JP2906545B2 - Manufacturing method of light detection probe for hot wire insulation diagnostic device - Google Patents

Manufacturing method of light detection probe for hot wire insulation diagnostic device

Info

Publication number
JP2906545B2
JP2906545B2 JP5950790A JP5950790A JP2906545B2 JP 2906545 B2 JP2906545 B2 JP 2906545B2 JP 5950790 A JP5950790 A JP 5950790A JP 5950790 A JP5950790 A JP 5950790A JP 2906545 B2 JP2906545 B2 JP 2906545B2
Authority
JP
Japan
Prior art keywords
optical fiber
detection probe
light detection
epoxy resin
fiber bundle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5950790A
Other languages
Japanese (ja)
Other versions
JPH03259731A (en
Inventor
義昭 芳賀
嘉房 坪根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YASUKAWA DENKI KK
Original Assignee
YASUKAWA DENKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YASUKAWA DENKI KK filed Critical YASUKAWA DENKI KK
Priority to JP5950790A priority Critical patent/JP2906545B2/en
Publication of JPH03259731A publication Critical patent/JPH03259731A/en
Application granted granted Critical
Publication of JP2906545B2 publication Critical patent/JP2906545B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、実働機器の運転を停止することなく絶縁の
劣化度を連続監視し、電気機器絶縁の劣化度を求める活
線絶縁診断装置用光検出プローブの製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention is for a live-line insulation diagnostic apparatus that continuously monitors the degree of insulation deterioration without stopping the operation of working equipment and determines the degree of insulation deterioration of electrical equipment. The present invention relates to a method for manufacturing a light detection probe.

[従来の技術] 従来の活線絶縁診断装置の被測定部は、絶縁を施した
導体と、複数の導体の外周に巻装した保護絶縁層と、こ
の保護絶縁層内に充填した主絶縁材と、光検出プローブ
とからなる。光検出プローブは、主絶縁材の内部又は外
部に設けた照明用光ファイバーの端部と受光用光ファイ
バー端部を対向させ、その対向間隙に主絶縁材と同一材
質の絶縁材よりなる被測定物を充填して形成したもので
ある。光検出プローブの照明用光ファイバーに光源を接
続し、受光用光ファイバーに光電変換素子を接続して、
標準光の波長に対応した被測定物からの透過光を受光す
る。この光電変換素子の出力を測色システムに入力し
て、予め求めておいた色の変化と被測定物の劣化度との
関係を函数発生部に記憶させておき、函数発生部からの
出力と前記測色システムの表色演算部からの出力との差
に基づいて、被測定物の劣化度を求めるようにしてい
る。このような照明用及び受光用光ファイバーは光エネ
ルギーを伝送するコアと、コアの外周に設けコアを通る
光の拡散を防止するクラッドと、このクラッドの外周に
耐熱性のふつ素樹脂の被覆材が設けられている。
[Prior Art] The measuring part of the conventional hot-line insulation diagnostic apparatus includes an insulated conductor, a protective insulating layer wound around the outer periphery of a plurality of conductors, and a main insulating material filled in the protective insulating layer. And a light detection probe. The light detection probe has an end of the optical fiber for illumination provided inside or outside the main insulating material and an end of the optical fiber for receiving light, and an object to be measured made of an insulating material of the same material as the main insulating material is provided in a gap therebetween. It is formed by filling. Connect the light source to the optical fiber for illumination of the light detection probe, connect the photoelectric conversion element to the optical fiber for light reception,
The transmitted light from the DUT corresponding to the wavelength of the standard light is received. The output of this photoelectric conversion element is input to a colorimetric system, and the relationship between the previously obtained color change and the degree of deterioration of the device under test is stored in the function generator, and the output from the function generator is The degree of deterioration of the object to be measured is determined based on the difference from the output from the colorimetric operation unit of the color measurement system. Such an optical fiber for illumination and light reception includes a core for transmitting light energy, a clad provided on the outer periphery of the core to prevent diffusion of light passing through the core, and a heat-resistant fluororesin coating material on the outer periphery of the clad. Is provided.

[発明が解決しようとする課題] ところが、従来の光検出プローブを作製する方法で
は、照明用光ファイバーの端面と受光用光ファイバーの
端面とが対向する間隙に、絶縁材と同一の絶縁材よりな
る被測定物を充填する際に、単に樹脂を流し込んで形成
するだけであったため、個々の光ファイバー間には空気
の層が存在し、被測定物が酸化劣化して、正確なデータ
が得られない問題があった。また、ふっ素樹脂よりなる
被覆材は接着力が弱いため、被覆材と絶縁材間および被
覆材と光ファイバーのクラッド間の接着が剥離して被測
定物に空気が進入し、被測定物が酸化劣化してしまう欠
点があった。
[Problems to be Solved by the Invention] However, in the method of manufacturing a conventional light detection probe, a gap formed between the end face of the optical fiber for illumination and the end face of the optical fiber for light reception is covered with the same insulating material as the insulating material. When filling the measurement object, the resin was simply poured and formed.Therefore, there was a layer of air between the individual optical fibers, and the object to be measured oxidized and deteriorated, preventing accurate data from being obtained. was there. In addition, since the coating material made of fluororesin has low adhesive strength, the adhesion between the coating material and the insulating material and between the coating material and the cladding of the optical fiber peels off, and air enters the measured object, causing the measured object to degrade by oxidation. There was a drawback to do it.

そこで、本発明はこれらの問題を解消し、被覆材と絶
縁材間および被覆材と光ファイバー間から光検出プロー
ブ的の被測定物に空気が侵入しないようにして被測定物
の酸化劣化をなくし、精確な測定ができるようにしたも
のである。
Therefore, the present invention solves these problems, eliminates the oxidation deterioration of the measured object by preventing air from entering the measured object like a light detection probe from between the covering material and the insulating material and between the covering material and the optical fiber, It allows accurate measurement.

[課題を解決するための手段] 上記の課題を解決するため、本発明の活線絶縁診断装
置用の光検出プローブは、コアの外周がクラッドで覆わ
れた複数の光ファイバーを1個に束ねその外周をイミド
系の被覆材で覆って光ファイバー束を作製する第1工程
と、前記光ファイバー束の一方端を低粘度のエポキシ樹
脂に浸漬し、他方端を真空引きして前記エポキシ樹脂を
前記光ファイバー束内に含浸させ空気層を除く第2工程
と、前記含浸したエポキシ樹脂を加熱硬化させる第3工
程と、前記硬化したエポキシ樹脂を有する側の前記光フ
ァイバー束の端部に硬質環を外設させ常温硬化型の接着
剤で接着する第4工程と、前記硬質環を接着した前記光
ファイバー束の端面を研磨する第5工程と、前記常温硬
化した接着剤を高温雰囲気中で溶融させ前記硬質環を除
去する第6工程と、前記硬質環を除去した2個の前記光
ファイバー束の前記研磨した端面を間隙を設けて対向さ
せ前記間隙に絶縁樹脂を充填する第7工程により作製す
るようにしている。
[Means for Solving the Problems] In order to solve the above problems, a light detection probe for a live wire insulation diagnostic device of the present invention comprises a bundle of a plurality of optical fibers each having a core whose outer periphery is covered with a clad. A first step of preparing an optical fiber bundle by covering the outer periphery with an imide-based coating material, immersing one end of the optical fiber bundle in a low-viscosity epoxy resin, and evacuating the other end of the optical fiber bundle to convert the epoxy resin into the optical fiber bundle; A second step of impregnating the inside and removing the air layer, a third step of heating and curing the impregnated epoxy resin, and providing a hard ring outside the end of the optical fiber bundle on the side having the cured epoxy resin to allow room temperature A fourth step of bonding with a hardening type adhesive, a fifth step of polishing the end face of the optical fiber bundle to which the hard ring is bonded, and melting the room temperature cured adhesive in a high-temperature atmosphere, A sixth step of removing the hard ring and a seventh step of filling the insulating resin into the gap by facing the polished end faces of the two optical fiber bundles from which the hard ring has been removed with a gap provided therebetween. ing.

[作用] したがって、光ファイバー間に空気層が存在しないの
で、被測定物の酸化劣化が生じない。また、イミド系の
被覆材と光ファイバーのクラッドあるいは絶縁材との接
着力が強いため照明用光ファイバーの端部と受光用光フ
ァイバー端部の対向間隙内に充填した絶縁材の被測定物
に空気が進入しないので、被測定物の酸化劣化が生じな
い。
[Operation] Therefore, since there is no air layer between the optical fibers, the object to be measured does not deteriorate by oxidation. In addition, since the adhesion between the imide-based coating material and the cladding of the optical fiber or the insulating material is strong, air enters the measured object of the insulating material filled in the opposing gap between the end of the optical fiber for illumination and the end of the optical fiber for receiving light. Therefore, the object to be measured does not deteriorate by oxidation.

