JP2907759B2 - Optical head device - Google Patents

Optical head device

Info

Publication number
JP2907759B2
JP2907759B2 JP7179814A JP17981495A JP2907759B2 JP 2907759 B2 JP2907759 B2 JP 2907759B2 JP 7179814 A JP7179814 A JP 7179814A JP 17981495 A JP17981495 A JP 17981495A JP 2907759 B2 JP2907759 B2 JP 2907759B2
Authority
JP
Japan
Prior art keywords
light
flat plate
reproducing apparatus
information recording
optical information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7179814A
Other languages
Japanese (ja)
Other versions
JPH08102080A (en
Inventor
哲雄 細美
泰生 西原
正利 矢島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7179814A priority Critical patent/JP2907759B2/en
Publication of JPH08102080A publication Critical patent/JPH08102080A/en
Application granted granted Critical
Publication of JP2907759B2 publication Critical patent/JP2907759B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Head (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、光ディスクの再生や記
録又は消去を行う光学ヘッド装置の光源を出射する光量
を正確に測定して出射光量を制御する方式に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a system for controlling the amount of emitted light by accurately measuring the amount of light emitted from a light source of an optical head device for reproducing, recording, or erasing an optical disk.

【0002】[0002]

【従来の技術】従来光ディスク用ヘッドに用いられる出
射光量をモニターする方法として、ビームスプリッタを
用いる方法が一般的に使用されていた。図4に従来用い
られた出射光量モニターを行う方法を示す。半導体レー
ザ101を出射する光ビーム102は、コリメートレン
ズ103で略平行光にされる。平行光の一部はビームス
プリッタ104で分岐されて光量モニター用のデテクタ
ー105に入射する。光量モニター用のデテクター10
5の出力は、レーザ制御回路113を介して前記半導体
レーザの出力が必要な値に保たれるように制御される。
ビームスプリッタ104を透過する光ビームは反射ミラ
ー108で反射され、対物レンズ106を透過、情報担
体109上に集光される。
2. Description of the Related Art Conventionally, a method using a beam splitter has been generally used as a method for monitoring the amount of emitted light used in an optical disk head. FIG. 4 shows a conventional method of monitoring the amount of emitted light. A light beam 102 emitted from a semiconductor laser 101 is converted into substantially parallel light by a collimating lens 103. Part of the parallel light is split by the beam splitter 104 and is incident on a detector 105 for monitoring the amount of light. Detector 10 for light intensity monitor
The output of 5 is controlled via the laser control circuit 113 so that the output of the semiconductor laser is maintained at a required value.
The light beam transmitted through the beam splitter 104 is reflected by a reflection mirror 108, transmitted through an objective lens 106, and collected on an information carrier 109.

【0003】情報担体109上で反射された光ビームは
元の経路を逆にたどり、ビームスプリッタ104で反射
され検出レンズ110を透過して信号検出用のデテクタ
ー111に入射する。信号検出用デテクターでフォーカ
スサーボ信号、トラッキングサーボ信号及び情報信号が
得られるが本発明には直接関係しないので詳細な動作説
明は省略する。
The light beam reflected on the information carrier 109 follows the original path in reverse, is reflected by the beam splitter 104, passes through the detection lens 110, and enters the signal detection detector 111. Although the focus servo signal, the tracking servo signal, and the information signal can be obtained by the signal detection detector, detailed description of the operation is omitted because it is not directly related to the present invention.

【0004】ビームスプリッタの代わりに平行平板ガラ
スを用いる方法も考えられる。平行平板ガラスを用いる
実施例を図5に示す。半導体レーザ201を出射する光
ビーム202は、コリメートレンズ203で平行光にさ
れる。平行光の一部は平行平板ガラス207を透過して
光量モニター用のデテクター205に入射する。平行平
板ガラスの表面で反射された光ビームは対物レンズ20
6を透過、情報担体209上に集光される。情報担体2
09上で反射された光ビームは元の経路を逆にたどり、
検出用のホログラム212で回折されコリメートレンズ
を透過して半導体レーザの近傍にある信号検出用のデテ
クター(詳細は図示せず)に入射する。信号検出用デテ
クターでフォーカスサーボ信号、トラッキングサーボ信
号及び情報信号が得られるが本発明には直接関係しない
ので詳細な動作説明は省略する。
[0004] A method using a parallel plate glass instead of the beam splitter is also conceivable. FIG. 5 shows an embodiment using a parallel plate glass. The light beam 202 emitted from the semiconductor laser 201 is collimated by a collimator lens 203. Part of the parallel light passes through the parallel flat glass 207 and enters the detector 205 for monitoring the amount of light. The light beam reflected on the surface of the parallel plate glass is
6 and condensed on the information carrier 209. Information carrier 2
The light beam reflected on 09 reverses its original path,
The light is diffracted by the detection hologram 212, passes through the collimator lens, and is incident on a signal detection detector (details not shown) near the semiconductor laser. Although the focus servo signal, the tracking servo signal, and the information signal can be obtained by the signal detection detector, detailed description of the operation is omitted because it is not directly related to the present invention.

【0005】ビームスプリッタを用いる時及び平行平板
ガラスを用いる時、いずれの場合もこの情報担体上に集
光される光ビームの強度を一定とするために、デテクタ
ー105、205の出力を用いて電流増幅回路を駆動し
て半導体レーザの出射パワーを制御する。
In both cases of using a beam splitter and parallel plate glass, in order to keep the intensity of the light beam converged on the information carrier constant, the output of the detectors 105 and 205 is used. The amplifier circuit is driven to control the output power of the semiconductor laser.

【0006】[0006]

【発明が解決しようとする課題】従来例に用いられるビ
ームスプリッタは、少なくとも二枚の三角プリズムに多
層膜を蒸着して接着するので寸法も大きくなり、コスト
的にも高価となる。これらの事を考慮すると、平行平板
ガラスが使いやすくてよさそうに思われるが、表面反射
70〜95%、透過率5〜30%程度の平行平板ガラス
を用いる場合、裏面と表面の干渉が問題となる。即ち裏
面に無反射コートをほどこして反射率が0.5%以下と
なったとしても干渉が発生する結果、最も明るくなる場
合と最も暗くなる場合では約2.5倍の透過光量変動が
発生する。半導体レーザを用いた光学系では半導体レー
ザの出力や温度変化により波長が変化して干渉縞の移動
が発生して、デテクターに入射する光ビームの光量が変
化する。結果として情報担体に入射する光ビームの光量
が正確に制御できなくなる。図3に実施例として半導体
レーザに流れる電流と光量モニタ用デテクタの出力をプ
ロットした結果を示す。裏面に無反射コートをほどこし
て反射率を0.5%以下とした。この時光量モニタ用デ
テクタの出力、即ち光出力は21の様にうねり変動の有
る出力となる。
The beam splitter used in the conventional example has a large size and a high cost because a multilayer film is deposited and adhered to at least two triangular prisms. Considering these facts, it seems that the parallel flat glass is easy to use, but when using a parallel flat glass having a surface reflection of 70 to 95% and a transmittance of about 5 to 30%, interference between the back surface and the front surface is problematic. Becomes That is, even if the reflectance is reduced to 0.5% or less by applying a non-reflection coating on the back surface, interference occurs. As a result, the transmitted light amount fluctuates about 2.5 times between the brightest case and the darkest case. . In an optical system using a semiconductor laser, the wavelength changes due to the output of the semiconductor laser or a change in temperature, the interference fringes move, and the light amount of the light beam incident on the detector changes. As a result, the amount of light beam incident on the information carrier cannot be controlled accurately. FIG. 3 shows the result of plotting the current flowing through the semiconductor laser and the output of the light quantity monitoring detector as an example. An anti-reflection coating was applied to the back surface to reduce the reflectance to 0.5% or less. At this time, the output of the light amount monitoring detector, that is, the light output is an output having a swelling fluctuation like 21.

【0007】変動の割合を5%以下としようとすると裏
面の反射率は0.006%以下となる必要があり実質的
に0%としなければならない。これは実用上困難である
ばかりでなく偏光の方向によっては理論的にも実現不可
能である。
If the variation ratio is to be 5% or less, the reflectance of the back surface must be 0.006% or less, and must be substantially 0%. This is not only practically difficult but also theoretically impossible depending on the direction of polarization.

【0008】[0008]

【課題を解決するための手段】以上のように平行平板ガ
ラスを用いた場合の課題を解決する為に透過光の干渉を
発生させないように空間的なコヒーレンスを悪くさせる
方法がある。即ち裏面に無反射コーティングを施す代わ
りに、裏面の反射面の表面精度を意図的に悪くしたり表
面と裏面の間の光路長を変化させる方法がある。例えば
裏面をスリガラス状にして光の波面をランダムな位相と
して干渉が発生しないようにする事ができる。
As described above, in order to solve the problem in the case of using a parallel plate glass, there is a method of deteriorating spatial coherence so as not to cause interference of transmitted light. That is, instead of applying the non-reflective coating on the back surface, there is a method of intentionally deteriorating the surface accuracy of the reflecting surface on the back surface or changing the optical path length between the front surface and the back surface. For example, the back surface can be made into a ground glass shape so that the wavefront of the light has a random phase so that no interference occurs.

【0009】[0009]

【作用】平行平板ガラスの裏面の面精度を意図的に悪く
してスリガラス状などとすると裏面と表面の間で発生す
る光の干渉は細かくなり実質的に波長変動や光路長変動
による干渉の影響はなくなる。従って温度変化及び出射
パワーの変化による光の波長変化によって発生する干渉
縞の移動によるデテクターの出力変動もなくなるので、
対物レンズの出射パワー制御を正確に行うことが出来
る。
[Function] When the surface accuracy of the back surface of a parallel plate glass is intentionally degraded to form a ground glass, etc., the interference of light generated between the back surface and the front surface becomes fine, and the influence of interference due to wavelength fluctuation and optical path length fluctuation substantially occurs. Is gone. Accordingly, the output of the detector does not fluctuate due to the movement of the interference fringe caused by the change in the wavelength of the light due to the temperature change and the change in the output power.
The output power of the objective lens can be accurately controlled.

【0010】[0010]

【実施例】以下本発明を実施例に基づき説明する。図1
は本発明の光ヘッド装置の構成を示す概略図である。半
導体レーザ1を出射する光ビーム2は、コリメートレン
ズ3で平行光にされる。平行光の一部は平行平板ガラス
7を透過して光量モニター用のデテクター5に入射す
る。平行平板ガラスの表面で反射された光ビームは対物
レンズ6を透過、情報担体9上に集光される。情報担体
9上で反射された光ビームは元の経路を逆にたどり、検
出用のホログラム12で回折されコリメートレンズを透
過して半導体レーザ1aの近傍にある信号検出用のデテ
クター(図2参照)に入射する。信号検出用デテクター
1c1及び1c2の差動検出からフォーカスサーボ信
号、信号検出用デテクター1b1及び1b2の差動検出
からトラッキングサーボ信号及び情報信号が得られるが
本発明には直接関係しないので、詳細は省略する。概略
と光量モニタ用デテクターの出力構成は図2を用いて後
述する。光量モニター用のデテクター5の出力は、レー
ザ制御回路13を介して前記半導体レーザ1の出力が必
要な値に保たれるように制御される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to embodiments. FIG.
FIG. 1 is a schematic diagram showing a configuration of an optical head device according to the present invention. The light beam 2 emitted from the semiconductor laser 1 is collimated by a collimating lens 3. Part of the parallel light passes through the parallel flat glass 7 and enters the detector 5 for monitoring the amount of light. The light beam reflected on the surface of the parallel plate glass passes through the objective lens 6 and is focused on the information carrier 9. The light beam reflected on the information carrier 9 reverses its original path, is diffracted by the detection hologram 12, passes through the collimating lens, and is a signal detection detector near the semiconductor laser 1a (see FIG. 2). Incident on. A focus servo signal can be obtained from the differential detection of the signal detection detectors 1c1 and 1c2, and a tracking servo signal and an information signal can be obtained from the differential detection of the signal detection detectors 1b1 and 1b2, but the details are omitted because they are not directly related to the present invention. I do. The outline and the output configuration of the light amount monitoring detector will be described later with reference to FIG. The output of the light amount monitoring detector 5 is controlled via the laser control circuit 13 so that the output of the semiconductor laser 1 is maintained at a required value.

【0011】また、コリメートレンズ3は必ずしも必要
な構成ではなく、記録を行う機器などのように記録膜状
での光スポット精度を向上する場合には有効な手段であ
るが、多少の収差を許容できる再生専用の装置や記録装
置でも光スポット精度の要求されない場合に用いられる
光ヘッド装置等ではコリメートレンズは省略しても良
い。本発明の実施例で、レーザユニット201のレーザ
の発光部1aの左右に2分割された1b1、1b2、1
c1、1c2の受光部部分を備えている。前記した情報
担体9からの反射光はホログラム12で分割され、この
1b1、1b2、1c1、1c2の各デテクターに導か
れ、各デテクターの和信号を情報信号読み取り用に、左
右のデテクターの差信号を組み合わせてフォーカス誤差
信号検出、トラッキング誤差検出用に用いている。各入
出力信号はT1からT8の端子によって外部と接続され
ている。
The collimating lens 3 is not always necessary, and is an effective means for improving the accuracy of a light spot in a recording film, such as a device for recording. A collimating lens may be omitted in an optical head device or the like used in a device for exclusive use for reproduction or a recording device that does not require light spot accuracy. In the embodiment of the present invention, the laser unit 201 of the laser unit 201 is divided into two parts 1b1, 1b2, 1 on the left and right sides.
c1 and 1c2 are provided. The reflected light from the information carrier 9 is split by the hologram 12 and guided to the detectors 1b1, 1b2, 1c1, and 1c2. The sum signal of each detector is used to read the information signal, and the difference signal between the left and right detectors is read. In combination, they are used for focus error signal detection and tracking error detection. Each input / output signal is connected to the outside by terminals T1 to T8.

【0012】平行平板ガラスの表面で反射された光ビー
ムは対物レンズ6を透過、情報担体9上に集光される。
光学系構成は、図5の例とほぼ同じ構成であるが、平行
平板ガラス7の裏面をスリガラス13にして透過する光
の波面にランダムな位相を付加している。スリガラスは
目を荒くすると散乱が大きくなり透過率が低下する。本
発明の実施例では、半導体レーザの波長が790nmの
ものを用いた。かかる場合少なくとも1/2波長以上の
光路差の生じる面粗さがあれば光の空間的コヒーレンス
は失われる。しかし製造上の課題として面粗さを細かく
すると生産性が悪くなる。本実施例では実験的に求めた
ところ性能を良くする為にはおよそ#800以上の粒子
で粗す必要があることが判った。しかし#800のもの
では散乱によるロスも大きくなった。透過率を大きくし
て制御系の安定化を図るために、さらに第2の実施例で
は#3000の粒子を用いた。この時のデテクターに入
射する光ビームは平行平板ガラスの裏面無反射コーティ
ングしたものの平均出力に比べて約80%の出力を得る
ことができた。
The light beam reflected on the surface of the parallel plate glass passes through the objective lens 6 and is focused on the information carrier 9.
The configuration of the optical system is almost the same as that of the example of FIG. 5, but a random phase is added to the wavefront of the transmitted light by making the rear surface of the parallel plate glass 7 into the ground glass 13. When the ground glass is rough, scattering increases and transmittance decreases. In the embodiment of the present invention, a semiconductor laser having a wavelength of 790 nm was used. In such a case, spatial coherence of light is lost if there is a surface roughness that causes an optical path difference of at least 波長 wavelength or more. However, when the surface roughness is made fine as a problem in manufacturing, the productivity is deteriorated. In this example, it was found experimentally that it was necessary to coarsen particles with a size of about # 800 or more in order to improve the performance. However, in the case of # 800, the loss due to scattering increased. In order to increase the transmittance and stabilize the control system, particles of # 3000 were used in the second embodiment. At this time, the light beam incident on the detector could obtain an output of about 80% as compared with the average output of the parallel plate glass coated with the back anti-reflection coating.

【0013】#800の粒子で粗したものでは、平行平
板ガラスの裏面無反射コーティングした平行平板ガラス
の平均出力に比べて約60〜70%の出力となった。図
3に半導体レーザに流れる電流に対して、光出力モニタ
であるデテクター5の出力電流をプロットした実施例で
の測定比較結果を示す。出力波形21は平行平板ガラス
の裏面に無反射コーティング0.5%を施したもの、出
力波形22は平行平板ガラスの裏面に#3000程度の
セリヤを用いて粗したスリガラスを形成した実施例であ
る。半導体レーザは注入電流を増やして出力パワーを大
きくすると波長が長波長側に変動する。この波長変動に
より平行平板ガラスの裏面に無反射コーティング0.5
%を施した場合の出力波形21は、波長の変動周期に連
動してサイン状の変化がみられる。一方平行平板ガラス
の裏面に#3000程度のセリヤを用いて粗したスリガ
ラスを用いた第2の実施例の場合の出力波形22にはこ
のような変動は全く見られず非常に良好な線型性が得ら
れることが明らかとなった。従ってこの出力波形22に
よる光量を測定し電流増幅をして半導体レーザを制御す
れば、対物レンズ出射の光ビーム光量を正確にコントロ
ールすることが可能となる。
[0013] In the case of coarse particles of # 800 particles, the output was about 60 to 70% of the average output of the parallel flat glass coated with the back anti-reflection coating. FIG. 3 shows a measurement comparison result in the embodiment in which the output current of the detector 5 which is an optical output monitor is plotted against the current flowing through the semiconductor laser. The output waveform 21 is an example in which a non-reflective coating 0.5% is applied to the back surface of a parallel plate glass, and the output waveform 22 is an embodiment in which a coarse ground glass is formed on the back surface of a parallel plate glass using about # 3000 seria. . When the output current of the semiconductor laser is increased by increasing the injection current, the wavelength changes to the longer wavelength side. Due to this wavelength variation, the anti-reflection coating 0.5
In the output waveform 21 when% is applied, a sine-shaped change is seen in conjunction with the wavelength fluctuation period. On the other hand, the output waveform 22 of the second embodiment using the ground glass roughened using about 3000 seria on the back surface of the parallel plate glass shows no such fluctuation at all, and has very good linearity. It became clear that it could be obtained. Therefore, if the semiconductor laser is controlled by measuring the light quantity based on the output waveform 22 and amplifying the current, the light quantity of the light beam emitted from the objective lens can be accurately controlled.

【0014】本実施例以外に、平行平板の内部にミクロ
な光路長変化を生じさせる位相物体を混入させることも
できる。また平行平板ガラス裏面からの干渉を避けるた
めに、純粋な平行平板ガラスでなくウエッジ状の板ガラ
スとすることも可能であり、その場合は、精度を表面と
裏面で変えるのではなく、連続的に厚みを変化させ、ど
の波長でも部分的には干渉は発生するが、特定の波長で
の集中的な干渉の発生を抑え、図3の曲線21のように
周期的な非線形性を起こりにくくすることができる。ウ
エッジ板ガラスは若干高価となるが、同様の効果が得ら
れるものである。
In addition to the present embodiment, it is possible to mix a phase object that causes a micro optical path length change inside the parallel plate. Also, in order to avoid interference from the parallel plate glass back surface, it is also possible to use a wedge-shaped plate glass instead of pure parallel plate glass, in which case, instead of changing the accuracy between the front and back surfaces, continuously By changing the thickness, interference occurs partially at any wavelength, but the occurrence of intensive interference at a specific wavelength is suppressed, and periodic nonlinearity is unlikely to occur as shown by the curve 21 in FIG. Can be. Wedge glazing is somewhat expensive, but provides the same effect.

【0015】また上記のスリガラス状平行平板、ウエッ
ジ板ガラスの他に、表面と裏面の距離が一定でない形状
の他の例として、平凸レンズや平行平板ガラスの裏面に
ホログラムレンズを施し、前記した光量モニター用デテ
クターへの集光をする構成にする事も可能である。さら
に、実施例では光源が半導体レーザの場合で説明したが
これに限定されず、ガスレーザ、個体レーザ等、その他
の光源に置き換える事は可能であり、本発明の範囲であ
る。
In addition to the above-mentioned ground glass parallel plate and wedge plate glass, as another example of a shape in which the distance between the front surface and the back surface is not constant, a hologram lens is formed on the back surface of a plano-convex lens or a parallel plate glass, and the light amount monitor described above is provided. It is also possible to adopt a configuration in which light is condensed on the detector. Further, in the embodiment, the case where the light source is a semiconductor laser has been described. However, the present invention is not limited to this. The light source can be replaced with another light source such as a gas laser or a solid laser, which is within the scope of the present invention.

【0016】[0016]

【発明の効果】以上のように図3の実施例の測定結果か
ら判るように、平行平板ガラスの裏面をスリガラス、ウ
エッジ状板ガラス、平凸レンズ等のように表面と裏面の
距離が一定しない構成とすることで透過光量に干渉の影
響をなくすることができ、光量モニターに使用するデテ
クターの出力信号の線形性をよくすることができて対物
レンズ出射の光パワー制御特性の大幅な改善を上記のよ
うな極めて簡単な構成で実現することができるものであ
る。
As described above, as can be seen from the measurement results of the embodiment shown in FIG. 3, the rear surface of the parallel flat glass is made to have a structure in which the distance between the front surface and the rear surface is not constant, such as a ground glass, a wedge-shaped glass plate, or a plano-convex lens. By doing so, the influence of interference on the transmitted light amount can be eliminated, the linearity of the output signal of the detector used for the light amount monitor can be improved, and the light power control characteristics of the objective lens output can be greatly improved. It can be realized with such an extremely simple configuration.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による実施例を示す図FIG. 1 shows an embodiment according to the present invention.

【図2】本発明の半導体レーザ構成例を示す図FIG. 2 is a diagram showing a configuration example of a semiconductor laser according to the present invention;

【図3】本発明による実施例の効果を示す図FIG. 3 shows the effect of the embodiment according to the present invention.

【図4】従来例1を説明するための図FIG. 4 is a diagram for explaining Conventional Example 1;

【図5】従来例の変形を説明するための図FIG. 5 is a diagram for explaining a modification of the conventional example.

【符号の説明】[Explanation of symbols]

1 半導体レーザ 3 コリメートレンズ 5 光量モニター用デテクター 6 対物レンズ 7 平行平板ガラス 9 情報担体 DESCRIPTION OF SYMBOLS 1 Semiconductor laser 3 Collimating lens 5 Detector for light quantity monitoring 6 Objective lens 7 Parallel plate glass 9 Information carrier

フロントページの続き (56)参考文献 特開 昭61−148642(JP,A) 特開 昭63−86123(JP,A) 特開 平2−208836(JP,A) 実開 平5−67917(JP,U) 久保田広他編、株式会社朝倉書店発行 「光学技術ハンドブック増補版」s50. 7.20pp667〜6689.3.13コーティ ングの項 (58)調査した分野(Int.Cl.6,DB名) G11B 7/135 Continuation of the front page (56) References JP-A-61-148642 (JP, A) JP-A-63-86123 (JP, A) JP-A-2-208836 (JP, A) JP-A-5-6917 (JP) , U) Hiroshi Kubota et al., Published by Asakura Shoten Co., Ltd. “Optical Technology Handbook Supplemental Edition” s50.7.20pp667 ~ 6689.3.13 Coating Section (58) Fields surveyed (Int.Cl. 6 , DB name) ) G11B 7/135

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 放射光源と、放射光源からの光ビームを
受け情報担体上に収束させる対物レンズと、前記放射光
源と前記対物レンズとの間にあ、前記光ビームが入射
する第1の面に前記光ビームを略直角方向に偏向さ
せ、また入射光の一部を透過させる反射膜が形成されて
おり、かつ前記第1の面とその対向する第2の面との距
離が略同一な平板と、前記平板の透過光を受けるように
配置された光検出器と、前記放射光源の近傍にあり、前
記平板により再度偏向された前記情報担体の反射光ビー
ムを検出する信号検出用デテクターとを有し、前記平板
の第2の面の面精度を第1の面よりも低くし、前記光検
出器への入射光が前記平板の第2の面によって透過散乱
されることを特徴とする光情報記録再生装置。
And 1. A radiation source, an objective lens for converging on receiving the information carrier the light beam from the radiation source, Ri mania between the radiation source and the objective lens, the first of said light beam is incident substantially deflected perpendicularly to the light beam on the surface, also reflecting film that transmits part of the incident light is formed
Cage, and the first surface and substantially the same flat plate the distance between the second surface thereof opposing to receive light transmitted through the plate
A photodetector disposed and in the vicinity of the radiation source;
The reflected light beam of the information carrier deflected again by the recording plate
A detector for detecting a signal, the surface accuracy of the second surface of the flat plate being lower than that of the first surface, and light incident on the photodetector being detected by the second surface of the flat plate. An optical information recording / reproducing apparatus characterized by being transmitted and scattered.
【請求項2】 放射光源と、平板との間に前記放射光源
から出射する光ビームを受け略平行光とするコリメート
手段を入れたことを特徴とする請求項1記載の光情報記
録再生装置。
2. An optical information recording / reproducing apparatus according to claim 1, further comprising a collimating means provided between the radiation light source and the flat plate to receive a light beam emitted from the radiation light source and convert the light beam into substantially parallel light.
【請求項3】 平板の第2の面をスリガラス状に加工し
たことを特徴とする請求項1記載の光情報記録再生装
置。
3. The optical information recording / reproducing apparatus according to claim 1, wherein the second surface of the flat plate is processed into a ground glass shape.
【請求項4】 反射膜が、平板の第1の面に対し水平方
向に偏光した光に対し0.7〜0.95の反射率を有す
る多層膜である請求項1記載の光情報記録再生装置。
4. The optical information recording / reproducing apparatus according to claim 1, wherein the reflection film is a multilayer film having a reflectance of 0.7 to 0.95 for light polarized in a horizontal direction with respect to the first surface of the flat plate. apparatus.
【請求項5】 平板の第2の面のスリガラスの面粗さが
波長以下である請求項3記載の光情報記録再生装置。
5. The optical information recording / reproducing apparatus according to claim 3, wherein a surface roughness of the ground glass on the second surface of the flat plate is equal to or less than a wavelength.
【請求項6】 平板に代えて第1の面と第2の面とが一
定の傾斜を有するウエッジガラス板としたことを特徴と
する請求項1記載の光情報記録再生装置。
6. The optical information recording / reproducing apparatus according to claim 1, wherein a wedge glass plate having a first surface and a second surface having a constant inclination is used in place of the flat plate.
【請求項7】 平板に代えて反射面が平面の平凸レンズ
構造としたことを特徴とする請求項1記載の光情報記録
再生装置。
7. The optical information recording / reproducing apparatus according to claim 1, wherein a flat-convex lens structure having a flat reflecting surface is used instead of the flat plate.
【請求項8】 前記平板の第1の面に形成される反射膜
が、前記平板の第1の面に対して垂直方向に偏光した光
に対し0.7〜0.95の反射率を有し、水平方向に偏
光した光に対し0.9以上の反射率となる膜からなる請
求項1記載の光情報記録再生装置。
8. A reflection film formed on a first surface of the flat plate has a reflectance of 0.7 to 0.95 for light polarized in a direction perpendicular to the first surface of the flat plate. 2. The optical information recording / reproducing apparatus according to claim 1, wherein the optical information recording / reproducing apparatus comprises a film having a reflectance of 0.9 or more with respect to light polarized in the horizontal direction.
JP7179814A 1994-08-04 1995-07-17 Optical head device Expired - Fee Related JP2907759B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7179814A JP2907759B2 (en) 1994-08-04 1995-07-17 Optical head device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-183339 1994-08-04
JP18333994 1994-08-04
JP7179814A JP2907759B2 (en) 1994-08-04 1995-07-17 Optical head device

Publications (2)

Publication Number Publication Date
JPH08102080A JPH08102080A (en) 1996-04-16
JP2907759B2 true JP2907759B2 (en) 1999-06-21

Family

ID=26499548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7179814A Expired - Fee Related JP2907759B2 (en) 1994-08-04 1995-07-17 Optical head device

Country Status (1)

Country Link
JP (1) JP2907759B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7522484B2 (en) 2004-11-17 2009-04-21 Panaosnic Corporation Optical information processor

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7321533B2 (en) 2002-03-20 2008-01-22 Sharp Kabushiki Kaisha Optical pickup device having a wavelength selecting film and an optical reflector
US7218591B2 (en) 2002-04-17 2007-05-15 Sharp Kabushiki Kaisha Optical pickup apparatus
US7573800B2 (en) 2004-01-29 2009-08-11 Panasonic Corporation Optical pickup and optical disk apparatus
JP2006099933A (en) * 2004-08-31 2006-04-13 Sanyo Electric Co Ltd Optical pickup device
CN100334630C (en) * 2004-08-31 2007-08-29 三洋电机株式会社 Optical pickup device
JP2009198903A (en) * 2008-02-22 2009-09-03 Olympus Corp Optical equipment
US8134907B2 (en) 2008-08-25 2012-03-13 Panasonic Corporation Optical head, optical element with diffraction grating, optical disc device and information processing device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
久保田広他編、株式会社朝倉書店発行「光学技術ハンドブック増補版」s50.7.20pp667〜6689.3.13コーティングの項

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7522484B2 (en) 2004-11-17 2009-04-21 Panaosnic Corporation Optical information processor

Also Published As

Publication number Publication date
JPH08102080A (en) 1996-04-16

Similar Documents

Publication Publication Date Title
US4357533A (en) Focus detector for an optical disc playback system
JP2907759B2 (en) Optical head device
EP0288230B1 (en) Focus detecting apparatus
US3991275A (en) Apparatus for optically reading a radiation-reflecting record carrier with beam splitting element
US6108283A (en) Optical head having focus error detection and tracking error detection sensors arranged on substantially the same plane
US6266313B1 (en) Optical pickup for recording or reproducing system
AU623778B2 (en) Focus error detection using prism-enhanced spot size monitoring
US5434708A (en) Optical reproducing apparatus ultilizing a polarization beam splitter
JPH0478029A (en) Optical information recording and reproducing device
US5296694A (en) Optical pick-up head apparatus with optical means having polarization anisotropy
JP3300536B2 (en) Displacement measuring device and optical pickup
JP3303250B2 (en) Displacement measuring device and optical pickup
JP3506723B2 (en) Optical information reader
JP2699986B2 (en) Apparatus for detecting focus error of optical head
KR100200829B1 (en) High density reproducing method and apparatus thereof
JP3526309B2 (en) Optical information recording / reproducing device
JPH0327978B2 (en)
JPS61122945A (en) Optical information reading device
JP2571034B2 (en) Optical pickup
JP3181684B2 (en) Optical information reproducing device
JP3122346B2 (en) Optical pickup device
JP2724095B2 (en) Optical pickup
JP2758232B2 (en) Optical pickup device and optical information recording / reproducing device using the same
JP2701654B2 (en) Optical pickup
JP3006987B2 (en) Optical pickup

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080402

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees