JP2906407B2 - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JP2906407B2
JP2906407B2 JP62289365A JP28936587A JP2906407B2 JP 2906407 B2 JP2906407 B2 JP 2906407B2 JP 62289365 A JP62289365 A JP 62289365A JP 28936587 A JP28936587 A JP 28936587A JP 2906407 B2 JP2906407 B2 JP 2906407B2
Authority
JP
Japan
Prior art keywords
layer
gaas
type
semiconductor device
ohmic contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62289365A
Other languages
Japanese (ja)
Other versions
JPH01132160A (en
Inventor
利幸 宇佐川
正義 小林
友義 三島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62289365A priority Critical patent/JP2906407B2/en
Publication of JPH01132160A publication Critical patent/JPH01132160A/en
Application granted granted Critical
Publication of JP2906407B2 publication Critical patent/JP2906407B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Bipolar Transistors (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体装置に係り、特に信頼性に優れた半
導体装置に関する。 〔従来の技術〕 従来、GaAs/AlGaAs pnp型ヘテロ接合バイポーラトラ
ンジスタのエミッタ電極には、例えばアプライド フィ
ジックス レター46巻302頁(1985)(Appl.Phys.Lett.
46,302(1985))に記載されているように、AuZn系など
の材料が用いられていた。その主たる理由は、FETにお
いてはnチャンネルFETが、バイポーラトランジスタの
場合にはnpn型がそれぞれ主流であったことによる。 〔発明が解決しようとする問題点〕 上記従来技術は、pnp型バイポーラトランジスタ等の
電子デバイス特有のp型電極の問題については配慮され
ておらず、Zn等の金属がGaAs中に非常に深く拡散し、pn
接合が劣化するという問題があった。電子デバイスでは
p型層を200〜300mm程度の厚さにすることが望ましく、
半導体レーザの様に2〜3μmと厚くできないので、Zn
等の金属がpn接合を劣化させるまで深くn型層中に拡散
してしまう。 例えばpnp型二次元電子ガスヘテロ接合バイポーラト
ランジスタ(特願昭61−4024に記載、以下2DEG−HBTと
略す)においては、二次元電子ガスの適正な形式が不可
欠である。すなわち、GaAsの高い移動度を有し、急峻な
ヘテロ接合が保存されていることが必要である。 ところが、従来p型GaAsへのオーミック電極として用
いられているAuZn系電極は、アロイを用いてオーミック
接触を形成することに特徴があるが、ZnがGaAs中を非常
に深く拡散する傾向にあり、pn接合が劣化することが見
出された。このZnの拡散は1μmにも達する場合があ
る。特に表面保護膜CVDSiO2形成時や配線工程に伴う絶
縁膜形成時にオーミック特性(比接触抵抗ρc)の劣化
が見られた。 この劣化現象は、Znの拡散によるもので、pn接合特性
の劣化及びオーミック特性ρcの劣化という問題から、
このような電子デバイスを集積回路に適用する場合に信
頼性の面から大きな問題があった。 また、エミッタ寸法の微細化に伴い、エミッタ抵抗の
低減は望ましいことである。比接触抵抗ρcは10-6Ωcm
2を越えると、大コレクタ電流領域でエミッタ抵抗が支
配的になり、電流増幅率、カットオフ周波数の劣化が表
面化してくる。 本発明の目的は、信頼性に優れたオーミック接触を有
する半導体装置を提供することにある。 〔問題点を解決するための手段〕 上記目的は、p++GaAs層又はp++InyGa1-yAs層の上に非
アロイ型の金属層を配置しオーミック接触させ、かつ、
p++GaAs層又はp++InyGa1-yAs層のp型不純物を実質的に
カーボンとし、p++GaAs層のカーボン濃度は5×1019cm
-3以上、オーミック接触の比接触抵抗は10-6Ωcm2以下
とし、p++InyGa1-yAs層のカーボン濃度は1×1019cm-3
以上、オーミック接触の比接触抵抗は10-6Ωcm2以下と
した半導体装置によって達成される。 また、p++InyGa1-yAs層は、p型GaAs又はp型AlxGa
1-xAs層に近い側はyの値を小にし、逆の側はyの値が
大になるよう組成を傾斜化することが好ましい。 非アロイ型の金属としては、この金属とオーミック接
触を形成するp++GaAs層又はp++InyGa1-yAs層への拡散が
他の層に影響を及ぼさない程度に浅いことが要求され、
Ti/Pt/Au、Mo/Au、W、WSi、Au、WN、W Al等を用いるこ
とができる。特にWSi、W Al、WN、W等は加工性に優れ
るためドライエッチング法を用いてエミッタ電極とエミ
ッタの寸法を同一にできるのでこれらの金属を用いるこ
とが好ましい。これは集積回路を形成する場合に特に有
効である。 これについて第1図を用いて説明する。第1図(a)
(b)は、本発明の概略を示す半導体装置の要部断面図
である。第1図(a)において、71は通常エミッタ領域
につながるp型GaAs層(又はp型AlxGa1-xAs)、70は5
×1019Ωcm-3程度のp型不純物を含有するp++GaAs層
(又は1×1019Ωcm-3程度のp型不純物を含有するp++I
nyGa1-yAs層、この場合前記の如くその下層はp型GaAs
層71につながる組成であり、yの値を変化させて組成が
傾斜していることが好ましい)、60は非アロイ型の金属
であってTi/Pt/Au、Mo/Au等の材料である。このような
構造は通常のリフトオフ法によって形成することができ
る。 一方、第1図(b)は、非アロイ型の金属としてWS
i、W Al、W等の加工性に優れた金属を用いた例で、こ
の場合この金属をマスクとしてp++GaAs層70、P型GaAs
層71をドライエッチングによりエッチング除去して、図
の如き形状とし得る。 〔作用〕 本発明においては、アロイ型オーミック接触と異な
り、GaAs層中に準位を形成する原子の拡散がないので信
頼性の高いオーミック接触が得られる。また同様の理由
により、比接触抵抗ρcの劣化が少なく、少なくとも10
-6Ωcm程度の値が得られる。 〔実施例〕 以下、本発明の一実施例を図面を用いて説明する。 実施例 1 pnp型2DEG−HBTに本発明を用いた例を第2図に示す。
図において、50はTi(300Å)/Pt(300Å)/Au(1500
Å)のエミッタ電極、17はCを1×1020cm-3含有するp
++GaAs(1000Å)、16はCを5×1017cm-3含有するp型
GaAs(1500Å)、15は16と同濃度のCを含有するp型Al
GaAs(1000Å)、14はSiを4×1018cm-3を含むn型AlGa
As(250Å)、13はアンドープAlGaAs(50Å)、12はア
ンドープ(p-)GaAs(1500Å)、11はCを5×1019cm-3
含むp+GaAs(5000Å)、10は半絶縁性GaAs基板である。
ベース電極51、コレクター電極52は通常の仕様で形成さ
れる。この様な多層膜はガスソースMBE法(MO−MBE法)
で形成したが、MOCVD法で形成してもよい。素子分離は
メサ分離により行なった。エミッタ電極はWSi(3500
Å)を被着後、ドライエッチングを用いて形成してもよ
い。MO−MBE法により、有機金属(例えばトリメチルガ
リウム)をガスソースとすると、C(カーボン)をp型
不純物としてドープすることができる。この場合、大略
1020cm-3までドーピングでき、800℃以上の熱工程を経
てもCが拡散することがない。 この半導体素子は、pn接合の劣化を防ぎ、比接触抵抗
ρcを10-6Ωcm2以下にできた。 なお、本実施例では、17としてp++GaAsを用いたがp++
InyGa1-yAs層を用いることもできる。 実施例 2 通常のpnp型HBTに本発明を用いた実施例を第3図に示
す。 50はMo(1500Å)/Au(1500Å)のエミッタ電極、21
はCを5×1019cm-3含むp++InyGa1-yAs層(0.5≦y≦0
で層の下でyの値が小さく、層の上でyの値が大きくな
るように傾斜している。1500Å)、20はCを6×1017cm
-3含むp型GaAs(1000Å)、19はCを6×1017cm-3含む
p型AlxGa1-xAs(x=0.45、1000Å)、18はベース層で
Siを4×1018cm-3を含むn型GaAs(1000Å)、12′はC
を2×1016cm-3含むコレクタp型GaAs(3000Å)、11は
コレクタ層でCを5×1018cm-3含むp+GaAs(3000Å)、
10は半絶縁性GaAs基板である。ベース電極51、コレクタ
電極52は通常の方法で形成する。これらの多層膜も実施
例1と同様にMO−MBE法で形成する。実施例2の効果
も、実施例1と同様であった。 なお、これらの実施例では、エミッタ領域が表面側に
形成されているエミッタトップ構造の場合の例を説明し
たが、コレクタ層が表面側に形成されるコレクタトップ
構造の場合にも、コレクタ電極の形成に本発明を適用す
ることは有効である。すなわち、コレクタ層の下側にn
層であるベース層が存在し、コレクタベース間のpn接合
の劣化の問題、コネクタ抵抗の問題が生じるが、この場
合も本発明を適用することで問題を解決できる。 〔発明の効果〕 本発明によれば、拡散性の少ない金属と高濃度のp++G
aAs又はp++InyGa1-yAsの接合を用いてエミッタ領域にオ
ーミック電極部を形成したので、pn接合の劣化を防ぎ、
比接触抵抗ρcを10-6Ωcm以下にできる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device, and more particularly to a semiconductor device having excellent reliability. [Prior Art] Conventionally, an emitter electrode of a GaAs / AlGaAs pnp type heterojunction bipolar transistor has been used, for example, in Applied Physics Letter 46: 302 (1985) (Appl. Phys. Lett.
46 , 302 (1985)), AuZn-based materials and the like have been used. The main reason for this is that n-channel FETs are mainly used in FETs, and npn-types are mainly used in bipolar transistors. [Problems to be Solved by the Invention] The above prior art does not consider the problem of the p-type electrode peculiar to an electronic device such as a pnp-type bipolar transistor, and metal such as Zn diffuses very deeply into GaAs. Then pn
There was a problem that the bonding deteriorated. In electronic devices, it is desirable that the p-type layer has a thickness of about 200 to 300 mm,
Since it cannot be made as thick as 2-3 μm like a semiconductor laser, Zn
Metal diffuses deeply into the n-type layer until the metal deteriorates the pn junction. For example, in a pnp type two-dimensional electron gas heterojunction bipolar transistor (described in Japanese Patent Application No. 61-4024, hereinafter abbreviated as 2DEG-HBT), an appropriate type of two-dimensional electron gas is indispensable. That is, it is necessary that GaAs has a high mobility and a steep heterojunction is preserved. However, AuZn-based electrodes conventionally used as ohmic electrodes for p-type GaAs are characterized by forming an ohmic contact using an alloy, but Zn tends to diffuse very deeply in GaAs. It has been found that the pn junction deteriorates. This Zn diffusion may reach as much as 1 μm. In particular, deterioration of ohmic characteristics (specific contact resistance ρc) was observed at the time of forming the surface protective film CVDSiO 2 and at the time of forming the insulating film accompanying the wiring process. This deterioration phenomenon is due to the diffusion of Zn, and from the problems of deterioration of the pn junction characteristics and deterioration of the ohmic characteristics ρc,
When such an electronic device is applied to an integrated circuit, there is a major problem in terms of reliability. Also, with miniaturization of emitter dimensions, it is desirable to reduce emitter resistance. Specific contact resistance ρc is 10 −6 Ωcm
When it exceeds 2 , the emitter resistance becomes dominant in the large collector current region, and the deterioration of the current amplification factor and the cutoff frequency comes to the surface. An object of the present invention is to provide a semiconductor device having ohmic contact with excellent reliability. [Means for Solving the Problems] The above object, p ++ GaAs layer or p ++ In y Ga 1-y As layer a metal layer of non-alloy type is disposed in ohmic contact with the top of, and,
a p-type impurity p ++ GaAs layer or p ++ In y Ga 1-y As layer and substantially carbon, carbon concentration of p ++ GaAs layer is 5 × 10 19 cm
-3 or more, the specific contact resistance of ohmic contact is 10 -6 Ωcm 2 or less, and the carbon concentration of the p ++ In y Ga 1-y As layer is 1 × 10 19 cm -3.
As described above, the specific contact resistance of the ohmic contact is achieved by the semiconductor device having the resistivity of 10 −6 Ωcm 2 or less. Further, the p ++ In y Ga 1-y As layer is formed of p-type GaAs or p-type Al x Ga
It is preferable that the value of y is small on the side closer to the 1-x As layer and the composition is graded so that the value of y is large on the opposite side. As a non-alloy type metal, the diffusion into the p ++ GaAs layer or p ++ In y Ga 1-y As layer which forms an ohmic contact with this metal should be so shallow that it does not affect other layers. Requested,
Ti / Pt / Au, Mo / Au, W, WSi, Au, WN, WAl and the like can be used. In particular, since WSi, WAl, WN, W, and the like are excellent in workability, the dimensions of the emitter electrode and the emitter can be made the same by using a dry etching method. Therefore, it is preferable to use these metals. This is particularly effective when forming an integrated circuit. This will be described with reference to FIG. Fig. 1 (a)
FIG. 2B is a cross-sectional view of a principal part of the semiconductor device, schematically illustrating the present invention. In FIG. 1A, 71 is a p-type GaAs layer (or p-type Al x Ga 1 -x As) usually connected to the emitter region, and 70 is 5
A p ++ GaAs layer containing a p-type impurity of about × 10 19 Ωcm -3 (or a p ++ I containing a p-type impurity of about 1 × 10 19 Ωcm -3)
n y Ga 1-y As layer, in which case the lower layer is p-type GaAs
The composition is connected to the layer 71, and the composition is preferably inclined by changing the value of y.) 60 is a non-alloy type metal, such as Ti / Pt / Au or Mo / Au. . Such a structure can be formed by a normal lift-off method. On the other hand, FIG. 1 (b) shows a non-alloy type metal as WS
In this example, a metal excellent in workability such as i, W Al, W, etc. is used. In this case, the p ++ GaAs layer 70 and the P-type GaAs
Layer 71 may be etched away by dry etching to form the shape as shown. [Operation] In the present invention, unlike the alloy type ohmic contact, there is no diffusion of atoms forming a level in the GaAs layer, so that a highly reliable ohmic contact can be obtained. For the same reason, the deterioration of the specific contact resistance ρc is small, and
A value of about -6 Ωcm is obtained. Embodiment An embodiment of the present invention will be described below with reference to the drawings. Embodiment 1 FIG. 2 shows an example in which the present invention is applied to a pnp type 2DEG-HBT.
In the figure, 50 is Ti (300Å) / Pt (300Å) / Au (1500
Å) The emitter electrode 17 is a p-type electrode containing C at 1 × 10 20 cm −3.
++ GaAs (1000Å), 16 is p-type containing 5 × 10 17 cm -3 of C
GaAs (1500Å), 15 is p-type Al containing the same concentration of C as 16
GaAs (1000Å), 14 is n-type AlGa containing 4 × 10 18 cm -3 of Si
As (250 °), 13 is undoped AlGaAs (50 °), 12 is undoped (p ) GaAs (1500 °), and 11 is C at 5 × 10 19 cm −3.
Including p + GaAs (5000 °), 10 is a semi-insulating GaAs substrate.
The base electrode 51 and the collector electrode 52 are formed according to ordinary specifications. Such a multilayer film is formed by gas source MBE (MO-MBE)
However, it may be formed by the MOCVD method. Element isolation was performed by mesa isolation. The emitter electrode is WSi (3500
After the deposition of Å), it may be formed by dry etching. When an organic metal (for example, trimethylgallium) is used as a gas source by MO-MBE, C (carbon) can be doped as a p-type impurity. In this case, roughly
Doping can be performed up to 10 20 cm -3, and C does not diffuse even after a heating step of 800 ° C. or more. In this semiconductor device, deterioration of the pn junction was prevented, and the specific contact resistance ρc was reduced to 10 −6 Ωcm 2 or less. In the present embodiment, p ++ GaAs is used as 17 but p ++
An In y Ga 1-y As layer can also be used. Embodiment 2 FIG. 3 shows an embodiment in which the present invention is applied to a normal pnp type HBT. 50 is an emitter electrode of Mo (1500Å) / Au (1500Å), 21
Is a p ++ In y Ga 1-y As layer containing C at 5 × 10 19 cm −3 (0.5 ≦ y ≦ 0
, The value of y is small below the layer, and the value of y is large above the layer. 1500Å), 20 is C 6 × 10 17 cm
-3 containing p-type GaAs (1000Å), 19 is a p-type Al x Ga 1-x As containing x 6 × 10 17 cm -3 (x = 0.45, 1000Å), 18 is a base layer
N-type GaAs (1000 °) containing 4 × 10 18 cm -3 of Si;
Is 2 × 10 16 cm −3, a collector p-type GaAs (3000 mm), 11 is a collector layer, p + GaAs containing 5 × 10 18 cm −3 C (3000 mm),
10 is a semi-insulating GaAs substrate. The base electrode 51 and the collector electrode 52 are formed by a usual method. These multilayer films are also formed by the MO-MBE method as in the first embodiment. The effect of the second embodiment was similar to that of the first embodiment. In these embodiments, the example in which the emitter region is formed on the surface side of the emitter top structure has been described. It is effective to apply the present invention to the formation. That is, n
The presence of the base layer, which is a layer, causes a problem of deterioration of the pn junction between the collector base and a problem of the connector resistance. In this case, the problem can be solved by applying the present invention. [Effects of the Invention] According to the present invention, a metal having low diffusivity and a high concentration of p ++ G
Since the formation of the ohmic electrode portion to the emitter region with the junction of aAs or p ++ In y Ga 1-y As, prevents deterioration of the pn junction,
The specific contact resistance ρc can be reduced to 10 −6 Ωcm or less.

【図面の簡単な説明】 第1図は、本発明を説明するための、一実施例の要部断
面図、第2図及び第3図はそれぞれ本発明の一実施例の
半導体装置の断面図である。 10……半絶縁性GaAs基板 11……p+GaAs、12……(p-)GaAs 12′……p型GaAs、13……Al GaAs 14……n型Al GaAs、15……p型Al GaAs 16……p型GaAs、17……p++GaAs 18……n型GaAs、19……p型AlxGa1-xAs 20……p型GaAs、21……p++InyGa1-yAs 50……エミッタ電極、51……ベース電極 52……コレクタ電極、60……非アロイ型金属 70……p++GaAs、71……p型GaAs
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view of a main part of one embodiment for explaining the present invention, and FIGS. 2 and 3 are sectional views of a semiconductor device of one embodiment of the present invention, respectively. It is. 10 ...... semi-insulating GaAs substrate 11 ...... p + GaAs, 12 ...... (p -) GaAs 12 '...... p -type GaAs, 13 ...... Al GaAs 14 ...... n-type Al GaAs, 15 ...... p-type Al GaAs 16: p-type GaAs, 17: p ++ GaAs 18: n-type GaAs, 19: p-type Al x Ga 1-x As 20: p-type GaAs, 21: p ++ In y Ga 1-y As 50: Emitter electrode, 51: Base electrode 52: Collector electrode, 60: Non-alloy type metal 70: p ++ GaAs, 71: p-type GaAs

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三島 友義 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (56)参考文献 特開 昭60−160664(JP,A) 特開 昭60−244065(JP,A) 特開 昭62−232122(JP,A) Applied Physics L etters vol.50 no.20 pp.1435−37(1987)   ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Tomoyoshi Mishima               1-280 Higashi Koikebo, Kokubunji-shi, Tokyo                 Central Research Laboratory, Hitachi, Ltd.                (56) References JP-A-60-160664 (JP, A)                 JP-A-60-244065 (JP, A)                 JP-A-62-232122 (JP, A)                 Applied Physics L               letters vol. 50 no. 20               pp. 1435-37 (1987)

Claims (1)

(57)【特許請求の範囲】 1.p++GaAs層又はp++InyGa1-yAs層の上に非アロイ型の
金属層を配置し、オーミック接触させ、かつ、上記p++G
aAs層又はp++InyGa1-yAs層のp型不純物を実質的にカー
ボンとし、上記p++GaAs層のカーボン濃度は5×1019cm
-3以上、上記オーミック接触の比接触抵抗は10-6Ωcm2
以下とし、上記p++InyGa1-yAs層のカーボン濃度は1×1
019cm-3以上、上記オーミック接触の比接触抵抗は10-6
Ωcm2以下とすることを特徴とする半導体装置。 2.上記金属層及び上記p++GaAs層又はp++InyGa1-yAs層
は、いずれも実質的に同一のパターンで、平面的に実質
的に同一の位置に配置されたことを特徴とする特許請求
の範囲第1項記載の半導体装置。 3.上記p++GaAs層又はp++InyGa1-yAs層及び上記金属層
は、エミッタトップ構造のpnp型バイポーラトランジス
タのエミッタ電極部を構成することを特徴とする特許請
求の範囲第1項又は第2項記載の半導体装置。 4.上記p++GaAs層又はp++InyGa1-yAs層及び上記金属層
は、コレクタトップ構造のpnp型バイポーラトランジス
タのコレクタ電極部を構成することを特徴とする特許請
求の範囲第1項又は第2項記載の半導体装置。
(57) [Claims] A non-alloy type metal layer is arranged on the p ++ GaAs layer or the p ++ In y Ga 1-y As layer and brought into ohmic contact, and the p ++ G
substantially carbon a p-type impurity aAs layer or p ++ In y Ga 1-y As layer, the carbon concentration of the p ++ GaAs layer is 5 × 10 19 cm
-3 or more, the specific contact resistance of the above ohmic contact is 10 -6 Ωcm 2
The carbon concentration of the p ++ In y Ga 1-y As layer is 1 × 1
0 19 cm -3 or more, specific contact resistance of the above ohmic contact is 10 -6
A semiconductor device having a resistivity of Ωcm 2 or less. 2. The metal layer and the p ++ GaAs layer or the p ++ In y Ga 1-y As layer are all arranged in substantially the same pattern and substantially at the same position in a plane. 2. The semiconductor device according to claim 1, wherein: 3. The p ++ GaAs layer or p ++ In y Ga 1-y As layer and the metal layer is in the range first claims, characterized in that the emitter electrode of the pnp bipolar transistor of the emitter top structure 3. The semiconductor device according to item 2 or 2. 4. The p ++ GaAs layer or p ++ In y Ga 1-y As layer and the metal layer is in the range first of the claims characterized in that it constitutes a collector electrode of the pnp type bipolar transistor collector top structure 3. The semiconductor device according to item 2 or 2.
JP62289365A 1987-11-18 1987-11-18 Semiconductor device Expired - Fee Related JP2906407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62289365A JP2906407B2 (en) 1987-11-18 1987-11-18 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62289365A JP2906407B2 (en) 1987-11-18 1987-11-18 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH01132160A JPH01132160A (en) 1989-05-24
JP2906407B2 true JP2906407B2 (en) 1999-06-21

Family

ID=17742263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62289365A Expired - Fee Related JP2906407B2 (en) 1987-11-18 1987-11-18 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2906407B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102246284B (en) * 2008-10-21 2014-02-19 瑞萨电子株式会社 Bipolar transistor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5436469A (en) * 1994-06-15 1995-07-25 Moll; Nicolas J. Band minima transistor
JP5628680B2 (en) 2008-10-21 2014-11-19 ルネサスエレクトロニクス株式会社 Bipolar transistor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60160664A (en) * 1984-01-31 1985-08-22 Fujitsu Ltd Manufacture of semiconductor device
JPS60244065A (en) * 1984-05-18 1985-12-03 Fujitsu Ltd Manufacture of hetero-junction bipolar semiconductor device
JPS62232122A (en) * 1986-04-02 1987-10-12 Toshiba Corp Manufacture of semiconductor device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Applied Physics Letters vol.50 no.20 pp.1435−37(1987)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102246284B (en) * 2008-10-21 2014-02-19 瑞萨电子株式会社 Bipolar transistor

Also Published As

Publication number Publication date
JPH01132160A (en) 1989-05-24

Similar Documents

Publication Publication Date Title
US6399971B1 (en) Semiconductor device and method for fabricating the same
JPH0673376B2 (en) Bipolar semiconductor device
US5321302A (en) Heterojunction bipolar transistor having base structure for improving both cut-off frequency and maximum oscillation frequency
JPH0525389B2 (en)
EP0177246A1 (en) Heterojunction bipolar transistor and method of manufacturing the same
JP2706034B2 (en) Transistor and manufacturing method thereof
JPH0732160B2 (en) Heterostructure bipolar transistor
JP2906407B2 (en) Semiconductor device
US20060261372A1 (en) Heterojunction bipolar transistor and manufacturing method thereof
JP3174135B2 (en) Compound semiconductor device
JP2003318184A (en) Hetero-junction bipolar transistor and its manufacturing method
EP0384113A2 (en) Multilayer base heterojunction biopolar transistor
CA1237538A (en) Lateral bipolar transistor
JP2890729B2 (en) Bipolar transistor and method of manufacturing the same
Yanagihara et al. 253-GHz f/sub max/AlGaAs/GaAs HBT with Ni/Ti/Pt/Ti/Pt-contact and L-shaped base electrode
JP2695832B2 (en) Heterojunction field effect transistor
JPH0422344B2 (en)
JPS59181060A (en) Semiconductor device
JP2830409B2 (en) Bipolar transistor and method of manufacturing the same
JP3221646B2 (en) Heterojunction bipolar transistor
Chang et al. A gold-free fully copper-metallized InP heterojunction bipolar transistor using non-alloyed ohmic contact and platinum diffusion barrier
JP3349644B2 (en) Compound semiconductor device and method of manufacturing the same
EP0264932A1 (en) Field effect transistor
JPH0312770B2 (en)
JP2834172B2 (en) Field effect transistor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees