JP2905936B2 - Engine control device - Google Patents

Engine control device

Info

Publication number
JP2905936B2
JP2905936B2 JP2328200A JP32820090A JP2905936B2 JP 2905936 B2 JP2905936 B2 JP 2905936B2 JP 2328200 A JP2328200 A JP 2328200A JP 32820090 A JP32820090 A JP 32820090A JP 2905936 B2 JP2905936 B2 JP 2905936B2
Authority
JP
Japan
Prior art keywords
engine
learning
charging efficiency
fully closed
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2328200A
Other languages
Japanese (ja)
Other versions
JPH04194347A (en
Inventor
智一郎 島田
一智 佐々木
秀樹 楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsuda KK
Original Assignee
Matsuda KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsuda KK filed Critical Matsuda KK
Priority to JP2328200A priority Critical patent/JP2905936B2/en
Priority to DE4135307A priority patent/DE4135307A1/en
Priority to KR1019910021387A priority patent/KR940008269B1/en
Publication of JPH04194347A publication Critical patent/JPH04194347A/en
Application granted granted Critical
Publication of JP2905936B2 publication Critical patent/JP2905936B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0215Introducing corrections for particular conditions exterior to the engine in relation with elements of the transmission
    • F02D41/022Introducing corrections for particular conditions exterior to the engine in relation with elements of the transmission in relation with the clutch status
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2441Methods of calibrating or learning characterised by the learning conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/28Interface circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/50Input parameters for engine control said parameters being related to the vehicle or its components
    • F02D2200/502Neutral gear position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2474Characteristics of sensors

Description

【発明の詳細な説明】 (産業上の利用分野) 本願発明は、エンジンの制御装置に関するものであ
る。
The present invention relates to an engine control device.

(従来の技術) 一般にエンジンにおいては、スロットルバルブの開度
は燃料制御あるいは回転数制御等において重要なファク
ターとなることから、各制御精度を高水準に維持するた
めには、該スロットルバルブの開度の基準となる全閉角
(全閉位置)を常時正確に把握しておく必要がある。ま
た、このスロットルバルブの開度は、長期の使用による
経年変化等によって次第に変化するものであることか
ら、常時最新の値に更新設定しておくことが重要であ
る。このような観点から、従来より、スロットルバルブ
が全閉位置にある場合にその時のスロットル開度センサ
の出力を順次学習し最新の全閉角情報として記憶するこ
とが広く行なわれている。
(Prior Art) Generally, in an engine, the opening degree of a throttle valve is an important factor in fuel control, rotation speed control, and the like. In order to maintain each control accuracy at a high level, the opening of the throttle valve is generally high. It is necessary to always accurately grasp the fully-closed angle (fully-closed position) serving as a reference for the degree. Further, since the opening of the throttle valve gradually changes due to aging or the like due to long-term use, it is important to always update and set the latest value. From such a viewpoint, conventionally, when the throttle valve is at the fully closed position, it is widely practiced to sequentially learn the output of the throttle opening degree sensor at that time and store it as the latest fully closed angle information.

一方、このような全閉角学習は、エンジンの各回転数
毎に行う必要があり、そのためにはエンジンの減速時に
これを行うのが好都合であり、かかる場合には正確に減
速状態を判定することが必要となる。このような減速状
態の判定を行う手段としては種々の方法があるが、その
一つとして例えば、実公昭54−14826号公報に開示され
るように、エンジンの充填効率を基準とし、該充填効率
が各エンジン回転数毎に予じめ設定した設定値より低い
場合にはこれを減速状態と判定する方法が知られてい
る。
On the other hand, such full-closed angle learning needs to be performed for each revolution of the engine, and it is convenient to perform this at the time of deceleration of the engine. In such a case, the deceleration state is accurately determined. It is necessary. There are various methods for determining such a deceleration state. One of the methods is, for example, as disclosed in Japanese Utility Model Publication No. 54-14826, based on the charging efficiency of the engine. If is lower than a preset value set for each engine speed, a method for determining this as a deceleration state is known.

このような充填効率による減速判定の方法を第4図を
参照して略述すると、先ず予じめエンジンの各回転数毎
にスロットルバルブを全閉とした場合における充填効率
を求めてこれを全閉ラインとするとともに(即ち、この
全閉ラインよりも低充填効率領域は一応、スロットル開
度は全閉であると考えられる)、検出値のバラツキを考
慮して、現実の制御においてはこの実際の全閉ラインよ
りも若干高充填効率側に減速判定の基準となる全閉判定
ラインを設けるようにしている。そして、あるエンジン
回転数における充填効率がこの全閉判定ラインより低充
填効率側にある場合には減速運転状態と判定するもので
ある。
The method of determining the deceleration based on the charging efficiency will be briefly described with reference to FIG. 4. First, the charging efficiency when the throttle valve is fully closed for each rotation speed of the engine is determined in advance, and this is calculated. In addition to the closed line (that is, the throttle opening is considered to be fully closed in a lower filling efficiency region than the fully closed line), and in the actual control, A fully-closed determination line serving as a reference for deceleration determination is provided on a slightly higher filling efficiency side than the fully-closed line. If the charging efficiency at a certain engine speed is on the lower charging efficiency side than the fully closed determination line, it is determined that the vehicle is in the deceleration operation state.