[実施例] 以下、本発明を図に基づいて詳細に説明する。EXAMPLES Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図は本発明の活線絶縁診断装置の概略を説明する
概略図、第2図は第1図I−I線断面図である。図にお
いて、1は絶縁を施した導体で、この導体を2列にして
数段重ね巻きした巻線を設け、前記導体に並設させて光
検出プローブ4を取り付け、保護絶縁層2内にエポキシ
樹脂などの絶縁樹脂を含浸させて主絶縁材3を構成して
いる。光検出プローブ4は、第3図に示すように外周を
クラッドで覆ったコアの光ファイバーを複数本束ね(第
1工程)、その外周にポリイミド樹脂の被覆材5A,6Aを
形成した照明用光ファイバー5および受光用光ファイバ
ー6を構成している。照明用光ファイバー5の端部と受
光用光ファイバー6の端部を対向させ、その対向間隙に
前記主絶縁材と同一絶縁材の被測定物を充填し、照明用
光ファイバー5の外周、受光用光ファイバー6の外周お
よび被測定物を囲って前記主絶縁材と同一の絶縁材で一
体に形成している。前記照明用光ファイバー5および受
光用ファイバー6は、その一端を第4図に示すように低
粘度のエポキシ樹脂などの絶縁樹脂13を入れた容器14に
浸漬し、他端を真空ポンプ15に接続した真空ホース16に
接続し、真空ポンプ15により光ファイバー内を真空引き
すると、絶縁樹脂が光ファイバー中に浸入する(第2工
程)。光ファイバーを容器14から取り出し高温槽中で絶
縁樹脂を硬化させ(第3工程)、光ファイバー内に空気
が入らないようにしている。また、照明用光ファイバー
5および受光用光ファイバー6は、第5図に示すように
絶縁樹脂を合浸した端部外周に金属などの硬質環17を常
温硬化型の接着剤18で接着し(第4工程)、この硬質環
と一体に光ファイバーの端部を研磨機19で研磨する(第
5工程)。研磨後、高温雰囲気中で接着剤を溶融させ硬
質環を取外して(第6工程)、光ファイバー端部での光
の乱反射を防止するようにしてある。最後に、照明用光
ファイバー5の端部と受光用光ファイバー6の端部を対
向させ、その対向間隙に前記主絶縁材と同一絶縁材の被
測定物を充填する(第7工程)。7は照明用光ファイバ
ーに接続した光源、8は受光用光ファイバーに接続した
光電変換素子、9は光電変換素子の信号から被測定物の
表色値を演算する表色演算部、10は被測定物の絶縁樹脂
と同じ材料の表色値と絶縁劣化度の関係をあらかじめ求
めて記憶した関数発生部、11は表色演算部9からの信号
と、関数発生部10からの信号から被測定物の劣化度を演
算する劣化度演算部で、表示部12に出力するように構成
されている。
FIG. 1 is a schematic diagram for explaining the outline of a live-line insulation diagnostic apparatus of the present invention, and FIG. 2 is a sectional view taken along the line II of FIG. In the figure, reference numeral 1 denotes an insulated conductor, which is provided with a winding in which the conductor is wound in several rows in two rows, a photodetection probe 4 is attached in parallel with the conductor, and an epoxy is provided in the protective insulating layer 2. The main insulating material 3 is formed by impregnating an insulating resin such as a resin. As shown in FIG. 3, the light detection probe 4 bundles a plurality of optical fibers of a core whose outer periphery is covered with a clad (first step), and forms an illumination optical fiber 5 having a coating material 5A, 6A of a polyimide resin on the outer periphery. And the light receiving optical fiber 6. The end of the illumination optical fiber 5 and the end of the light receiving optical fiber 6 are opposed to each other, and a gap between the ends is filled with an object to be measured having the same insulating material as the main insulating material. Is formed integrally with the same insulating material as the main insulating material so as to surround the outer periphery and the object to be measured. As shown in FIG. 4, one end of the optical fiber 5 for illumination and the fiber 6 for light reception were immersed in a container 14 containing an insulating resin 13 such as a low-viscosity epoxy resin, and the other end was connected to a vacuum pump 15. When the optical fiber is connected to the vacuum hose 16 and the inside of the optical fiber is evacuated by the vacuum pump 15, the insulating resin penetrates into the optical fiber (second step). The optical fiber is taken out of the container 14 and the insulating resin is cured in a high-temperature bath (third step) to prevent air from entering the optical fiber. Also, as shown in FIG. 5, the illumination optical fiber 5 and the light receiving optical fiber 6 are bonded with a hard ring 17 of metal or the like by an ordinary temperature hardening type adhesive 18 around the outer periphery of the insulating resin impregnated end (see FIG. Step), the end of the optical fiber is polished integrally with the hard ring by a polishing machine 19 (fifth step). After polishing, the adhesive is melted in a high-temperature atmosphere and the hard ring is removed (sixth step) to prevent irregular reflection of light at the end of the optical fiber. Finally, the end of the optical fiber 5 for illumination and the end of the optical fiber 6 for light reception are made to face each other, and the gap therebetween is filled with an object to be measured which is the same insulating material as the main insulating material (seventh step). Reference numeral 7 denotes a light source connected to the optical fiber for illumination, 8 denotes a photoelectric conversion element connected to the optical fiber for receiving light, 9 denotes a colorimetric operation unit for calculating a color value of the DUT from a signal of the photoelectric conversion element, and 10 denotes a DUT. The function generator 11 previously obtained and stored the relationship between the color value of the same material as that of the insulating resin and the degree of insulation deterioration, and 11 is a signal from the color calculator 9 and a signal from the function generator 10 for measuring the DUT. A deterioration degree calculation unit that calculates the degree of deterioration is configured to output to the display unit 12.

