ルで評価したところ、負極の1サイクル目のリテンシヨ
ンは3%であつた。
In the same manner as in Example 5, 0.5 mol / liter of NFB / E
C: Evaluated with a model cell using an electrolytic solution (0.1 mol / liter of dissolved carbon dioxide) in which a solution of trimethyl phosphate (volume ratio 1: 2) was bubbled with carbon dioxide for 10 minutes. In the first cycle, the retention was 3%.

【0064】実施例7 負極活物質前駆体を用いて作製した帯状の電極体を、カ
―ボン処理液中でLiを対極として短絡させるにあた
り、カ―ボン処理液中に二酸化炭素をバブリングしなか
つた以外は、実施例2と同様に処理して、帯状の負極を
得た。また、この帯状の負極を用いて、電解液中に二酸
化炭素をバブリングしなかつた以外は、実施例5と同様
の操作にて、筒形の有機電解液二次電池を作製した。
Example 7 In short-circuiting a strip-shaped electrode body prepared using a negative electrode active material precursor with Li as a counter electrode in a carbon treatment liquid, carbon dioxide was not bubbled into the carbon treatment liquid. Except for the above, processing was performed in the same manner as in Example 2 to obtain a strip-shaped negative electrode. Further, a cylindrical organic electrolyte secondary battery was produced using the strip-shaped negative electrode by the same operation as in Example 5 except that carbon dioxide was not bubbled into the electrolyte.

【0065】なお、上記の帯状の負極について、実施例
5と同様にして、0.5モル/リツトルのNFB/E
C:リン酸トリメチル(体積比1:2)よりなる溶液に
二酸化炭素を10分間バブリングした電解液(二酸化炭
素の溶解量0.1モル/リツトル)を用いて、モデルセ
ルで評価したところ、負極の1サイクル目のリテンシヨ
ンは4%であつた。
In the same manner as in Example 5, 0.5 mol / liter of NFB / E
C: Evaluated with a model cell using an electrolytic solution (0.1 mol / liter of dissolved carbon dioxide) in which a solution of trimethyl phosphate (volume ratio 1: 2) was bubbled with carbon dioxide for 10 minutes. Of the first cycle was 4%.

【0066】実施例8 カ―ボン処理液中での処理を施した負極に代えて、未処
理の負極を用いた以外は、実施例5と同様にして、筒形
の有機電解液二次電池を作製した。なお、未処理の負極
につき、実施例5と同様にして、0.5モル/リツトル
のNFB/EC:リン酸トリメチル(体積比1:2)よ
りなる溶液に二酸化炭素を10分間バブリングした電解
液(二酸化炭素の溶解量0.1モル/リツトル)を用い
て、モデルセルで評価したところ、負極の1サイクル目
のリテンシヨンは21%、3サイクル目のリテンシヨン
は4%であつた。
Example 8 A cylindrical organic electrolyte secondary battery was produced in the same manner as in Example 5 except that an untreated negative electrode was used in place of the negative electrode treated in the carbon treating solution. Was prepared. For the untreated negative electrode, in the same manner as in Example 5, an electrolytic solution obtained by bubbling carbon dioxide into a solution containing 0.5 mol / liter of NFB / EC: trimethyl phosphate (volume ratio 1: 2) for 10 minutes. When the evaluation was performed using a model cell using (amount of dissolved carbon dioxide of 0.1 mol / liter), the retention of the first cycle of the negative electrode was 21%, and the retention of the third cycle was 4%.

【0067】上記の実施例5〜8の各有機電解液二次電
池について、0.1Cで電圧2.7〜4.2Vの範囲で
充放電させ、1サイクル目のリテンシヨンを調べた。結
果は、後記の表2に示されるとおりであつた。なお、リ
テンシヨンは、下記の式; リテンシヨン(%)=〔(充電容量−放電容量)/(充
電容量)〕×100 にしたがつて、求めたものである。
The organic electrolyte secondary batteries of Examples 5 to 8 were charged and discharged at 0.1 C in a voltage range of 2.7 to 4.2 V, and the first cycle retention was examined. The results were as shown in Table 2 below. The retention is determined according to the following formula: retention (%) = [(charge capacity−discharge capacity) / (charge capacity)] × 100.