(発明が解決しようとする課題) ところが、このように充填効率に基づいて減速判定を
行い、減速時にはスロットルバルブの全閉角学習をする
場合、特にエンジン回転数がアイドル回転数に近い領域
においては、以下に述べるような理由により学習精度が
低下するという懸念があった。
(Problems to be Solved by the Invention) However, when the deceleration is determined based on the charging efficiency as described above and the fully closed angle of the throttle valve is learned at the time of deceleration, especially in a region where the engine speed is close to the idle speed. However, there is a concern that the learning accuracy is reduced for the following reasons.

即ち、第4図に示すように、全閉ラインはアイドル回
転数に対応した所定位置(点a)から高回転側に移行す
るに従って充填効率が低下するような特性を示す。これ
に対して、エンジンが無負荷運転あるいは有負荷運転さ
れる場合の各エンジン回転数に対応する充填効率は、そ
れぞれ無負荷運転ライン及び有負荷運転ラインで示すよ
うに、上記点aから高回転側に移行するに従って次第に
充填効率が高くなる傾向を示し、またこれら相互間にお
いては常時有負荷運転ラインが高充填効率側に位置して
いる。従って、有負荷運転ラインと無負荷運転ラインは
低回転域において相互に近接し、特にアイドル回転数の
近傍領域においては無負荷運転ラインと有負荷運転ライ
ンはそれぞれ上記全閉判定ラインに対して点b及び点c
で交差することとなる。
That is, as shown in FIG. 4, the fully-closed line has such a characteristic that the filling efficiency decreases as the position shifts from the predetermined position (point a) corresponding to the idling speed to the high speed side. On the other hand, the charging efficiency corresponding to each engine speed when the engine is operated with no load or with load, as shown by the no-load operation line and the with-load operation line, respectively, , The charging efficiency tends to gradually increase as the position shifts to the side, and the always-loaded operation line is located on the high charging efficiency side between them. Therefore, the loaded operation line and the no-load operation line are close to each other in the low rotation speed range. b and point c
Will intersect.

このような現象は後述するように学習制御上において
非常に重要な点であるにもかかわらず、従来は有負荷運
転あるいは無負荷運転のいずれであっても検出充填効率
が上記全閉判定ラインより低充填効率側に位置している
場合には一律に全閉角学習を実行するようにしていたた
め、高回転数域においてはなんら問題は生じないが、低
回転数域、例えば無負荷運転状態にあっては、例えば点
cに対応するエンジン回転数ne2より低回転側において
は減速状態(即ち、ストットルバルブは全閉)であるの
かそれとも無負荷運転(即ち、スロットルバルブが若干
開いた状態)であるのかの判別が困難で、場合によって
は無負荷運転でるにもかかわらずこれを減速運転と誤っ
て判定し、全閉角学習をしてしまうということが起こり
得る。また、同様に無負荷運転状態にあっては、点bに
対応するエンジン回転数ne1より低回転側においては減
速状態(即ち、スロットルバルブは全閉)であるのかそ
れとも有負荷運転であるのかの判別が困難で、場合によ
っては有負荷運転であるにもかかわらずこれを減速運転
と誤って判定し、全閉角学習をしてしまうということが
起こり得る。このような誤学習が行なわれることによ
り、全閉角学習の精度が低下し、延いてはエンジンの運
転制御に悪影響を及ぼすことにもなりかねない。
Although such a phenomenon is a very important point in learning control as described later, conventionally, the detection filling efficiency is higher than that of the fully closed determination line in either the loaded operation or the no-load operation. When it is located on the low filling efficiency side, the full closing angle learning was uniformly executed, so no problem occurs in the high rotation speed range, but in the low rotation speed range, for example, in the no-load operation state is a, for example, the deceleration state at low rotational side of the engine speed ne 2 corresponding to the point c (i.e., stock torr valve fully closed) a is the one or no-load operation (i.e., a state in which the throttle valve is slightly opened) It is difficult to determine whether or not this is the case. In some cases, this may be erroneously determined to be a deceleration operation despite the no-load operation, and the fully closed angle learning may be performed. Further, in the same manner to the no-load operating state, a deceleration state in the low rotational side of the engine speed ne 1 corresponding to the point b (i.e., the throttle valve is fully closed) or in the non of whether or chromatic load operation is Is difficult to determine, and in some cases, the operation may be erroneously determined to be the deceleration operation despite the loaded operation, and the full closing angle learning may be performed. By performing such erroneous learning, the accuracy of the fully closed angle learning may be reduced, which may adversely affect the operation control of the engine.