このように構成した活線絶縁診断装置において、機器
の運転により巻線の温度が上昇すると、主絶縁材3が熱
劣化して変色するとともに、光検出プローブ内の被測定
物も変色する。この変色状態は、光源7から照明用光フ
ァイバー5を経由した光が光検出プローブ内の被測定物
を透過して受光用光ファイバー6を介して光電変換素子
8に受光し、表色演算部9は光電変換素子8の信号から
表色値を演算して劣化度演算部11に出力する。劣化度演
算部11は、前記表色演算部からの表色値の信号と、関数
発生部10にあらかじめ記憶している表色値の信号から、
被測定物の劣化度を検出する。この場合、照明用光ファ
イバー5および受光用光ファイバー6の外周は、ポリイ
ミド樹脂の被覆材で覆っているので熱による損傷はな
い。本実施例では被覆材にポリイミド樹脂を用いたが、
これに限ることなくポリアミドイミドなどのイミド系の
樹脂であればよく、光検出プローブを巻線の導体に並設
して設けたが、これに限定されることなく、導体と保護
絶縁層との間の主絶縁材内に埋め込んでもよい。前記光
検出プローブは、主絶縁材の絶縁材料と同一の絶縁材料
で形成したが、主絶縁材と相関関係をもって表色値が変
化する材料で形成してもよい。硬質環は被測定物の絶縁
材と同じ絶縁材で構成し、光検出プローブ内に一体に埋
め込むようにしてもよい。
In the hot-wire insulation diagnostic apparatus configured as described above, when the temperature of the winding rises due to the operation of the equipment, the main insulating material 3 is thermally degraded and discolored, and the object to be measured in the light detection probe also discolors. In this discolored state, light transmitted from the light source 7 via the illumination optical fiber 5 passes through the object to be measured in the light detection probe and is received by the photoelectric conversion element 8 via the light receiving optical fiber 6. The colorimetric value is calculated from the signal of the photoelectric conversion element 8 and output to the deterioration degree calculating unit 11. Deterioration degree calculation unit 11, from the color specification signal from the color specification calculation unit, from the color specification signal stored in advance in the function generation unit 10,
The degree of deterioration of the measured object is detected. In this case, since the outer circumferences of the illumination optical fiber 5 and the light receiving optical fiber 6 are covered with a polyimide resin coating material, there is no heat damage. In this example, a polyimide resin was used as the coating material.
The invention is not limited to this, and an imide-based resin such as polyamide imide may be used.The light detection probe is provided in parallel with the conductor of the winding, but is not limited thereto. It may be embedded in the main insulating material between them. The light detection probe is formed of the same insulating material as the main insulating material, but may be formed of a material whose color value changes in correlation with the main insulating material. The hard ring may be made of the same insulating material as the insulating material of the object to be measured, and may be embedded integrally in the light detection probe.

[発明の効果] 上述のように、本発明の活線絶縁診断装置用の光検出
プローブは、複数の光ファイバーを1個に束ねその外周
をイミド系の被覆材で覆い光ファイバー束の一方端から
低粘度のエポキシ樹脂を真空引きして光ファイバー束内
に含浸させたので、光ファイバーの束内の空気層が除か
れ、被測定物の酸化劣化が生じることがなく精確な検出
ができる。また、イミド系の被覆材は光ファイバーのク
ラッドあるいは絶縁材との接着力が強いため、検出用プ
ローブ内の被測定物に空気の進入がないため被測定物の
酸化劣化が生じることなく精確な検出ができる。
[Effects of the Invention] As described above, the optical detection probe for a live-line insulation diagnostic device of the present invention bundles a plurality of optical fibers into one, covers the outer circumference with an imide-based coating material, and lowers the optical fiber from one end of the optical fiber bundle. Since the epoxy resin having the viscosity is evacuated and impregnated in the optical fiber bundle, the air layer in the optical fiber bundle is removed, and accurate detection can be performed without oxidative deterioration of the measured object. In addition, since the imide-based coating material has a strong adhesive force to the cladding of the optical fiber or the insulating material, there is no air entering the measurement object in the detection probe, and accurate detection without oxidation deterioration of the measurement object occurs. Can be.

【図面の簡単な説明】[Brief description of the drawings]

図は本発明の実施例を示すもので第1図は活線絶縁診断
装置の概略を示す概略図であり、第2図は第1図I−I
線断面図、第3図は光検出プローブの斜視図、第4図及
び第5図は光検出プローブの製造方法を説明する説明図
である。 1:導体、2:保護絶縁層、3:主絶縁材 4:光検出プローブ、5:照明用光ファイバー、5A:被覆材 6:受光用光ファイバー、6A:被覆材、7:光源 8:光電変換素子、9:表色演算部、10:関数発生部 11:劣化度演算部、12:表示部、13:絶縁樹脂 14:容器、15真空ポンプ、16:真空チューブ 17:硬質環、18:接着剤、19:研磨機
FIG. 1 shows an embodiment of the present invention. FIG. 1 is a schematic diagram showing an outline of a live-line insulation diagnostic device, and FIG. 2 is a diagram II in FIG.
FIG. 3 is a perspective view of the light detection probe, and FIGS. 4 and 5 are explanatory views for explaining a method of manufacturing the light detection probe. 1: Conductor, 2: Protective insulating layer, 3: Main insulating material 4: Light detection probe, 5: Optical fiber for illumination, 5A: Coating material 6: Optical fiber for receiving light, 6A: Coating material, 7: Light source 8: Photoelectric conversion element , 9: Color calculation unit, 10: Function generation unit 11: Deterioration degree calculation unit, 12: Display unit, 13: Insulating resin 14: Container, 15 vacuum pump, 16: Vacuum tube 17: Hard ring, 18: Adhesive , 19: Polishing machine

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G01N 21/00 - 21/01 G01N 21/17 - 21/61 G01N 21/84 - 21/90 G01R 31/00 - 31/12 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 6 , DB name) G01N 21/00-21/01 G01N 21/17-21/61 G01N 21/84-21/90 G01R 31 / 00-31/12

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】コアの外周がクラッドで覆われた複数の光
ファイバーを1個に束ねその外周をイミド系の被覆材で
覆って光ファイバー束を作製する第1工程と、前記光フ
ァイバー束の一方端を低粘度のエポキシ樹脂に浸漬し、
他方端を真空引きして前記エポキシ樹脂を前記光ファイ
バー束内に含浸させ空気層を除く第2工程と、前記含浸
したエポキシ樹脂を加熱硬化させる第3工程と、前記硬
化したエポキシ樹脂を有する側の前記光ファイバー束の
端部に硬質環を外設させ常温硬化型の接着剤で接着する
第4工程と、前記硬質環を接着した前記光ファイバー束
の端面を研磨する第5工程と、前記常温硬化した接着剤
を高温雰囲気中で溶融させ前記硬質環を除去する第6工
程と、前記硬質環を除去した2個の前記光ファイバー束
の前記研磨した端面を間隙を設けて対向させ前記間隙に
絶縁樹脂を充填する第7工程とからなることを特徴とす
る活線絶縁診断装置用光検出プローブの製造方法。
A first step of bundling a plurality of optical fibers each having an outer periphery of a core covered with a clad and forming an optical fiber bundle by covering the outer periphery with an imide-based coating material; Immerse in low viscosity epoxy resin,
A second step of evacuating the other end and impregnating the optical fiber bundle with the epoxy resin to remove the air layer, a third step of heat-curing the impregnated epoxy resin, and a side having the cured epoxy resin. A fourth step of externally attaching a hard ring to the end of the optical fiber bundle and bonding with a cold-setting adhesive; a fifth step of polishing the end face of the optical fiber bundle to which the hard ring is bonded; A sixth step of melting the adhesive in a high-temperature atmosphere to remove the hard ring; and providing a gap between the polished end faces of the two optical fiber bundles from which the hard ring has been removed, and placing an insulating resin in the gap. 7. A method of manufacturing a light detection probe for a hot-wire insulation diagnostic device, comprising: a filling step.
JP5950790A 1990-03-08 1990-03-08 Manufacturing method of light detection probe for hot wire insulation diagnostic device Expired - Lifetime JP2906545B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5950790A JP2906545B2 (en) 1990-03-08 1990-03-08 Manufacturing method of light detection probe for hot wire insulation diagnostic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5950790A JP2906545B2 (en) 1990-03-08 1990-03-08 Manufacturing method of light detection probe for hot wire insulation diagnostic device

Publications (2)

Publication Number Publication Date
JPH03259731A JPH03259731A (en) 1991-11-19
JP2906545B2 true JP2906545B2 (en) 1999-06-21

Family

ID=13115245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5950790A Expired - Lifetime JP2906545B2 (en) 1990-03-08 1990-03-08 Manufacturing method of light detection probe for hot wire insulation diagnostic device

Country Status (1)

Country Link
JP (1) JP2906545B2 (en)

Also Published As

Publication number Publication date
JPH03259731A (en) 1991-11-19

Similar Documents

Publication Publication Date Title
RU2547143C2 (en) Method to measure length of electric cable, which uses optic fibre element as sensor
US4827487A (en) Distributed temperature sensing system for stator windings
US6079875A (en) Apparatus for measuring the temperature of an object with a temperature sensor and method of making the temperature sensor
US5651175A (en) Method of forming a temperature duct spacer unit and method of making an inductive winding having a temperature sensing element
CN109786272B (en) Novel IGBT packaging structure with internal temperature measurement function and packaging method
JP2906545B2 (en) Manufacturing method of light detection probe for hot wire insulation diagnostic device
JP2000205968A (en) Measuring probe and measuring apparatus and facility with at least one measuring probe
JPH0880011A (en) Temperature detecting device for winding of electric rotary machine
CN107314783B (en) A kind of device and method for drawing fiber-optic grating sensor from composite material central siphon
JPH06181015A (en) Optical fiber composite electric power cable
JP2642841B2 (en) Optical fiber composite power cable
CN105300450A (en) Novel cable detection device
JPH07181086A (en) Optical fiber temperature sensor
CN214152549U (en) Power cable capable of measuring temperature and online temperature measuring system
JPH07904Y2 (en) Optical composite cable
CN103822722B (en) A kind of long-distance distributed temperature monitoring system based on optical phase conductor
RU2761933C1 (en) Spliced optical fiber with splice protection, current sensor with such a spliced optical fiber and method for protecting the spliced optical fiber
JPH06123659A (en) Optical fiber temperature sensor
JPH03226651A (en) Live wire insulation diagnostic apparatus
JP2761271B2 (en) Optical fiber temperature sensor for detecting electric wire short circuit
JPS62134612A (en) Optical fiber cable
JPS5968702A (en) Optical fiber
JPH09159839A (en) Branch part of optical fiber ribbon cord
JP2004206042A (en) Optical fiber composite cable and cable specifying method
JPS6255546A (en) Optical transmission line for detecting flood and optical cable