【0068】なおまた、表2には、参考のため、各例に
おける負極炭素材料のI285 /Icの比、すなわち、負
極表面のXPS分析を行い、光電子スペクトルの炭素の
285eV付近のピ―ク強度と284eVから289e
V付近のピ―ク強度の合計の比I 285 /Icを調べ、そ
の結果を併記した。また、各例における負極炭素材料の
135 /Icの比、すなわち、負極表面のXPS分析を
行い、光電子スペクトルのリンの135eVのピ―ク強
度と炭素の284eVから289eV付近のピ―ク強度
の合計の比I135 /Icを調べ、その結果も併記した。
さらに、電極内部(2KeV,7〜8μAのアルゴンイ
オンスパツタで10分間エツチング後)での上記同様の
比I135 /Icも調べ、その結果を併記した。
In Table 2, for reference, the ratio of I 285 / Ic of the negative electrode carbon material in each example , that is, the negative
XPS analysis of the extreme surface was performed, and the photoelectron spectrum
Peak intensity around 285 eV and 284 eV to 289 eV
The ratio I 285 / Ic of the sum of the peak intensities around V was examined, and the results are also shown. In each example, the ratio of I 135 / Ic of the negative electrode carbon material, that is, XPS analysis of the negative electrode surface was performed, and the peak intensity of 135 eV of phosphorus and the peak intensity of 284 eV to 289 eV of carbon in the photoelectron spectrum were observed. The total ratio I 135 / Ic was examined, and the results are also shown.
Further, the same ratio I 135 / Ic inside the electrode (after etching for 10 minutes with an argon ion sputter at 2 KeV and 7 to 8 μA) was also examined, and the results are also shown.

【0069】[0069]

【表2】 [Table 2]

【0070】上記の表2の結果から明らかなように、負
極炭素材料表面のI135 /Icの比を高く設定した実施
例5〜7の有機電解液二次電池は、上記比を低く設定し
た実施例8の電池に比べて、リテンシヨンが小さく、二
次電池としてよりすぐれた性能を備えているものである
ことがわかる。
As is clear from the results in Table 2 above, in the organic electrolyte secondary batteries of Examples 5 to 7 in which the ratio of I 135 / Ic on the surface of the negative electrode carbon material was set high, the ratio was set low. It can be seen that the retention of the battery is smaller than that of the battery of Example 8, and the battery has more excellent performance as a secondary battery.

【0071】実施例9 リン酸トリメチルとECとを体積比98:2で混合し、
この混合溶媒にNFBを1.0モル/リツトル溶解させ
て、有機電解液を調製した。これに二酸化炭素をバブリ
ングさせ、電解液中に二酸化炭素を分圧1Kgf/cm2
溶解させた。
Example 9 Trimethyl phosphate and EC were mixed at a volume ratio of 98: 2,
NFB was dissolved in 1.0 mol / liter in this mixed solvent to prepare an organic electrolyte. Carbon dioxide was bubbled into the solution, and carbon dioxide was dissolved in the electrolyte at a partial pressure of 1 kgf / cm 2 .

【0072】これとは別に、LiNiO2 91重量部に
導電助剤としてリン状黒鉛6重量部を混合し、この混合
物と、ポリフツ化ビニリデン3重量部とをN−メチルピ
ロリドンに溶解させた溶液とを混合してスラリ―にし
た。この正極合剤スラリ―を、70メツシユの網を通過
させて大きなものを取り除いたのち、厚さが20μmの
アルミニウム箔からなる正極集電体の両面に均一に塗布
して乾燥した。その後、ロ―ラ―プレス機により圧縮形
成したのち、切断し、リ―ド体の溶接を行つて、帯状の
正極を作製した。
Separately, 91 parts by weight of LiNiO 2 was mixed with 6 parts by weight of phosphorous graphite as a conductive assistant, and a mixture of this mixture and 3 parts by weight of polyvinylidene fluoride dissolved in N-methylpyrrolidone was used. Was mixed into a slurry. The positive electrode mixture slurry was passed through a mesh of 70 mesh to remove large particles, and then uniformly applied to both surfaces of a positive electrode current collector made of an aluminum foil having a thickness of 20 μm, followed by drying. Then, after compression-forming with a roller press machine, it cut | disconnected and welded the lead body, and produced the strip | belt-shaped positive electrode.