このような問題に対処する一つの方法として、全閉角
学習を点cに対応する回転数ne2より高回転数側におい
てのみ実行し、これより低回転数側においてはこれを禁
止するという手法を採ることが考えられるが、このよう
にした場合には、全閉角学習の可能な回転数範囲が狭い
ことから、その学習頻度が少なく、結果的に学習精度の
向上という点においてネックとなっていた。
Technique of this as that one way to deal with problems, and performed only in the high rotational speed side than the rotational speed ne 2 corresponding full close angle learning point c, to prohibit it in than this lower rotational speed side However, in such a case, since the range of the number of revolutions at which the full-closed angle learning can be performed is narrow, the frequency of the learning is low, and as a result, the learning accuracy is a bottleneck. I was

そこで本願発明では、全閉角学習の可能領域をより低
回転側に拡大して学習頻度を増加させもって学習精度の
より一層の向上を図らんとしてなされたものである。
Therefore, in the present invention, the possible range of the fully closed angle learning is expanded to a lower rotation side to increase the learning frequency, thereby further improving the learning accuracy.

(課題を解決するための手段) 本願発明ではかかる課題を解決するための具体的手段
として、 (I)請求項1記載の発明においては、スロットルバル
ブの開度を検出してそれに対応した信号を出力する開度
検出手段と、エンジンの充填効率を吸入空気量とエンジ
ン回転数に基いて検出する充填効率検出手段と、上記充
填効率検出手段により検出される検出充填効率がエンジ
ン回転数毎に予じめ設定した設定値よりも低い場合にお
いて上記開度検出手段から出力される開度信号を上記ス
ロットルバルブの全閉角として順次学習する学習手段と
を備えたエンジンの制御装置において、エンジンとその
駆動系との接続状態を検出する接続状態検出手段を設
け、該接続状態検出手段により非接続状態が検出された
場合には上記学習手段による学習を禁止するようにした
ことを特徴とし、 (II)請求項2記載の発明では、請求項1記載の発明に
おいて、接続状態検出手段によりエンジンとその駆動系
との非接続状態が検出された場合であっても、エンジン
回転数が所定回転数以上である場合には学習手段による
学習を実行するようにしたことを特徴としている。
(Means for Solving the Problems) In the present invention, as specific means for solving the problems, (I) In the invention described in claim 1, the opening degree of the throttle valve is detected and a signal corresponding thereto is detected. The opening degree detecting means for outputting, the charging efficiency detecting means for detecting the charging efficiency of the engine based on the intake air amount and the engine speed, and the detected charging efficiency detected by the charging efficiency detecting means are predicted for each engine speed. An engine control device comprising: a learning unit that sequentially learns an opening signal output from the opening detection unit as a fully closed angle of the throttle valve when the opening signal is lower than a preset set value. A connection state detection means for detecting a connection state with the drive system is provided. When the connection state detection means detects a non-connection state, learning by the learning means is performed. (II) In the invention according to the second aspect, in the invention according to the first aspect, when the connection state detecting means detects a non-connection state between the engine and its drive system. Even if the engine speed is equal to or higher than the predetermined speed, learning by the learning means is performed.

(作用) 本願発明ではこのような構成であるからそれぞれ次の
ような作用が得られる。
(Operation) In the invention of the present application, the following operation is obtained because of such a configuration.

(i)請求項1記載の発明では、例えエンジンの充填効
率は所定値より以下であって充填効率から言えば減速運
転領域(即ち、スロットルバルブの全閉状態)と判断さ
れる場合であっても、エンジンの無負荷運転状態が検出
された場合にはスロットルバルブの全閉角学習は禁止さ
れ、有負荷運転状態においてのみこれが実行されること
から、無負荷運転状態板における誤学習の危険性が皆無
とされ、例えば無負荷運転状態下においても全閉角学習
を行う場合に比して、全閉角学習の可能領域が拡大され
ることとなる。
(I) According to the first aspect of the invention, the charging efficiency of the engine is less than a predetermined value, and the charging efficiency is determined to be in the deceleration operation region (that is, the throttle valve is fully closed). However, if a no-load operation state of the engine is detected, the learning of the fully closed angle of the throttle valve is prohibited, and this is executed only in the loaded operation state. Is completely eliminated, for example, as compared with the case where the full-closed angle learning is performed even under the no-load operation state, so that the possible range of the full-closed angle learning is expanded.

(ii)請求項2記載の発明では、例え無負荷運転状態で
あっても、誤学習の危険性のない所定回転数以上の領域
においては全閉角学習を実行するようにしているため、
上記(i)記載の場合に比して、無負荷運転状態下で学
習が行なわれる分だけ全閉角学習の可能領域がさらに拡
大されることとなる。
(Ii) According to the second aspect of the present invention, even in the no-load operation state, the fully closed angle learning is executed in a region of a predetermined rotation speed or more where there is no risk of erroneous learning.
Compared with the case described in the above (i), the range in which the full-closed angle learning is possible is further expanded by the amount of the learning performed under the no-load operation state.

(発明の効果) 従って、本願発明のエンジンの制御装置によればそれ
ぞれ次のような効果が得られる。
(Effects of the Invention) Therefore, according to the engine control device of the present invention, the following effects can be obtained.

請求項1記載のエンジンの制御装置によれば、全閉角
学習の可能領域が拡大される分だけ学習時における全閉
角の検出頻度が増加することから、より精度の良い学習
制御が可能ならしめられるという効果が得られるもので
ある。
According to the engine control device of the first aspect, the frequency of detection of the fully closed angle during learning is increased by an amount corresponding to the expansion of the possible range of the fully closed angle learning, so that more accurate learning control is possible. The effect of being squeezed can be obtained.

請求項2記載のエンジンの制御装置によれば、上記
記載の場合よりもさらに全閉角学習の可能領域が拡大さ
れ全閉角の検出頻度がさらに高められることから、より
一層高精度の全閉角学習が可能ならしめられるという効
果が得られるものである。
According to the engine control device of the second aspect, the possible range of the full-closed angle learning is further expanded and the frequency of detecting the full-closed angle is further increased as compared with the case described above. The advantage is that the angle learning can be performed if possible.

(実施例) 以下、添付図面を参照して本願発明の好適な実施例を
説明する。
Hereinafter, a preferred embodiment of the present invention will be described with reference to the accompanying drawings.

第1実施例 第1図には、本願の請求項1記載の発明の実施例にか
かる制御装置を備えた自動車用エンジン1及びその制御
系が示されており、同図において符号2はエンジン1の
吸気通路、3は排気通路であり、この吸気通路2にはエ
アフローセンサ4と、スロットル開度センサ11によって
その開度が検出されるスロットルバルブ5とが備えられ
ている。また、上記エンジン1には、そのシリンダブロ
ック1aに設けた水温センサ6の他に、クランク角センサ
10が配置されている。さらに、このエンジン1の駆動系
には、ブレーキスイッチ7とクラッチスイッチ8とニュ
ートラル判定スイッチ9とが備えられている。尚、この
実施例のエンジン1はM/Tミッションタイプの車両に搭
載されるものであって、クラッチスイッチ8がON(即
ち、クラッチが踏み込まれた状態)で、且つニュートラ
ル判定スイッチ9がニュートラル位置を検出した時に無
負荷運転状態と判定(第2図のステップS7参照)するよ
うになっているが、例えばA/Tミッションタイプの車両
に搭載されるものにあってはニュートラル判定スイッチ
9のみで無負荷運転状態の判定が可能である(即ち、ニ
ュートラルあるいはパーキングモード時に無負荷運転と
判定する)。
First Embodiment FIG. 1 shows an automobile engine 1 provided with a control device according to an embodiment of the invention as set forth in claim 1 of the present application, and a control system thereof. An intake passage 3 is an exhaust passage. The intake passage 2 is provided with an air flow sensor 4 and a throttle valve 5 whose opening is detected by a throttle opening sensor 11. In addition to the water temperature sensor 6 provided in the cylinder block 1a, the engine 1 has a crank angle sensor.
10 are located. Further, the drive system of the engine 1 is provided with a brake switch 7, a clutch switch 8, and a neutral determination switch 9. The engine 1 of this embodiment is mounted on an M / T transmission type vehicle, and the clutch switch 8 is ON (that is, the clutch is depressed) and the neutral determination switch 9 is in the neutral position. Is detected (step S7 in FIG. 2), but for example, in a vehicle mounted on an A / T transmission type vehicle, only the neutral determination switch 9 is used. It is possible to determine the no-load operation state (that is, to determine the no-load operation in the neutral or parking mode).

このように構成されたエンジン1においては、上記各
センサにより検出されるエンジン1の運転状態に対応し
て、コントロールユニット20により上記スロットルバル
ブ5の全閉角学習が行なわれるが、この実施例のものに
おいては本願の請求項1記載の発明を適用して、エンジ
ンの充填効率が所定値以下であってスロットルバルブ5
が全閉であると考えられる場合で且つエンジン1が有負
荷運転状態にある場合においてのみ全閉角学習を行うよ
うにしている。
In the engine 1 configured as described above, the fully closed angle learning of the throttle valve 5 is performed by the control unit 20 in accordance with the operating state of the engine 1 detected by the sensors. In this case, the invention described in claim 1 of the present application is applied, and when the charging efficiency of the engine is equal to or less than a predetermined value and the throttle valve 5
Is fully closed and learning is performed only when the engine 1 is in a loaded operation state.

以下、第2図のフローチャート及び第4図を参照して
全閉角学習の実際を説明する。
Hereinafter, the actual operation of the fully closed angle learning will be described with reference to the flowchart of FIG. 2 and FIG.

制御開始後、先ず制御の前提として、現在のエンジン
水温に対応して全閉スロットル開度thidlを所定値
(k0)に設定する(ステップS1)。
After the start of the control, as a premise of the control, the fully closed throttle opening thidl is set to a predetermined value (k 0 ) corresponding to the current engine water temperature (step S1).

次に、現在のエンジン回転数(Ne)と、TVOセンサ出
力(thopn)と、吸入空気量に対応するエアフローセン
サ出力(vs)と、ブレーキスイッチ信号(xbrk)と、上
記クラッチスイッチ8とニュートラル判定スイッチ9の
組み合せからなるノーロードスイッチ信号(xnld)とを
それぞれ読み込む(ステップS2〜S7)。そして、これら
各検出値のうち、エアフローセンサ出力(VS)とエンジ
ン回転数(Ne)とに基づいて現在の充填効率(ce=VS/N
e・K)を演算する(ステップS8)。
Next, the current engine speed (Ne), TVO sensor output (thopn), airflow sensor output (vs) corresponding to the intake air amount, brake switch signal (xbrk), clutch switch 8 and neutral determination A no-load switch signal (xnld) composed of a combination of switches 9 is read (steps S2 to S7). Then, based on the air flow sensor output (VS) and the engine speed (Ne) of the detected values, the current charging efficiency (ce = VS / N)
e · K) is calculated (step S8).

次に、現在のエンジン水温(thw)は所定値Aより高
いかどうかを判定し(ステップS9)、(thw<A)であ
る場合には、サーモワックスの動作不良を考慮して、全
閉角学習には移行しない。
Next, it is determined whether or not the current engine water temperature (thw) is higher than a predetermined value A (step S9). If (thw <A), the fully closed angle is considered in consideration of a malfunction of the thermowax. Does not transition to learning.

一方、(thw>A)である場合には、次にステップS10
において、現在のエンジン回転数Neにおける充填効率
(ce)と予じめ設定した設定値(sipol)とを比較する
(尚、この設定値(sipol)は、第4図に示す全閉判定
ライン上の充填効率を示している)。そして、ce<sipo
lである場合には現在のエンジン回転数Neに対応する充
填効率は全閉判定ラインより高充填効率側にあり、従っ
てエンジンは減速運転状態ではないと判断し、この場合
には全閉角学習には移行しない。
On the other hand, if (thw> A), then step S10
, The charging efficiency (ce) at the current engine speed Ne is compared with a preset set value (sipol) (this set value (sipol) is determined on the fully closed determination line shown in FIG. 4). Shows the filling efficiency). And ce <sipo
l, the charging efficiency corresponding to the current engine speed Ne is on the higher charging efficiency side than the fully closed determination line, and therefore, it is determined that the engine is not in the deceleration operation state. Does not transition to

一方、ce>sipolである場合には、現在エンジンは減
速運転されていると判断し、次には現在のエンジン回転
数Neと学習可能な設定回転数(ne1)とを比較する(ス
テップS11)。尚、この設定回転数ne1は、第4図に示す
ように全閉判定ラインと有負荷運転ラインとの交点bに
対応する回転数であって、この設定回転数ne1より低回
転側においては上述のように誤学習の危険性があるもの
である。従って、Ne<ne1である場合には誤学習を回避
すべく全閉角学習側には移行せず、Ne>ne1である場合
に初めて次の制御に移行する。
On the other hand, if ce> sipol, it is determined that the engine is currently being decelerated, and then the current engine speed Ne is compared with a settable speed (ne 1 ) that can be learned (step S11). ). The set speed ne 1 is a speed corresponding to the intersection b between the fully closed determination line and the loaded operation line as shown in FIG. 4, and is lower than the set speed ne 1 . Is a risk of erroneous learning as described above. Accordingly, Ne <does not enter the full-close learning side in order to avoid erroneous learning when it is ne 1, Ne> shifts the first time to the next control in the case of ne 1.

続いて、減速状態の判定に完全を期すために、さらに
現在ブレーキが踏まれた状態(xbrk=1)かどうかを判
断する(ステップS12)。そして、xbrk≠1である場合
には、充填効率からみれば減速領域にあるがまだ完全に
減速運転には移行していないと判断して、この場合は全
閉角学習には移行せず、xbrk=1である場合に初めて完
全に減速状態であると判断し、次にステップS13におい
て現在は無負荷運転状態であるかどうか(即ち、xnld=
1かどうか)を判定し、xnld=1である場合(即ち、無
負荷運転状態)には全閉角学習わ行わず、xnld≠1であ
る場合(即ち、有負荷運転状態)である場合に初めて全
閉角学習に移行し、現在のスロットルバルブ開度(tvop
n)を全閉角(thidl)として学習する(ステップS1
4)。
Next, in order to complete the determination of the deceleration state, it is further determined whether or not the brake is currently applied (xbrk = 1) (step S12). If xbrk ≠ 1, it is determined that the vehicle is in the deceleration region from the viewpoint of the charging efficiency but has not yet completely shifted to the deceleration operation. In this case, the process does not shift to the fully closed angle learning, When xbrk = 1, it is determined that the vehicle is completely decelerated for the first time. Then, in step S13, it is determined whether the vehicle is currently in a no-load operation state (that is, xnld =
1 is determined, and when xnld = 1 (ie, no-load operation state), fully closed angle learning is not performed, and when xnld ≠ 1 (ie, with load operation state), The transition to fully closed angle learning for the first time and the current throttle valve opening (tvop
n) is learned as the fully closed angle (thidl) (step S1)
Four).

このように、例えばエンジン充填効率からすれば減速
運転状態(即ち、スロットルバルブは全閉)であると判
断される場合であっても、エンジン1が無負荷運転状態
にある場合にはスロットルバルブ開度の全閉角学習を禁
止し、有負荷運転状態においてのみこれを実行すること
により、誤学習のない全閉学習が可能な最低エンジン回
転数の範囲を、第4図の回転数ne2(従来の制御におけ
る最低エンジン回転数)から回転数ne1まで低回転側に
拡大することが可能になるものである。従って、従来の
場合に比して、学習可能回転数が低回転側に移行した分
だけ全閉角学習時における全閉角の検出頻度が増加し、
結果的に学習精度が向上し、延いてはエンジンの燃料制
御あるいは回転数制御の制御精度の向上に寄与し得るも
のである。
In this way, for example, even if it is determined that the engine 1 is in the no-load operation state even if it is determined that the engine is in the deceleration operation state (that is, the throttle valve is fully closed) from the viewpoint of the engine charging efficiency, the throttle valve is opened. By prohibiting the full-closed angle learning of the degree and executing it only in the loaded operation state, the range of the minimum engine speed at which the fully-closed learning without erroneous learning is possible is set to the rotation speed ne 2 (FIG. 4). from the lowest engine speed) in the conventional control to the rotational speed ne 1 in which it is possible to expand the low-rotation. Therefore, as compared with the conventional case, the frequency of detecting the fully closed angle at the time of the fully closed angle learning increases by an amount corresponding to the shift of the learnable rotation speed to the low rotation side,
As a result, the learning accuracy is improved, which can contribute to the improvement of the control accuracy of the engine fuel control or the rotational speed control.

第2実施例 次に、第3図を参照して本願の請求項2記載の発明の
実施例にかかるエンジンの制御装置における制御を説明
すると、この実施例の制御は、上記第1実施例の制御に
おいてはエンジンが無負荷運転されている状態において
は完全に全閉角学習を禁止するようにしていたのに対し
て、例え無負荷運転状態であっても誤学習の危険性がな
い範囲においては全閉角学習を実行することによって全
閉角学習時における全閉角の検出頻度をより増加させ、
もって全閉角学習の制御精度のより一層の向上を図った
ものである。即ち、全閉角学習の実行の判断基準とし
て、第4図の点bに対応する回転数ne1と点cに対応す
る回転数ne2の二つの基準回転数をもち、有負荷運転状
態での減速時には回転数ne1以上の領域においてのみ全
閉角学習を行い、無負荷運転状態においては回転数ne2
以上の領域において全閉角学習を実行するようにし、も
って全閉角の検出頻度の増加と誤学習の排除とをより一
層促進させたものである。
Second Embodiment Next, control in an engine control device according to an embodiment of the invention as set forth in claim 2 of the present application will be described with reference to FIG. 3. The control in this embodiment is the same as that in the first embodiment. In the control, the fully closed angle learning was completely prohibited when the engine was running with no load, but in the range where there was no risk of erroneous learning even in the no-load operation state. Increases the detection frequency of the full-close angle during full-close angle learning by performing full-close angle learning,
Thus, the control accuracy of the fully closed angle learning is further improved. That is, as a criterion of the execution of all the close angle learning, has two reference rotational speed of the rotational speed ne 2 corresponding to the rotational speed ne 1 and the point c which corresponds to the point b of FIG. 4, in a load-driving state during deceleration performs all close angle learning only in the rotational speed ne 1 or more regions, the rotation speed is in the no-load operation state ne 2
The full-closed angle learning is performed in the above-described region, thereby further increasing the detection frequency of the full-closed angle and eliminating erroneous learning.

具体的には、第3図のステップQ10において充填効率
から減速状態か否かを判定した後、次に現在無負荷運転
状態かどうかを判定する(ステップQ11)。そして、xnl
d≠1(有負荷運転)である場合には回転数ne1以下の領
域で、またxnld=1(無負荷運転)の場合には回転数ne
2以下の領域ではそれぞれ全閉角学習は行わず、有負荷
運転で且つ回転数ne1以上の領域及び無負荷運転で回転
数ne2以上の領域において初めて全閉角学習が可能と
し、この場合にはそれぞれステップQ14において減速運
転の確認を行った後、全閉角学習を実行する(ステップ
Q15)。
Specifically, after determining whether or not the vehicle is in a deceleration state from the charging efficiency in step Q10 of FIG. 3, it is next determined whether or not the vehicle is in a no-load operation state (step Q11). And xnl
When d ≠ 1 (loaded operation), the rotation speed ne is less than or equal to 1 , and when xnld = 1 (no load operation), the rotation speed ne
All close angle learning in the 2 following regions, respectively is not performed, to allow for the first time all close angle learning in rotational speed ne 2 or more regions in and rotational speed ne 1 or more areas and no-load operation with a load-operation, in this case After the deceleration operation is confirmed in step Q14, the fully closed angle learning is executed (step
Q15).

このような制御とすることにより、有負荷運転及び無
負荷運転のいずれにおいても全閉角の誤学習が完全に排
除されるものである。
With such control, erroneous learning of the fully closed angle is completely eliminated in both the loaded operation and the no-load operation.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本願発明の第1実施例にかかる制御装置を備え
たエンジンの要部縦断面図、第2図はその制御フローチ
ャート、第3図は第2実施例にかかる制御装置における
制御フローチャート、第4図は充填効率に対する減速特
性図である。 1……エンジン 2……吸気通路 3……排気通路 4……エアフローセンサ 5……スロットルバルブ 6……水温センサ 11……スロットル開度センサ 20……コントロールユニット
1 is a longitudinal sectional view of an essential part of an engine provided with a control device according to a first embodiment of the present invention, FIG. 2 is a control flowchart thereof, FIG. 3 is a control flowchart of a control device according to a second embodiment, FIG. 4 is a deceleration characteristic diagram with respect to the charging efficiency. DESCRIPTION OF SYMBOLS 1 ... Engine 2 ... Intake passage 3 ... Exhaust passage 4 ... Air flow sensor 5 ... Throttle valve 6 ... Water temperature sensor 11 ... Throttle opening sensor 20 ... Control unit

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−196142(JP,A) 特開 平2−161137(JP,A) 特開 昭63−223356(JP,A) 特開 平4−60152(JP,A) (58)調査した分野(Int.Cl.6,DB名) F02D 45/00 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-2-196142 (JP, A) JP-A-2-161137 (JP, A) JP-A-63-223356 (JP, A) JP-A-4- 60152 (JP, A) (58) Field surveyed (Int. Cl. 6 , DB name) F02D 45/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】スロットルバルブの開度を検出してそれに
対応した信号を出力する開度検出手段と、エンジンの充
填効率を吸入空気量とエンジン回転数に基いて検出する
充填効率検出手段と、上記充填効率検出手段により検出
される検出充填効率がエンジン回転数毎に予じめ設定し
た設定値よりも低い場合において上記開度検出手段から
出力される開度信号を上記スロットルバルブの全閉角と
して順次学習する学習手段とを備えたエンジンの制御装
置であって、エンジンとその駆動系との接続状態を検出
する接続状態検出手段を設け、該接続状態検出手段によ
り非接続状態が検出された場合には上記学習手段による
学習を禁止するようにしたことを特徴とするエンジンの
制御装置。
An opening degree detecting means for detecting an opening degree of a throttle valve and outputting a signal corresponding thereto, a charging efficiency detecting means for detecting an engine charging efficiency based on an intake air amount and an engine speed, When the detected charging efficiency detected by the charging efficiency detecting means is lower than a preset value set for each engine speed, the opening signal output from the opening detecting means is changed to the fully closed angle of the throttle valve. A control device for an engine, comprising: learning means for learning sequentially as a connection state, wherein a connection state detection means for detecting a connection state between the engine and its drive system is provided, and the disconnected state is detected by the connection state detection means. An engine control device characterized in that learning by the learning means is prohibited in such a case.
【請求項2】請求項1において、接続状態検出手段によ
りエンジンとその駆動系との非接続状態が検出された場
合であっても、エンジン回転数が所定回転数以上である
場合には学習手段による学習を実行するようにしたこと
を特徴とするエンジンの制御装置。
2. The learning means according to claim 1, wherein even when the connection state detecting means detects a disconnected state between the engine and its drive system, if the engine speed is equal to or higher than a predetermined speed. A control device for an engine, wherein learning by the engine is performed.
JP2328200A 1990-11-27 1990-11-27 Engine control device Expired - Lifetime JP2905936B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2328200A JP2905936B2 (en) 1990-11-27 1990-11-27 Engine control device
DE4135307A DE4135307A1 (en) 1990-11-27 1991-10-25 IC engine controller with suppression of learning process - recognises complete closure of throttle from signals produced by various sensors and air intake flowmeter
KR1019910021387A KR940008269B1 (en) 1990-11-27 1991-11-27 Engine controlling apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2328200A JP2905936B2 (en) 1990-11-27 1990-11-27 Engine control device

Publications (2)

Publication Number Publication Date
JPH04194347A JPH04194347A (en) 1992-07-14
JP2905936B2 true JP2905936B2 (en) 1999-06-14

Family

ID=18207569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2328200A Expired - Lifetime JP2905936B2 (en) 1990-11-27 1990-11-27 Engine control device

Country Status (3)

Country Link
JP (1) JP2905936B2 (en)
KR (1) KR940008269B1 (en)
DE (1) DE4135307A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103221670A (en) * 2010-11-24 2013-07-24 株式会社京浜 Fully closed standard value setting unit for throttle valve, and engine control device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1150888A (en) * 1997-07-31 1999-02-23 Suzuki Motor Corp Air-fuel ratio control device of internal combustion engine
DE102004026582A1 (en) * 2004-05-28 2005-12-15 Robert Bosch Gmbh Method for activating learning processes of a control unit and control unit
FR2992025B1 (en) * 2012-06-19 2014-08-08 Peugeot Citroen Automobiles Sa METHOD FOR CONTROLLING AN AIR SUPPLY OF AN INTERNAL COMBUSTION ENGINE

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58122326A (en) * 1982-01-14 1983-07-21 Honda Motor Co Ltd Detection method of throttle valve idle opening of internal-combustion engine
JPS60249630A (en) * 1984-05-25 1985-12-10 Honda Motor Co Ltd Method of detecting full open and close degrees of throttle valve in internal-combustion engine
JPH0631563B2 (en) * 1984-11-28 1994-04-27 日本電装株式会社 Slot valve opening detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103221670A (en) * 2010-11-24 2013-07-24 株式会社京浜 Fully closed standard value setting unit for throttle valve, and engine control device
CN103221670B (en) * 2010-11-24 2016-03-09 株式会社京浜 The full cut-off reference value device of closure and the control gear of motor

Also Published As

Publication number Publication date
KR920010132A (en) 1992-06-26
JPH04194347A (en) 1992-07-14
DE4135307A1 (en) 1992-06-11
DE4135307C2 (en) 1993-04-22
KR940008269B1 (en) 1994-09-09

Similar Documents

Publication Publication Date Title
JP3593896B2 (en) Engine control device
JPH0544555B2 (en)
JPH08296465A (en) Equipment and method of determining number of cylinder operated in variable displacement engine
JP3393741B2 (en) Engine throttle opening detector
JP2905936B2 (en) Engine control device
US4473055A (en) Method and apparatus for controlling the amount of intake air in an internal-combustion engine having a supercharger
JP2712468B2 (en) Engine control device
US4841939A (en) Kick down control system
JP2844918B2 (en) Throttle valve opening control device for internal combustion engine
JP2749830B2 (en) Engine speed control method
JP3006637B2 (en) Throttle control device for internal combustion engine
JP3509361B2 (en) Intake air flow control device for internal combustion engine
KR970044710A (en) Throttle valve opening amount learning control device for idle determination and its method
JP3069212B2 (en) Fuel injection correction method
JP2891019B2 (en) Vehicle driving force control device
JP2502500B2 (en) Engine controller
KR100460921B1 (en) Fuel cut control apparatus of vehicle and method thereof
JP2533554B2 (en) Automatic transmission control device
JP2554865B2 (en) Method for controlling throttle valve opening of vehicle engine
JPS6282250A (en) Idling speed control device for internal combustion engine
JP2003193892A (en) Failure detecting device for intake air flow sensor for internal combustion engine
JPH0599010A (en) Control device for engine
JP3852973B2 (en) Electronic detector
JPH0830432B2 (en) Auxiliary air flow control device for internal combustion engine
JPH08319876A (en) Idling sensing device of engine