【0073】また、これとは別に、炭素材料(ただし、
002 =3.37Å、Lc=290Å、平均粒径=10
μm、純度=99%)90重量部と、ポリフツ化ビニリ
デン10重量部とを、N−メチルピロリドンに溶解させ
た溶液とを混合してスラリ―にした。この負極合剤スラ
リ―を、70メツシユの網を通過させて大きなものを取
り除いたのち、厚さが18μmの帯状の銅箔からなる負
極集電体の両面に均一に塗布して乾燥した。その後、ロ
―ラ―プレス機により圧縮形成したのち、切断し、リ―
ド体の溶接を行つて、帯状の負極を作製した。
Further, separately from this, a carbon material (however,
d 002 = 3.37 °, Lc = 290 °, average particle size = 10
(μm, purity = 99%) 90 parts by weight and a solution prepared by dissolving 10 parts by weight of polyvinylidene fluoride in N-methylpyrrolidone were mixed to form a slurry. The negative electrode mixture slurry was passed through a mesh of 70 mesh to remove large pieces, and then uniformly applied to both surfaces of a negative electrode current collector made of a 18 μm-thick strip-shaped copper foil, followed by drying. Then, after compression forming with a roller press machine, cut,
The strip was welded to produce a strip-shaped negative electrode.

【0074】つぎに、前記の方法で作製した帯状の正極
を、厚さが25μmの微孔性ポリプロピレンフイルムを
介して、上記の方法で作製した帯状の負極に重ね、渦巻
状に巻回して、渦巻状電極体としたのち、外径15mmの
有底円筒状の電池ケ―ス内に充填し、正極および負極の
リ―ド体の溶接を行つた。
Next, the strip-shaped positive electrode produced by the above-described method is superimposed on the strip-shaped negative electrode produced by the above-described method via a microporous polypropylene film having a thickness of 25 μm, and spirally wound. After forming the spiral electrode body, it was filled into a cylindrical battery case with a bottom having an outer diameter of 15 mm, and the positive and negative electrode leads were welded.

【0075】この渦巻状電極体を充填した電池ケ―スと
前記の二酸化炭素を溶解させた有機電解液を、ドライア
イスで−20〜−40℃に冷却し、二酸化炭素雰囲気を
保ちながら、有機電解液を電池ケ―ス内に注入し、有機
電解液がセパレ―タなどに十分に浸透したのち、約0.
02gのドライアイスを有機電解液に濡れないようにし
て投入し、5秒後に封口して、図1に示す構造の筒型の
有機電解液二次電池を作製した。同様に作製した電池中
の二酸化炭素量を測定したところ、電解液単位体積あた
り約0.35モル/リツトルの二酸化炭素が検出され
た。
The battery case filled with the spiral electrode body and the organic electrolytic solution in which the above-mentioned carbon dioxide was dissolved were cooled to -20 to -40 ° C. with dry ice. The electrolyte is injected into the battery case, and after the organic electrolyte has sufficiently penetrated into the separator or the like, about 0.1%.
02 g of dry ice was put in the organic electrolyte so as not to get wet, and after 5 seconds, the container was sealed to produce a cylindrical organic electrolyte secondary battery having the structure shown in FIG. When the amount of carbon dioxide in the battery produced in the same manner was measured, about 0.35 mol / liter of carbon dioxide per unit volume of the electrolyte was detected.

【0076】実施例10 リン酸トリメチルにNFBを1.0モル/リツトル溶解
させて、有機電解液を調製し、これに二酸化炭素をバブ
リングさせて、電解液中に二酸化炭素を溶解させた。こ
の有機電解液を用いた以外は、実施例9と同様にして、
筒形の有機電解液二次電池を作製した。電池中の二酸化
炭素量は実施例9と同じであつた。
Example 10 NFB was dissolved at 1.0 mol / liter in trimethyl phosphate to prepare an organic electrolytic solution, and carbon dioxide was bubbled into the organic electrolytic solution to dissolve carbon dioxide in the electrolytic solution. Except that this organic electrolytic solution was used, the same as in Example 9,
A cylindrical organic electrolyte secondary battery was produced. The amount of carbon dioxide in the battery was the same as in Example 9.

【0077】実施例11 負極の炭素材料として、d002 =3.42Å、Lc=3
2Å、平均粒径=12μm、純度=99%以上の特性を
持つた炭素材料を用いた以外は、実施例9と同様にし
て、筒形の有機電解液二次電池を作製した。電池中の二
酸化炭素量は実施例9と同じであつた。
Example 11 As the carbon material for the negative electrode, d 002 = 3.42 ° and Lc = 3
A cylindrical organic electrolyte secondary battery was produced in the same manner as in Example 9, except that a carbon material having characteristics of 2Å, an average particle size of 12 μm, and a purity of 99% or more was used. The amount of carbon dioxide in the battery was the same as in Example 9.

【0078】実施例12 有機電解液への二酸化炭素の溶解量を、0.1モル/リ
ツトルに変更した以外は、実施例9と同様にして、筒形
の有機電解液二次電池を作製した。なお、この電池で
は、電解液注入時に電池にドライアイスを投入しなかつ
た。
Example 12 A cylindrical organic electrolyte secondary battery was manufactured in the same manner as in Example 9 except that the amount of carbon dioxide dissolved in the organic electrolyte was changed to 0.1 mol / liter. . In this battery, dry ice was not supplied to the battery when the electrolyte was injected.

【0079】実施例13 リン酸トリエチルとECとを体積比98:2で混合し、
この混合溶媒にNFBを1.0モル/リツトル溶解させ
て、有機電解液を調製した。これに二酸化炭素をバブリ
ングさせて、電解液中に二酸化炭素を溶解させた。この
有機電解液を用いた以外は、実施例9と同様にして、筒
形の有機電解液二次電池を作製した。電池中の二酸化炭
素量は実施例9と同じであつた。
Example 13 Triethyl phosphate and EC were mixed at a volume ratio of 98: 2,
NFB was dissolved in 1.0 mol / liter in this mixed solvent to prepare an organic electrolyte. This was bubbled with carbon dioxide to dissolve carbon dioxide in the electrolytic solution. A cylindrical organic electrolyte secondary battery was produced in the same manner as in Example 9 except that this organic electrolyte was used. The amount of carbon dioxide in the battery was the same as in Example 9.

【0080】上記の実施例9〜13の各有機電解液二次
電池について、35mAで電圧2.7〜4.1Vの範囲
で充放電させ、1サイクル目の放電容量を調べた。その
結果は、下記の表3に示されるとおりであつた。
Each of the organic electrolyte secondary batteries of Examples 9 to 13 was charged and discharged at a voltage of 2.7 to 4.1 V at 35 mA, and the discharge capacity at the first cycle was examined. The results were as shown in Table 3 below.

【0081】[0081]

【表3】 [Table 3]

【0082】上記の表3の結果から明らかなように、有
機電解液中に二酸化炭素を溶解させた実施例9〜13の
各有機電解液二次電池は、高い放電容量が得られてお
り、二酸化炭素の溶解により高容量化が達成されるもの
であることがわかる。
As is clear from the results in Table 3 above, each of the organic electrolyte secondary batteries of Examples 9 to 13 in which carbon dioxide was dissolved in the organic electrolyte solution had a high discharge capacity. It can be seen that high capacity can be achieved by dissolving carbon dioxide.

【0083】つぎに、上記の実施例9〜13の各有機電
解液二次電池の火災に対する安定性を調べるため、有機
電解液としてリン酸トリアルキル以外の通常の有機溶媒
を用いたつぎの比較例2の有機電解液二次電池と対比し
て、下記の要領にて安全性試験を行つた。結果は、後記
の表4に示されるとおりであつた。
Next, in order to examine the stability of each of the organic electrolyte secondary batteries of Examples 9 to 13 against fire, the following comparison was conducted using a normal organic solvent other than trialkyl phosphate as the organic electrolyte. In comparison with the organic electrolyte secondary battery of Example 2, a safety test was performed in the following manner. The results were as shown in Table 4 below.

【0084】比較例2 1,2−ジメトキシエタンとECとの体積比1:1で混
合し、この混合溶媒にNFBを1.0モル/リツトル溶
解させて、有機電解液を調製した。この有機電解液を用
い、これに二酸化炭素を溶解させることなく、そのまま
電池組立に供した以外は、実施例9と同様にして、筒形
の有機電解液二次電池を作製した。
Comparative Example 2 1,2-Dimethoxyethane and EC were mixed at a volume ratio of 1: 1 and NFB was dissolved at 1.0 mol / liter in this mixed solvent to prepare an organic electrolytic solution. A cylindrical organic electrolyte secondary battery was produced in the same manner as in Example 9 except that the organic electrolyte was used and the battery was directly assembled without dissolving carbon dioxide therein.

【0085】<安全性試験>電池が高温に加熱されて、
安全弁が作動した状態(すなわち、図1に示す電池にお
いて、電解液中からの溶媒の蒸発などにより、電池内部
にガスが発生し、電池内圧が上昇して、可撓性薄板10
が端子板12側に膨脹し、切刃12aに接触して、可撓
性薄板10が破壊され、電池内部のガスがガス排出孔1
2bから電池外部に排出される状態)になつたことを想
定し、あらかじめ可撓性薄板10を破壊しておき、その
状態で電池を100℃まで加熱し、電池のガス排出孔1
2bに火を近付けて、引火するか否かを調べた。
<Safety Test> When the battery was heated to a high temperature,
When the safety valve is operated (that is, in the battery shown in FIG. 1, gas is generated inside the battery due to evaporation of the solvent from the electrolytic solution, etc., and the internal pressure of the battery is increased.
Expands toward the terminal plate 12 and comes into contact with the cutting blade 12a, thereby breaking the flexible thin plate 10 and discharging gas inside the battery into the gas discharge hole 1.
2b), the flexible thin plate 10 is broken in advance, and the battery is heated to 100 ° C. in this state, and the gas exhaust hole 1 of the battery is discharged.
A fire was brought close to 2b, and it was examined whether or not it would ignite.

【0086】[0086]

【表4】 [Table 4]

【0087】上記の表4の結果から明らかなように、有
機電解液の溶媒として通常の有機溶媒を用いた比較例2
の電池は、約40℃に加熱した時点で引火し燃え出した
が、リン酸トリアルキルを主溶媒として用いた実施例9
〜13の各電池は、100℃まで加熱しても引火せず、
火災に対して高い安全性を有していた。とくに、実施例
1〜4の電池の電解液の引火点は、200℃以上であつ
た。
As is clear from the results in Table 4 above, Comparative Example 2 using a normal organic solvent as the solvent for the organic electrolyte solution.
The battery of Example 9 ignited and burned out when heated to about 40 ° C., but Example 9 using a trialkyl phosphate as a main solvent
Each battery of ~ 13 does not ignite even when heated to 100 ° C,
High safety against fire. In particular, the flash point of the electrolyte solution of the batteries of Examples 1 to 4 was 200 ° C. or higher.

【0088】[0088]

【発明の効果】この発明では、リン酸トリエステルを有
機電解液の主溶媒として用いる一方、負極に炭素材料を
用い、またその際に、負極炭素材料を特定の表面状態と
し、さらに有機電解液中に二酸化炭素を溶解させたこと
により、安全性および貯蔵性にすぐれ、また閉路電圧、
リテンシヨン(充電容量と放電容量との差)、放電容量
などの電池性能にすぐれた有機電解液二次電池を提供で
きる。
According to the present invention, a phosphoric acid triester is used as a main solvent of an organic electrolytic solution, while a carbon material is used for a negative electrode. Dissolved carbon dioxide in the inside, it is excellent in safety and storability, closed circuit voltage,
An organic electrolyte secondary battery having excellent battery performance such as retention (difference between charge capacity and discharge capacity) and discharge capacity can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の有機電解液二次電池の構成例を示す
縦断面図である。
FIG. 1 is a longitudinal sectional view showing a configuration example of an organic electrolyte secondary battery of the present invention.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレ―タ 4 有機電解液 5 電池ケ―ス DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Separator 4 Organic electrolyte 5 Battery case

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川上 章 大阪府茨木市丑寅一丁目1番88号 日立 マクセル株式会社内 (58)調査した分野(Int.Cl.6,DB名) H01M 10/40 H01M 4/02 H01M 4/58 ────────────────────────────────────────────────── ─── of the front page continued (72) inventor Akira Kawakami Ibaraki, Osaka Ushitora chome No. 1 No. 88 Hitachi Maxell, Ltd. in the (58) investigated the field (Int.Cl. 6, DB name) H01M 10/40 H01M 4/02 H01M 4/58

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 正極、負極および有機電解液を有する有
機電解液二次電池において、有機電解液の主溶媒として
リン酸トリエステルを用い、かつ負極が炭素材料を構成
要素とすることを特徴とする有機電解液二次電池。
1. An organic electrolyte secondary battery having a positive electrode, a negative electrode, and an organic electrolyte, wherein a phosphate triester is used as a main solvent of the organic electrolyte, and the negative electrode is made of a carbon material. Organic electrolyte secondary battery.
【請求項2】 リン酸トリエステルがリン酸トリアルキ
ルである請求項1に記載の有機電解液二次電池。
2. The organic electrolyte secondary battery according to claim 1, wherein the phosphate triester is a trialkyl phosphate.
【請求項3】 負極表面のXPS分析の炭素の285e
V付近のピ―ク強度(I285 )と炭素の284eVから
289eV付近のピ―ク強度の合計(Ic)の比I285
/Icが0.5以下である請求項1に記載の有機電解液
二次電池。
3. 285e of carbon by XPS analysis of the negative electrode surface
The ratio I 285 of the peak intensity (I 285 ) around V and the sum (Ic) of the peak intensity around 284 eV to 289 eV of carbon .
The organic electrolyte secondary battery according to claim 1, wherein / Ic is 0.5 or less .
【請求項4】 負極表面のXPS分析のリンの135e
V付近のピ―ク強度(I135 )と炭素の284eVから
289eV付近のピ―ク強度の合計(Ic)の比I135
/Icが0.05以上で、かつこの比が負極内部の上記
同様の比より大きい請求項1に記載の有機電解液二次電
池。
4. 135e of phosphorus by XPS analysis of the negative electrode surface
The ratio I 135 of the peak intensity (I 135 ) around V and the sum (Ic) of the peak intensity around 284 eV to 289 eV of carbon.
2. The organic electrolyte secondary battery according to claim 1, wherein / Ic is 0.05 or more, and the ratio is larger than the above ratio inside the negative electrode.
【請求項5】 有機電解液の溶媒としてリン酸トリエス
テルとともに誘電率30以上のエステルを用いてなる請
求項1に記載の有機電解液二次電池。
5. The organic electrolyte secondary battery according to claim 1, wherein an ester having a dielectric constant of 30 or more is used together with a phosphoric acid triester as a solvent of the organic electrolyte.
【請求項6】 有機電解液に二酸化炭素を溶解させてな
る請求項1〜5のいずれかに記載の有機電解液二次電
池。
6. The organic electrolyte secondary battery according to claim 1, wherein carbon dioxide is dissolved in the organic electrolyte.
【請求項7】 二酸化炭素の溶解量が0.03モル/リ
ツトル以上である請求項6に記載の有機電解液二次電
池。
7. The organic electrolyte secondary battery according to claim 6, wherein the dissolved amount of carbon dioxide is 0.03 mol / liter or more.
【請求項8】 有機電解液の溶媒が誘電率30以上のエ
ステルを1〜10体積%含有してなる請求項6に記載の
有機電解液二次電池。
8. The organic electrolyte secondary battery according to claim 6, wherein the solvent of the organic electrolyte contains 1 to 10% by volume of an ester having a dielectric constant of 30 or more.
JP7084844A 1994-03-19 1995-03-15 Organic electrolyte secondary battery Expired - Fee Related JP2908719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7084844A JP2908719B2 (en) 1994-03-19 1995-03-15 Organic electrolyte secondary battery

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP7432094 1994-03-19
JP21421994 1994-08-15
JP6-214219 1994-08-15
JP6-74320 1994-08-15
JP7084844A JP2908719B2 (en) 1994-03-19 1995-03-15 Organic electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH08111238A JPH08111238A (en) 1996-04-30
JP2908719B2 true JP2908719B2 (en) 1999-06-21

Family

ID=27301473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7084844A Expired - Fee Related JP2908719B2 (en) 1994-03-19 1995-03-15 Organic electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2908719B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011099580A1 (en) 2010-02-10 2011-08-18 Necエナジーデバイス株式会社 Nonaqueous electrolyte solution, and lithium ion secondary battery using same
US9196926B2 (en) 2010-12-27 2015-11-24 Nec Energy Devices, Ltd. Gel electrolyte for lithium ion secondary battery, and lithium ion secondary battery

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3425493B2 (en) * 1994-07-28 2003-07-14 日立マクセル株式会社 Non-aqueous secondary battery and method of manufacturing the same
US6566015B1 (en) 1998-10-09 2003-05-20 Denso Corporation Non-aqueous electrolytic salt and non-aqueous electrolytic secondary battery in which it is used
KR100431100B1 (en) 1999-06-04 2004-05-12 마쯔시다덴기산교 가부시키가이샤 Non-aqueous liquid electrolyte secondary cell and method for manufacturing the same
JP3422769B2 (en) 2000-11-01 2003-06-30 松下電器産業株式会社 Electrolyte for non-aqueous battery and secondary battery using the same
JP4610213B2 (en) * 2003-06-19 2011-01-12 三洋電機株式会社 Lithium secondary battery and manufacturing method thereof
JP5127888B2 (en) * 2003-06-19 2013-01-23 三洋電機株式会社 Lithium secondary battery and manufacturing method thereof
KR101351671B1 (en) * 2008-09-11 2014-01-14 닛본 덴끼 가부시끼가이샤 Secondary battery
JP6024457B2 (en) * 2010-09-02 2016-11-16 日本電気株式会社 Secondary battery and electrolyte for secondary battery used therefor
WO2012118179A1 (en) 2011-03-03 2012-09-07 Necエナジーデバイス株式会社 Lithium ion battery
WO2013129346A1 (en) * 2012-03-02 2013-09-06 日本電気株式会社 Secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011099580A1 (en) 2010-02-10 2011-08-18 Necエナジーデバイス株式会社 Nonaqueous electrolyte solution, and lithium ion secondary battery using same
US9312073B2 (en) 2010-02-10 2016-04-12 Nec Energy Devices, Ltd. Nonaqueous electrolyte solution, and lithium ion secondary battery having the same
US9847180B2 (en) 2010-02-10 2017-12-19 Nec Energy Devices, Ltd. Nonaqueous electrolyte solution, and lithium ion secondary battery having the same
US9196926B2 (en) 2010-12-27 2015-11-24 Nec Energy Devices, Ltd. Gel electrolyte for lithium ion secondary battery, and lithium ion secondary battery

Also Published As

Publication number Publication date
JPH08111238A (en) 1996-04-30

Similar Documents

Publication Publication Date Title
JP3425493B2 (en) Non-aqueous secondary battery and method of manufacturing the same
JP4608735B2 (en) Non-aqueous electrolyte secondary battery charging method
US5561005A (en) Secondary battery having non-aqueous electrolyte
US5691084A (en) Organic electrolytic solution secondary cell
EP2224532A1 (en) Flame retardant electrolyte for rechargeable lithium battery and rechargeable lithium battery including the same
KR20110056150A (en) Flame resistant electrolyte for rechargeable lithium battery and rechargeable lithium battery including the same
EP1063720B1 (en) Nonaqueous electrolyte battery
JP2908719B2 (en) Organic electrolyte secondary battery
US20120202110A1 (en) Secondary battery cell and a battery pack
JP3639376B2 (en) Organic electrolyte secondary battery
CN115312731A (en) Graphite-based negative electrode active material, preparation method and application thereof, and secondary battery
EP2259375B1 (en) Nonaqueous electrolytic solution and lithium secondary battery
JP2005093414A (en) Lithium cell
JP4424895B2 (en) Lithium secondary battery
CN108511680A (en) Positive plate, preparation method thereof and energy storage device
JPH11273727A (en) Nonaqueous electrolyte secondary battery
JPH04329268A (en) Nonaqueous electrolyte secondary battery
JP4439070B2 (en) Non-aqueous secondary battery and charging method thereof
JP3527550B2 (en) Non-aqueous secondary battery
JP3522358B2 (en) Non-aqueous secondary battery
JP4706088B2 (en) Non-aqueous electrolyte secondary battery
JP4240422B2 (en) Organic electrolyte secondary battery
JPH11273731A (en) Nonaqueous electrolyte secondary battery
JP3424851B2 (en) Non-aqueous secondary battery and method of manufacturing the same
JPH09320633A (en) Nonaqueous secondary battery

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990302

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080402

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 13

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 15

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 15

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees