JP2905304B2 - Activation determination device for air-fuel ratio sensor - Google Patents

Activation determination device for air-fuel ratio sensor

Info

Publication number
JP2905304B2
JP2905304B2 JP3069845A JP6984591A JP2905304B2 JP 2905304 B2 JP2905304 B2 JP 2905304B2 JP 3069845 A JP3069845 A JP 3069845A JP 6984591 A JP6984591 A JP 6984591A JP 2905304 B2 JP2905304 B2 JP 2905304B2
Authority
JP
Japan
Prior art keywords
pump
fuel ratio
air
sensor
pump current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3069845A
Other languages
Japanese (ja)
Other versions
JPH04313055A (en
Inventor
尋善 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3069845A priority Critical patent/JP2905304B2/en
Priority to US07/842,624 priority patent/US5172678A/en
Priority to DE69221185T priority patent/DE69221185T2/en
Priority to EP92104075A priority patent/EP0507115B1/en
Publication of JPH04313055A publication Critical patent/JPH04313055A/en
Application granted granted Critical
Publication of JP2905304B2 publication Critical patent/JP2905304B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/4065Circuit arrangements specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1477Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation circuit or part of it,(e.g. comparator, PI regulator, output)
    • F02D41/148Using a plurality of comparators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1493Details
    • F02D41/1494Control of sensor heater

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、機関の空燃比を検出
する空燃比センサを劣化させることなく、空燃比センサ
の活性点を精度よく検出できるようにした空燃比センサ
の活性化判定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an activation determination device for an air-fuel ratio sensor which can accurately detect an active point of the air-fuel ratio sensor without deteriorating an air-fuel ratio sensor for detecting an air-fuel ratio of an engine. .

【0002】[0002]

【従来の技術】近時、内燃機関の吸入混合気の空燃比
を、使用空燃比の全域にわたり精度よく目標値に制御す
るため、排気系に全領域空燃比センサを設けて、空燃比
と相関する排気成分を検出して、燃料供給量をフィード
バック制御することが提案されている。
2. Description of the Related Art In recent years, in order to accurately control the air-fuel ratio of the intake air-fuel mixture of an internal combustion engine to a target value over the entire range of the used air-fuel ratio, an exhaust gas system is provided with a full-range air-fuel ratio sensor to correlate with the air-fuel ratio. It has been proposed that the exhaust gas component to be detected is detected and the fuel supply amount is feedback-controlled.

【0003】このような空燃比センサは、この素子部の
温度が約400〜500℃以上とならないと機能しない
ため、センサ素子部を加熱するヒータを設けて、センサ
素子部を活性化温度以上に維持するヒータが設けられて
いるが、センサ温度が低い状態より機関を始動する場合
などでは、ヒータ起動後センサ素子温度が前記活性化温
度以上であることを確認して使用しないと、センサが破
損するおそれがある。
[0003] Such an air-fuel ratio sensor does not function unless the temperature of the element section becomes higher than about 400 to 500 ° C. Therefore, a heater for heating the sensor element section is provided, and the sensor element section is heated to an activation temperature or higher. Although a heater is provided to maintain the sensor, the sensor may be damaged if the sensor element temperature is not higher than the activation temperature after starting the heater, such as when the engine is started from a low sensor temperature. There is a possibility that.

【0004】この空燃比センサの活性化判定方法は種々
提案されており、このようなものとしては、たとえば、
特開昭61−241652号公報に記載されたごとく、
センサのヒータ印加後の所定時間経過時にセンサの活性
化が完了したと判別する方法や、特開昭64−9357
号公報に記載されたごとく、センサのポンプ素子へ電流
を流した状態にて電池素子およびポンプ素子の電極間電
圧が所定範囲内にあるとき活性状態と判別する方法など
が知られている。この従来例を、以下、図において説明
する。
Various methods for determining the activation of the air-fuel ratio sensor have been proposed.
As described in JP-A-61-241652,
A method for determining that activation of a sensor has been completed when a predetermined time has elapsed after application of a heater to a sensor, and a method disclosed in Japanese Patent Application Laid-Open No. 64-9357.
As described in Japanese Patent Application Laid-Open Publication No. H11-264, there is known a method of determining an active state when the voltage between the electrodes of a battery element and a pump element is within a predetermined range in a state where a current flows to a pump element of a sensor. This conventional example will be described below with reference to the drawings.

【0005】図8は空燃比センサを用いて空燃比制御を
行う従来のエンジン制御系の構成図である。また、図1
は、従来および後述するこの発明の空燃比制御装置の一
実施例の構成図、図9は従来のセンサの起動方法を説明
するセンサ起動時のタイムチャートである。以下、従来
装置の説明に際し、図8および図9(従来のセンサ起動
時のタイムチャート)に基づき説明するが、必要に応じ
て図1を援用して述べる。
FIG. 8 is a block diagram of a conventional engine control system for performing air-fuel ratio control using an air-fuel ratio sensor. FIG.
FIG. 9 is a configuration diagram of an embodiment of an air-fuel ratio control apparatus according to the present invention, which will be described later, and FIG. 9 is a time chart at the time of sensor startup for explaining a conventional sensor startup method. Hereinafter, the conventional apparatus will be described with reference to FIGS. 8 and 9 (a conventional time chart at the time of starting the sensor), and will be described with reference to FIG. 1 as necessary.

【0006】図8において、1は空燃比センサであり、
エンジン30の排気管31に取り付けられており、2は
空燃比センサ1のセンサ制御アンプ、3はエンジン回転
センサ、4は吸気量センサ、5はエンジン30の冷却水
温センサ、6は燃料噴射弁、7は空燃比制御装置、8は
スロットル弁、9はスロットル弁8のスロットル開度セ
ンサ、32は吸気管である。
In FIG. 8, reference numeral 1 denotes an air-fuel ratio sensor,
2 is a sensor control amplifier of the air-fuel ratio sensor 1, 3 is an engine rotation sensor, 4 is an intake air amount sensor, 5 is a cooling water temperature sensor of the engine 30, 6 is a fuel injection valve, 7 is an air-fuel ratio control device, 8 is a throttle valve, 9 is a throttle opening sensor of the throttle valve 8, and 32 is an intake pipe.

【0007】この図8において、エンジン回転センサ3
はエンジン回転数Neを検出し、吸気量センサ4は吸気
量Qe を検出し、スロットル開度センサ8はスロットル
開度θを検出し、冷却水温センサ5は冷却水温WTを検
出し、これらの検出値をそれぞれ空燃比制御装置7に出
力するようにしており、これらの検出値はエンジン30
の運転状態を示す状態量である。
In FIG. 8, an engine rotation sensor 3
Detects the engine speed Ne, the intake air amount sensor 4 detects the intake air amount Qe, the throttle opening degree sensor 8 detects the throttle opening degree θ, the cooling water temperature sensor 5 detects the cooling water temperature WT, and these detections are performed. Values are output to the air-fuel ratio control device 7, and these detected values are
Is a state quantity indicating the operating state of the vehicle.

【0008】また、スロットル弁8を通して導入した吸
気と、吸気管32において、燃料噴射弁6から噴射され
た燃料との混合気の空燃比は、排気管31に取り付けら
れた空燃比センサ1で、センサ制御アンプ2を用いて検
出され、センサ制御アンプ2より空燃比出力が同様に空
燃比制御装置7に送出される。
The air-fuel ratio of the air-fuel mixture of the intake air introduced through the throttle valve 8 and the fuel injected from the fuel injection valve 6 in the intake pipe 32 is determined by the air-fuel ratio sensor 1 attached to the exhaust pipe 31. The air-fuel ratio output is similarly detected by the sensor control amplifier 2 and sent to the air-fuel ratio control device 7 by the sensor control amplifier 2.

【0009】次に、図1より空燃比センサ1の詳細な構
成について述べる。この図1において、空燃比センサ1
はセンサ素子部11とヒータ12よりなり、センサ素子
部11は酸素ポンプ素子11a、酸素濃淡電池素子11
b、拡散室11c、大気室11dよりなり、センサ制御
アンプ2はポンプ電流制御手段としての差動積分増幅器
21、ポンプ電流検出手段としての差動増幅器22と非
反転増幅器23、ポンプ電圧検出手段としての非反転増
幅器24、ポンプ電流カット手段としてのカットトラン
ジスタ25、ヒータ制御回路26より構成されている。
Next, a detailed configuration of the air-fuel ratio sensor 1 will be described with reference to FIG. In FIG. 1, an air-fuel ratio sensor 1
Is composed of a sensor element section 11 and a heater 12. The sensor element section 11 includes an oxygen pump element 11a, an oxygen concentration cell element 11
b, a diffusion chamber 11c, and an atmosphere chamber 11d. The sensor control amplifier 2 includes a differential integration amplifier 21 as a pump current control unit, a differential amplifier 22 and a non-inverting amplifier 23 as a pump current detection unit, and a pump voltage detection unit. , A cut transistor 25 as a pump current cutting means, and a heater control circuit 26.

【0010】酸素濃淡電池素子11bの電圧が差動積分
増幅器21の反転入力端に、基準電圧Vref が非反転入
力端に接続され、酸素ポンプ素子11aには差動積分増
幅器21の出力が電流検出抵抗Rsを介して入力され、
電流検出抵抗Rsの両端電圧が差動増幅器22の非反転
入力端と反転入力端に入力され、非反転増幅器23の出
力端はその反転入力端に接続され、差動増幅器22の出
力が非反転増幅器23の非反転入力端に接続され、反転
入力にはオフセット電圧V OB が接続され、非反転増幅器
24は非反転入力に酸素ポンプ素子11aの印加電圧
が、また反転入力端にはオフセット電圧VPBが接続さ
れている。
The voltage of the oxygen concentration cell element 11b is connected to the inverting input terminal of the differential integrating amplifier 21, the reference voltage Vref is connected to the non-inverting input terminal, and the output of the differential integrating amplifier 21 is detected by the oxygen pump element 11a. Input through a resistor Rs,
The voltage across the current detection resistor Rs is input to the non-inverting input terminal and the inverting input terminal of the differential amplifier 22, the output terminal of the non-inverting amplifier 23 is connected to the inverting input terminal, and the output of the differential amplifier 22 is non-inverting. The offset voltage V OB is connected to the non-inverting input terminal of the amplifier 23, the inverting input terminal is connected to the offset voltage V OB , the non-inverting input terminal of the non-inverting input terminal is the applied voltage of the oxygen pump element 11a, and the inverting input terminal is the offset voltage VPB. Is connected.

【0011】次に、空燃比制御装置7の構成について説
明する。この空燃比制御装置7はマルチプレクサ71
a,71b、アナログ/ディジタル(以下、A/Dとい
う)変換器72a,72b、入力インタフェイス(以下
I/Fという)73、マイクロプロセッサ(以下μ−P
という)74、リードオンリメモリ(以下ROMとい
う)75、ランダム・アクセス・メモリ(以下、RAM
という)76、出力I/F77a、77b、燃料噴射弁
駆動回路78よりなり、各々、エンジン回転センサ3の
出力Neが入力I/F73を介して、吸気量センサ4の
出力Qaおよび冷却水温センサ5の出力WTがマルチプ
レクサ71bよりA/D変換器72bを介して、μ−P
74に入力され、センサ制御アンプ2の非反転増幅器2
3および非反転増幅器24の出力VO ,VPOが同様にマ
ルチプレクサ71aよりA/D変換器72aを介してμ
−P74に送出され、さらに燃料噴射弁6は燃料噴射弁
駆動回路78に接続され、出力I/F77bを介して制
御され、センサ制御アンプ2のカットトランジスタ2
5、ヒータ制御回路26は出力I/F77aを介して制
御される。
Next, the configuration of the air-fuel ratio control device 7 will be described. The air-fuel ratio control device 7 includes a multiplexer 71
a, 71b, analog / digital (hereinafter, referred to as A / D) converters 72a, 72b, an input interface (hereinafter, referred to as I / F) 73, and a microprocessor (hereinafter, μ-P).
74, a read-only memory (hereinafter referred to as ROM) 75, a random access memory (hereinafter referred to as RAM).
76), output I / Fs 77a and 77b, and a fuel injection valve driving circuit 78. The output Ne of the engine rotation sensor 3 is supplied via the input I / F 73 to the output Qa of the intake air amount sensor 4 and the cooling water temperature sensor 5 respectively. Is output from the multiplexer 71b via the A / D converter 72b to the μ-P
74, the non-inverting amplifier 2 of the sensor control amplifier 2
3 and the outputs V O and V PO of the non-inverting amplifier 24 are similarly output from the multiplexer 71a via the A / D converter 72a.
-P74, and the fuel injection valve 6 is connected to the fuel injection valve drive circuit 78 and controlled via the output I / F 77b.
The cut transistor 2 of the sensor control amplifier 2
5. The heater control circuit 26 is controlled via the output I / F 77a.

【0012】次にこの従来例の動作について説明する。
エンジン30が運転され、空燃比センサ1のヒータ12
がヒータ制御回路26で駆動制御され、センサ素子部1
1が活性化した状態では、酸素濃淡電池素子11bは、
拡散室11cと大気室11dの酸素濃度差に相当する起
電力Vsを発生する。
Next, the operation of this conventional example will be described.
The engine 30 is operated and the heater 12 of the air-fuel ratio sensor 1 is turned on.
Is driven and controlled by the heater control circuit 26, and the sensor element 1
In the state where 1 is activated, the oxygen concentration cell element 11b
An electromotive force Vs corresponding to the oxygen concentration difference between the diffusion chamber 11c and the atmosphere chamber 11d is generated.

【0013】このセンサ起電力Vsを、差動積分増幅器
21,電流検出抵抗Rsを介して所定の基準電圧Vref
となるよう、酸素ポンプ素子11aにポンプ電流IP
流して制御すると、ポンプ電流IP は、空燃比に比例す
る。
The sensor electromotive force Vs is supplied to a predetermined reference voltage Vref via a differential integrating amplifier 21 and a current detection resistor Rs.
When the pump current I P is supplied to the oxygen pump element 11a so as to control the pump current I P , the pump current I P is proportional to the air-fuel ratio.

【0014】そこで、このポンプ電流IP を検出抵抗R
sで検出し、差動増幅器22で増幅し、非反転増幅器2
3でオフセット電圧VOBを与えて、空燃比出力VO を得
る。ここに、オフセット電圧VOBはポンプ電流IP が空
燃比の過濃域(リッチ)と過薄域(リーン)で方向が異
なるため、ポンプ電流IP の方向に拘らず、空燃比出力
O を正出力とするためである。
Therefore, the pump current I P is supplied to the detection resistor R
s, amplified by the differential amplifier 22, and
At 3, the offset voltage V OB is given to obtain the air-fuel ratio output V O. Here, the offset voltage V OB is the pump current I P is the direction differs rich zone of the air-fuel ratio (rich) and lean region (lean), regardless of the direction of the pump current I P, the air-fuel ratio output V O Is set to a positive output.

【0015】空燃比制御装置7はあらかじめROM75
に記憶されたプログラムとデータに基づき、回転数N
e、吸気量Qa、スロットル開度θ、冷却水温WTなど
の情報より、μ−P74で目標空燃比を算出し、この目
標空燃比と測定した空燃比出力VO から換算した実空燃
比との偏差に基づき、燃料噴射弁6の開弁時間を補正
し、燃料噴射弁6から開弁時間に相当する燃料を噴射す
ることにより、エンジン30の空燃比を目標空燃比とな
るように、フィードバック制御する。RAM76はこの
際一時的にデータを記憶するために用いられる。
The air-fuel ratio control device 7 has a ROM 75
Based on the program and data stored in the
e, the intake air amount Qa, the throttle opening θ, the cooling water temperature WT, and the like, to calculate a target air-fuel ratio by μ-P74, and to calculate the target air-fuel ratio and the actual air-fuel ratio converted from the measured air-fuel ratio output V O. Based on the deviation, the valve opening time of the fuel injection valve 6 is corrected, and fuel corresponding to the valve opening time is injected from the fuel injection valve 6 so that the air-fuel ratio of the engine 30 becomes the target air-fuel ratio. I do. The RAM 76 is used for temporarily storing data at this time.

【0016】図9は空燃比センサ1の起動時のタイムチ
ャートであり、ここでは、エンジン始動後、空燃比がリ
ッチにある場合を例にとり説明する。空燃比センサ1の
ヒータ12はエンジン30の始動と同時にμ−P74よ
り出力I/F77aを介してヒータ制御回路26に与え
られた駆動指令により加熱を開始する。
FIG. 9 is a time chart when the air-fuel ratio sensor 1 is started. Here, a case where the air-fuel ratio is rich after the engine is started will be described as an example. The heater 12 of the air-fuel ratio sensor 1 starts heating according to a drive command given to the heater control circuit 26 from the μ-P 74 via the output I / F 77a at the same time as the start of the engine 30.

【0017】このとき、センサ素子部11の温度Tsが
約400℃以下の領域では、酸素濃淡電池素子11bの
起電力Vsは低いままであるため、差動積分増幅器21
の入力偏差は大きく、したがって、ポンプ素子11aに
は大きなポンプ電圧VP が印加される。
At this time, in a region where the temperature Ts of the sensor element section 11 is about 400 ° C. or less, the electromotive force Vs of the oxygen concentration cell element 11b remains low.
Has a large input deviation, and therefore a large pump voltage VP is applied to the pump element 11a.

【0018】このポンプ電圧出力VPOは非反転増幅器2
4でポンプ電圧VP にオフセット電圧VPBが加算された
正出力となる。このとき、ポンプ素子11aのインピー
ダンスは高いため、ポンプ電流IPは殆ど流れず、空燃
比出力VO はほぼオフセット電圧VOBとなる。
The pump voltage output V PO is supplied to the non-inverting amplifier 2
Offset voltage V PB is positive output which is added to the pump voltage V P at 4. At this time, since the impedance of the pump element 11a is high, the pump current I P hardly flows, and the air-fuel ratio output V O becomes almost the offset voltage V OB .

【0019】また、温度Tsが約400〜500℃近く
になると、酸素濃淡電池素子11bの起電力Vsが基準
電圧Vref 程度まで上がるため、この時点でセンサ起電
力Vsの基準電圧Vref で一定制御が成立して、ポンプ
電圧VP は拡散室11cに酸素を供給する方向、すなわ
ち、このポンプ電圧出力VPOがVPO≦VPBなる方向に、
ポンプ電流IP はそのときの空燃比を示す電流値に次第
に収束し、温度Tsが約700℃で収束を完了する。
When the temperature Ts approaches about 400 to 500 ° C., the electromotive force Vs of the oxygen concentration cell element 11b rises to about the reference voltage Vref. At this time, the constant control is performed with the reference voltage Vref of the sensor electromotive force Vs. established to the pump voltage V P is the direction of supplying oxygen to the diffusion chamber 11c, i.e., in the direction the pump voltage output V PO is V PO ≦ V PB,
Pump current I P is gradually converged to a current value indicating the air-fuel ratio at that time, the temperature Ts is complete convergence at about 700 ° C..

【0020】そこで、上記活性化点を検出するため、従
来、図示のごとく、ポンプ電圧出力V PO が所定の許容電
圧範囲VPB±ΔVPB以内となったときを活性化と判別す
る活性化判定方法や、さらにセンサ起電力Vsを検出す
る手段を設けて、センサ起電力Vsと基準電圧Vref と
の差ΔVsが一定範囲内でかつポンプ電圧出力V PO が所
定の許容電圧範囲VPB±ΔVPB以内となったとき、セン
サを活性化と判別するなどの活性化判定方法が提案され
ていた。
Therefore, in order to detect the above-mentioned activation point, conventionally, as shown in the figure, an activation judgment for judging activation when the pump voltage output V PO falls within a predetermined allowable voltage range V PB ± ΔV PB. A method and a means for detecting the sensor electromotive force Vs are further provided so that the difference ΔVs between the sensor electromotive force Vs and the reference voltage Vref is within a certain range and the pump voltage output V PO is within a predetermined allowable voltage range V PB ± ΔV PB An activation determination method such as determining that the sensor is activated when it is within the range has been proposed.

【0021】[0021]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の活性化判定方法においては、センサ素子部1
1の温度が低い状態で持続的にポンプ素子11aに大き
な電圧が印加されるため、センサの劣化が促進されセン
サの耐久性が悪いといった問題点が見出された。この問
題点を解決しようと、空燃比センサの起動後タイマを設
けて、このタイマ期間はカットトランジスタ25をオン
して酸素ポンプ素子11aにポンプ電流が流れないよう
にして、タイマ期間終了後にカットトランジスタ25を
オフして酸素ポンプ素子11aにポンプ電流を流す方法
が提案されている。
However, in such a conventional activation judging method, the sensor element 1
Since a large voltage is continuously applied to the pump element 11a in a state where the temperature of the sensor 1 is low, deterioration of the sensor is promoted and durability of the sensor is deteriorated. To solve this problem, a timer is provided after the start of the air-fuel ratio sensor. During this timer period, the cut transistor 25 is turned on so that the pump current does not flow through the oxygen pump element 11a. A method has been proposed in which a pump current is supplied to the oxygen pump element 11a by turning off the pump 25.

【0022】しかし、タイマ期間はセンサ特性の指標に
はなり得ないため、始動後に運転状態が変わって、セン
サ素子部11の温度上昇が低下したような場合には、タ
イマ期間が終了してもセンサが活性化していない場合が
あったり、逆に走行後の再始動時などセンサ素子部11
の温度上昇が速い場合には、既に空燃比センサ1が活性
化しているにもかかわらず、タイマ期間が終了しない場
合があったりして、正確な活性点の判定が困難であると
いった課題があった。
However, since the timer period cannot be an index of the sensor characteristics, if the operating state changes after starting and the temperature rise of the sensor element section 11 decreases, the timer period ends. The sensor element unit 11 may not be activated, or may be conversely restarted after running.
If the temperature rises quickly, the timer period may not end even though the air-fuel ratio sensor 1 has already been activated, making it difficult to determine the active point accurately. Was.

【0023】この発明は上記のような課題を解消するた
めになされたもので、空燃比センサを劣化させることな
く、空燃比センサの活性化点を精度よく検出することが
でき、かつ一旦空燃比センサが活性化した後、再度不活
性領域に入った場合でも、同様な活性化判定を行なえる
空燃比センサの活性化判定装置を得ることを目的とす
る。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and can accurately detect an activation point of an air-fuel ratio sensor without deteriorating the air-fuel ratio sensor. An object of the present invention is to provide an activation determination device for an air-fuel ratio sensor that can perform the same activation determination even when the sensor enters the inactive region again after activation.

【0024】[0024]

【課題を解決するための手段】この発明に係る空燃比セ
ンサの活性判定装置は、酸素濃淡電池素子および酸素ポ
ンプ素子とこの酸素濃淡電池素子および酸素ポンプ素子
を加熱するヒータとからなる空燃比センサと、前記酸素
濃淡電池素子の起電力が所定の基準電圧となるように前
記酸素ポンプ素子に流れるポンプ電流を制御するポンプ
電流制御手段と、このポンプ電流制御手段で制御された
ポンプ電流を検出するポンプ電流検出手段と、前記ポン
プ電流の供給を停止させるポンプ電流カット手段と、前
記酸素ポンプ素子に印加するポンプ電圧を検出するポソ
プ電圧検出手段と、前記ヒータに電力を供給するヒータ
電力供給手段と、前記ポンプ電流または機関の目標空
燃比に対応して異ならせたポンプ電圧許容範囲があらか
じめ記憶された記憶手段と、ポンプ電流カット状態にて
前記ヒータ電力供給手段から前記ヒータに電力の供給を
開始するとともに、この供給の開始時刻より所定期間ご
とに所定時間ポンプ電流カットを解除するタイマ手段
と、このタイマ手段の設定時問に基づき上記ポンプ電流
制御手段にポンプ電流制御を行わせてポンプ電圧を測定
し、このポンプ電圧が前記あらかじめ記憶されたポンプ
電圧許容範囲内となった場合に前記空燃比センサが活性
状態であると判定するとともに、前記ポンプ電流カット
状態を解除する空燃比制御装置を設けたものである。
According to the present invention, there is provided an air-fuel ratio sensor having an air-fuel ratio sensor comprising an oxygen concentration cell element and an oxygen pump element and a heater for heating the oxygen concentration cell element and the oxygen pump element. Pump current control means for controlling a pump current flowing through the oxygen pump element so that the electromotive force of the oxygen concentration cell element becomes a predetermined reference voltage, and a pump current controlled by the pump current control means is detected. Pump current detecting means, pump current cutting means for stopping supply of the pump current, positive voltage detecting means for detecting a pump voltage applied to the oxygen pump element, heater power supply means for supplying power to the heater, , serial pump voltage allowable range having different corresponding to each target air-fuel ratio of the pump current or the engine is stored in advance Means, with at the pump current cut state from the heater power supply means to start supplying power to the heater, and a timer means for releasing a predetermined time pump current cut every predetermined period from the start time of this supply, the timer Pump current based on the setting time of the means
Measure the pump voltage by causing the control means to perform pump current control
The pump voltage is stored in the previously stored pump.
When the voltage is within the allowable range, the air-fuel ratio sensor is activated.
State and the pump current cut
An air-fuel ratio control device for canceling the state is provided.

【0025】[0025]

【作用】この発明においては、ポンプ電流カット状態に
てヒータ電力供給手段からヒータに電力の供給を開始す
るとともに、開始時刻よりタイマ手段により所定期間ご
とに所定時間ポンプ電流カットを解除してポンプ電流制
御手段によりポンプ電流制御を行わせ、このときの酸素
ポンプ素子に流れるポンプ電流をポンプ電流検出手段で
ポンプ電圧を測定し、ポンプ電圧があらかじめ記憶され
たポンプ電圧許容範囲内となった場合に空燃比センサが
活性状態であると判定するとともに、ポンプ電流カット
状態を解除する。
According to the present invention, the supply of electric power to the heater is started from the heater power supply means in the pump current cut state, and the pump current cut is canceled for a predetermined time by the timer means for a predetermined time from the start time, so that the pump current is reduced. The pump current is controlled by the control means, the pump current flowing through the oxygen pump element at this time is measured by the pump current detection means, and when the pump voltage falls within the pump voltage allowable range stored in advance, the pump current becomes empty. It is determined that the fuel ratio sensor is in the active state, and the pump current cut state is released.

【0026】[0026]

【実施例】以下、この発明の空燃比センサの活性化判定
装置の実施例について図面に基づき説明する。図1はそ
の一実施例の構成図であり、前述の従来例の構成と同じ
であり、ここでの構成の再度の説明は省略するが、この
発明の装置における空燃比センサの活性化判定手順が従
来と異なるものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of an air-fuel ratio sensor activation judging device according to the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram of one embodiment of the present invention, which is the same as the configuration of the above-mentioned conventional example. Although the description of the configuration here is omitted, the activation determination procedure of the air-fuel ratio sensor in the apparatus of the present invention is shown. Is different from the conventional one.

【0027】図2はこの発明の装置により、空燃比セン
サの活性化の判定手順を説明するためのフローチャート
であり、図5はあらかじめ記憶された空燃比出力に対す
る許容ポンプ電圧範囲を示す図であり、図7はこの発明
により活性化判定を行う場合の空燃比センサ起動時のタ
イムチャートである。
FIG. 2 is a flow chart for explaining a procedure for determining the activation of the air-fuel ratio sensor by the apparatus of the present invention. FIG. 5 is a view showing a pre-stored allowable pump voltage range with respect to the air-fuel ratio output. FIG. 7 is a time chart at the time of activation of the air-fuel ratio sensor when the activation determination is performed according to the present invention.

【0028】まず、図8に示したエンジン30が始動す
ると、空燃比制御装置7のμ−P74により、図2のス
テップ101において、始動モードか否かが判定され、
始動モードである場合、ステップ102で出力I/F7
7aを介してセンサ制御アンプ2のカットトランジスタ
25をオンし、酸素ポンプ素子11aの電位を接地して
ポンプ電流が流れないようにするポンプ電流カット(I
P カット)が行われ、ステップ103で同様に出力I/
F77aを介してヒータ制御回路26を起動し、ヒータ
12に電力が供給されて、センサ素子部11の加熱が開
始される。
First, when the engine 30 shown in FIG. 8 is started, it is determined by the μ-P 74 of the air-fuel ratio control device 7 in step 101 of FIG.
If it is in the start mode, the output I / F 7 is
The cut-off transistor 25 of the sensor control amplifier 2 is turned on via the switch 7a, the potential of the oxygen pump element 11a is grounded, and the pump current cut (I
P cut), and the output I /
The heater control circuit 26 is activated via F77a, power is supplied to the heater 12, and heating of the sensor element unit 11 is started.

【0029】次に、ステップ104で図7に示すよう
に、タイマが起動され所定のタイムt1がセットされ、
ステップ105でタイムt1が終了したとき、ステップ
106でカットトランジスタ25がオフされ、酸素ポン
プ素子11aには、酸素濃淡電池素子11bの起電力を
基準電圧Vref と一致させようと差動積分増幅器21の
出力電圧が印加され、この電圧により、ポンプ電流IP
が流れる。
Next, at step 104, as shown in FIG. 7, a timer is started and a predetermined time t1 is set.
When the time t1 ends in step 105, the cut transistor 25 is turned off in step 106, and the oxygen pump element 11a controls the differential integrating amplifier 21 so that the electromotive force of the oxygen concentration cell element 11b matches the reference voltage Vref. An output voltage is applied, and this voltage causes the pump current I P
Flows.

【0030】次いで、ステップ107では、ステップ1
06のポンプカット解除とともに、図7に示すように、
タイムt0がセットされ、ポンプカット解除はこのタイ
ムt0期間中継続され、この間ステップ108でポンプ
電流IP に相当する空燃比出力VO およびポンプ電圧V
P に相当するポンプ電圧出力VPOがマルチプレクサ71
aを介してA/D変換器72aによってA/D変換され
て、μ−P74に読込まれる。
Next, in step 107, step 1
With the release of the pump cut at 06, as shown in FIG.
The time t0 is set, and the pump cut release is continued during the time t0. During this time, at step 108, the air-fuel ratio output V O and the pump voltage V corresponding to the pump current I P are set.
A multiplexer 71 outputs a pump voltage output V PO corresponding to P.
The signal is A / D converted by the A / D converter 72a via a, and is read into the μ-P 74.

【0031】このタイムt0の継続時間はセンサの応答
性、差動積分増幅器21のPI定数にもよるが、約十m
sec 程度でよく、タイムt1に比較し約1〜5%程度の
短い期間でよい。
The duration of the time t0 depends on the response of the sensor and the PI constant of the differential integrating amplifier 21.
The time period may be as short as about sec and about 1 to 5% shorter than the time t1.

【0032】次のステップ109でタイムt0が終了す
ると、終了直前の空燃比出力VO 、ポンプ電圧出力VPO
を用いてステップ110でROM75内にあらかじめ記
憶された図6に示すポンプ電圧出力許容範囲マップが読
み出され、前記ポンプ電圧出力VPOが空燃比出力VO
対応するVPO許容範囲に入っているか否かがステップ1
11で判定される。
When the time t0 ends in the next step 109, the air-fuel ratio output V O and the pump voltage output V PO immediately before the end of the time t0.
At step 110, the pump voltage output allowable range map shown in FIG. 6 stored in advance in the ROM 75 is read out, and the pump voltage output V PO enters the V PO allowable range corresponding to the air-fuel ratio output V O. Step 1
It is determined at 11.

【0033】この判定の結果、許容範囲外である場合に
は、ステップ102で再度ポンプカットが行われて、ス
テップ104からステップ111の処理手順が繰り返さ
れ、許容範囲内である場合には、空燃比センサ活性化と
判定して次処理に移る。
If the result of this determination is that the pump is out of the allowable range, pump cut is performed again in step 102, and the processing procedure from step 104 to step 111 is repeated. It is determined that the fuel ratio sensor is activated, and the process proceeds to the next process.

【0034】図5に示すように、センサ起電力Vsが基
準電圧Vref に一定制御されているときのポンプ電流、
すなわち空燃比出力VO に対するポンプ電圧、すなわ
ち、ポンプ電圧出力VPOは、センサ素子温度Tsが低い
ほど、オフセット電圧VPBよりの偏差が大きくなり、ま
た起電力Vsが基準電圧Vref に一定制御されていない
場合には、出力VPOは空燃比のいかんにかかわらず最大
出力となる。
As shown in FIG. 5, the pump current when the sensor electromotive force Vs is controlled to be constant at the reference voltage Vref,
That is, the lower the sensor element temperature Ts, the larger the deviation of the pump voltage with respect to the air-fuel ratio output V O , that is, the pump voltage output V PO , from the offset voltage V PB , and the electromotive force Vs is constantly controlled to the reference voltage Vref. If not, the output V PO becomes the maximum output regardless of the air-fuel ratio.

【0035】したがって、ポンプ電圧出力許容範囲を図
の斜線で囲まれた領域に設定することにより、センサ素
子の活性化温度の判定が精度よく行なえる。
Therefore, by setting the allowable range of the pump voltage output to a region surrounded by oblique lines in the figure, the activation temperature of the sensor element can be accurately determined.

【0036】図7は上記実施例におけるエンジン始動時
の活性化判定を示すタイムチャートであり、エンジン3
0の始動とともに、ヒータ12が駆動され、タイマによ
りタイムt1の間隔でタイムt0の期間だけポンプカッ
トが解除されたときの空燃比出力VO 、ポンプ電圧出力
POの様子を示すと同時に、そのときの空燃比出力VO
に対するポンプ電圧出力許容範囲を斜線領域で示してお
り、図では5回目のタイマでポンプ電圧出力VPOが許容
範囲内となり活性判定がなされるとともに、ポンプカッ
トが解除状態となったことを示している。
FIG. 7 is a time chart showing the activation judgment at the time of starting the engine in the above embodiment.
0, the heater 12 is driven, and the timer shows the state of the air-fuel ratio output V O and the pump voltage output V PO when the pump cut is released for the time t0 at the interval of the time t1. -Fuel ratio output V O
, The allowable range of the pump voltage output with respect to is indicated by the shaded area, and in the figure, the pump voltage output V PO is within the allowable range at the fifth timer, the activation is determined, and the pump cut is released. I have.

【0037】特に、図示していないが、従来の方法によ
る始動時の様子を示した図9と比較しても明らかなよう
に、この活性化判定時の素子温度Tsは約500℃にな
る。
In particular, although not shown, the element temperature Ts at the time of this activation determination is about 500 ° C., as is apparent from comparison with FIG. 9 showing a state at the time of startup according to the conventional method.

【0038】すなわち、上記実施例によれば、センサ起
電力一定制御が成立しえないようなセンサ素子温度が低
い状態では、タイムt0の極短期間しか酸素ポンプ素子
11aに電圧が印加されないため、活性化判定処理に伴
って空燃比センサ11が劣化、破損することがないとい
う利点がある。また、センサ出力VOにより活性と判定
するポンプ電圧出力許容範囲を変化させているため、始
動空燃比にかかわらず活性化判定が精度よくできるとい
う利点がある。
That is, according to the above embodiment, when the sensor element temperature is low such that the sensor electromotive force constant control cannot be established, the voltage is applied to the oxygen pump element 11a only for a very short period of time t0. There is an advantage that the air-fuel ratio sensor 11 is not deteriorated or damaged due to the activation determination processing. Further, since the allowable range of the pump voltage output which is determined to be active based on the sensor output V O is changed, there is an advantage that the activation can be accurately determined regardless of the starting air-fuel ratio.

【0039】次に、この発明の第2の実施例について説
明する。図3はこの第2の実施例による空燃比センサの
活性化判定手順を示すフローチャート、図6はこの第2
の実施例におけるあらかじめ記憶された目標空燃比に対
する許容ポンプ電圧範囲を示す図である。
Next, a second embodiment of the present invention will be described. FIG. 3 is a flowchart showing the procedure for determining the activation of the air-fuel ratio sensor according to the second embodiment, and FIG.
FIG. 8 is a diagram showing an allowable pump voltage range with respect to a target air-fuel ratio stored in advance in the example of FIG.

【0040】この図3において、ステップ101,10
2の処理は上記図2のステップ101,102と同じで
あり、ステップ103でヒータ制御が開始されると、ス
テップ112で冷却水温WTが冷却水温センサ5で検出
され、マルチプレクサ71bを介して、A/D変換器7
2bでA/D変換されて、μ−P74に読み込まれる。
In FIG. 3, steps 101 and 10
2 is the same as steps 101 and 102 in FIG. 2 described above. When the heater control is started in step 103, the cooling water temperature WT is detected by the cooling water temperature sensor 5 in step 112, and the cooling water temperature WT is detected via the multiplexer 71b. / D converter 7
A / D conversion is performed in 2b, and the data is read into μ-P74.

【0041】次に、ステップ113でタイムt1の値が
前記冷却水温WTに対する減少関数t1(WT)として
与えられて決定され、同様にステップ104でタイムt
1(WT)がセットされる。
Next, at step 113, the value of the time t1 is given and determined as a decreasing function t1 (WT) with respect to the cooling water temperature WT.
1 (WT) is set.

【0042】ここで、走行後短時間でのエンジン再始動
時のように、空燃比センサ1が取り付けられている排気
管31(図8)の温度が比較的高く、排気ガス温度の上
昇も速い場合には、センサ素子が活性化するのも速い
が、この場合冷却水温WTが高いと、タイムt1の期間
が短縮されるため、タイマにより活性化判定が遅れるこ
とがないという利点がある。
Here, as in the case of restarting the engine in a short time after traveling, the temperature of the exhaust pipe 31 (FIG. 8) to which the air-fuel ratio sensor 1 is attached is relatively high, and the exhaust gas temperature rises quickly. In this case, the activation of the sensor element is fast, but in this case, if the cooling water temperature WT is high, the period of the time t1 is shortened, so that there is an advantage that the activation determination is not delayed by the timer.

【0043】次に、ステップ105でタイムt1が終了
すると、ステップ107でステップ106のポンプカッ
ト解除とともに、タイムt0がセットされ、ステップ1
08でセンサ出力VO およびポンプ電圧出力VPOが読み
込まれるとともに、ステップ114で機関の運転状態を
示すエンジン回転数Ne、吸気量Qa、冷却水温WTが
読み込まれ、ステップ115でエンジン回転数Ne、吸
気量Qa、冷却水温WTに見合った目標空燃比AFOが
算出される。
Next, when the time t1 ends in step 105, the time t0 is set in step 107 along with the release of the pump cut in step 106.
At 08, the sensor output V O and the pump voltage output V PO are read, and at step 114, the engine speed Ne, the intake air amount Qa, and the cooling water temperature WT indicating the operating state of the engine are read. At step 115, the engine speed Ne, A target air-fuel ratio AFO corresponding to the intake air amount Qa and the cooling water temperature WT is calculated.

【0044】次いで、ステップ109でタイムt0が終
了すると、タイムt0終了直前の目標空燃比AFOを用
いて、ステップ116で図6に示した目標空燃比AFO
に対しあらかじめ記憶された許容ポンプ電圧範囲をRO
M75により読み出し、ステップ111で許容範囲内か
否かを判定して、許容範囲内であれば、活性化と判定す
るため、この第2の実施例によっても上記実施例と同様
の効果を得る。
Next, when time t0 ends in step 109, the target air-fuel ratio AFO shown in FIG. 6 is used in step 116 using the target air-fuel ratio AFO immediately before the end of time t0.
The allowable pump voltage range stored in advance for RO
M75 is read out, and it is determined in step 111 whether or not it is within the allowable range. If it is within the allowable range, activation is determined. Therefore, the same effect as in the above embodiment can be obtained in the second embodiment.

【0045】なお、上記各実施例では、判定時に用いる
空燃比出力VO 、ポンプ電圧出力VPOにタイムt0期間
に繰返し測定された空燃比出力VO 、ポンプ電圧出力V
POの内、タイムt0終了直前の値を用いるものとした
が、タイムt0の継続時間は上述のように空燃比出力V
O 、ポンプ電圧出力VPOの応答を考慮してあらかじめ決
められているため、タイムt0終了直前に1回のみ測定
した空燃比出力VO 、ポンプ電圧出力VPO値を用いても
良い。
[0045] In the above embodiments, the air-fuel ratio output V O is used at the time of determination, the air-fuel ratio output V O which is repeatedly measured in the time t0 period in the pump voltage output V PO, pump voltage output V
Of the PO , the value immediately before the end of the time t0 is used, but the duration of the time t0 is determined by the air-fuel ratio output V as described above.
O, previously determined by considering the response of the pump voltage output V PO
Therefore, the air-fuel ratio output V O and the pump voltage output V PO measured only once immediately before the end of the time t0 may be used.

【0046】次に、この発明の第3の実施例について説
明する。図4はこの第3の実施例による活性化判定手順
を示すフローチャートであり、タイムt1を用いて活性
化判定がなされてポンプ電流カット状態の解除がなされ
た後、ステップ117でタイムt2をセットし、タイム
t2の期間に同様にステップ109で空燃比出力VO
よびポンプ電圧出力VPOが読み込まれて、ステップ11
0〜111でポンプ電圧出力VPOが許容ポンプ電圧範囲
であるか否かを判定する。
Next, a third embodiment of the present invention will be described. FIG. 4 is a flowchart showing an activation determination procedure according to the third embodiment. After an activation determination is made using time t1 and the pump current cut state is released, time t2 is set in step 117. Similarly, during the time t2, the air-fuel ratio output V O and the pump voltage output V PO are read in step 109, and
From 0 to 111, it is determined whether or not the pump voltage output V PO is within the allowable pump voltage range.

【0047】このポンプ電圧出力VPOが許容ポンプ電圧
範囲を逸脱した場合には、ポンプ電流カットを実施しタ
イムt1をリセットし、ポンプ電圧出力VPOが許容ポン
プ電圧範囲内でステップ118でタイムt2が終了した
場合にのみ、ステップ119で空燃比出力VO を用いた
目標空燃比制御を実施する。
When the pump voltage output V PO deviates from the allowable pump voltage range, the pump current is cut and the time t1 is reset. When the pump voltage output V PO is within the allowable pump voltage range, the time t2 is set at step 118. Only when is completed, in step 119, the target air-fuel ratio control using the air-fuel ratio output V O is performed.

【0048】すなわち、この第3の実施例の場合には、
タイムt1を用いてセンサ素子温度約500℃での活性
化の判定を行った後、センサ温度が空燃比出力VO が安
定する約700℃に達する間タイムt2によりウエイテ
ィングがかけられるとともに、その期間にエンジンなど
の状態変化でセンサ素子温度が下がり、センサが不活性
になっても明確に検出できるという利点がある。
That is, in the case of the third embodiment,
After the activation at the sensor element temperature of about 500 ° C. is determined using the time t1, while waiting until the sensor temperature reaches about 700 ° C. at which the air-fuel ratio output V O is stabilized, the weighting is performed at the time t2. There is an advantage that even when the sensor element temperature decreases due to a change in state of the engine or the like during the period and the sensor becomes inactive, it can be clearly detected.

【0049】なお、図4に示す実施例ではタイムt2の
期間を一定にした場合を示したが、図2のごとく、タイ
ムt2の期間を冷却水温TWの減少関数としてもよく、
また、ポンプ電圧出力VPOが許容ポンプ電圧範囲内であ
るか否かの判定は同様に図2のごとく目標空燃比AFO
を用いてもよい。
Although the embodiment shown in FIG. 4 shows the case where the period of the time t2 is fixed, as shown in FIG. 2, the period of the time t2 may be a decreasing function of the cooling water temperature TW.
Also, whether the pump voltage output V PO is within the allowable pump voltage range is determined in the same manner as shown in FIG.
May be used.

【0050】[0050]

【発明の効果】以上のように、この発明によれば、ポン
プ電流カット状態にてヒータ電力供給手段からヒータに
電力の供給を開始するとともに、タイマ手段によりこの
開始時刻より所定期間ごとに所定時間ポンプ電流カット
を解除するようにして、ポンプ電流制御を行ってポンプ
電圧を測定し、このポンプ電圧があらかじめ記憶された
ポンプ電圧許容範囲内となった場合に、空燃比センサが
活性状態であると判定するとともに、ポンプ電流カット
状態を解除するように構成したので、活性化判定処理に
伴って空燃比センサが劣化、破損することがなく、また
始動空燃比にかかわらず、活性化判定が精度よくできる
という効果がある。
As described above, according to the present invention, the supply of power from the heater power supply means to the heater in the pump current cut state is started, and the timer means sets the start time to a predetermined time every predetermined period from the start time. The pump current cut is canceled, the pump current is controlled, and the pump voltage is measured.If the pump voltage falls within the pump voltage allowable range stored in advance, it is determined that the air-fuel ratio sensor is in the active state. Since the determination is made and the pump current cut state is released, the air-fuel ratio sensor is not deteriorated or damaged due to the activation determination process, and the activation determination is performed accurately regardless of the starting air-fuel ratio. There is an effect that can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の一実施例による空燃比センサの活性
化判定装置の構成図である。
FIG. 1 shows the activity of an air-fuel ratio sensor according to an embodiment of the present invention.
FIG. 2 is a configuration diagram of a conversion determination device .

【図2】この発明の空燃比センサの活性化判定装置の第
1の実施例による活性化測定手順を示すフローチャート
である。
FIG. 2 is a flowchart showing an activation measurement procedure according to a first embodiment of the activation determination device for an air-fuel ratio sensor of the present invention.

【図3】この発明の第2の実施例の空燃比センサの活性
化判定装置による活性化測定手順を示すフローチャート
である。
FIG. 3 is a flowchart showing an activation measurement procedure by an activation determination device for an air-fuel ratio sensor according to a second embodiment of the present invention;

【図4】この発明の空燃比センサの活性化判定装置の第
3の実施例の活性化判定手順を示すフローチャートであ
る。
FIG. 4 is a flowchart showing an activation determination procedure of an air-fuel ratio sensor activation determination device according to a third embodiment of the present invention;

【図5】この発明の空燃比センサの活性化判定装置にお
ける空燃比出力に対する許容ポンプ電圧範囲を示す説明
図である。
FIG. 5 is an explanatory diagram showing an allowable pump voltage range with respect to an air-fuel ratio output in the activation determination device for an air-fuel ratio sensor of the present invention.

【図6】この発明の空燃比センサの活性化判定装置にお
ける目標空燃比に対する許容ポンプ電圧範囲を示す説明
図である。
FIG. 6 is an explanatory diagram showing an allowable pump voltage range with respect to a target air-fuel ratio in the activation determination device for an air-fuel ratio sensor of the present invention.

【図7】この発明の空燃比センサの活性化判定装置にお
ける活性化手順によるセンサ起動時のタイムチャートで
ある。
FIG. 7 is a time chart at the time of activation of the sensor according to the activation procedure in the activation determination apparatus for the air-fuel ratio sensor of the present invention.

【図8】従来の空燃比センサの活性化判定方法に適用さ
れるエンジン制御系の構成図である。
FIG. 8 is a configuration diagram of an engine control system applied to a conventional method for determining activation of an air-fuel ratio sensor.

【図9】従来の空燃比センサの活性化判定方法に適用さ
れるセンサ起動時のタイムチャートである。
FIG. 9 is a time chart at the time of activation of a sensor applied to a conventional method for determining activation of an air-fuel ratio sensor.

【符号の説明】[Explanation of symbols]

1 空燃比センサ 11a 酸素ポンプ素子 11b 酸素濃淡電池素子 11c 拡散室 12 ヒータ 2 センサ制御アンプ 21 差動積分増幅器 22 差動増幅器23,24 非反転増幅器 25 カットトランジスタ 26 ヒータ制御回路 7 空燃比制御装置 72a,72b A/D変換器 74 マイクロプロセッサ 75 ROM 77a,77b 出力I/FReference Signs List 1 air-fuel ratio sensor 11a oxygen pump element 11b oxygen concentration cell element 11c diffusion chamber 12 heater 2 sensor control amplifier 21 differential integration amplifier 22 differential amplifier 23, 24 non-inverting amplifier 25 cut transistor 26 heater control circuit 7 air-fuel ratio control device 72a , 72b A / D converter 74 Microprocessor 75 ROM 77a, 77b Output I / F

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 機関の排気系に配設され各々電極が付設
された酸素イオン伝導性固体電解質材からなり機関の排
気ガスが拡散導入される拡散室を挾んで配置された酸素
濃淡電池素子および酸素ポンプ素子とこの酸素濃淡電池
素子および酸素ポンプ素子を加熱するヒータとからなる
空燃比センサと、前記酸素濃淡電池素子の起電力が所定
の基準電圧となるように前記酸素ポンプ素子に流れるポ
ンプ電流を制御するポンプ電流制御手段と、このポンプ
電流制御手段で制御されたポンプ電流を検出するポンプ
電流検出手段と、前記ポンプ電流の供給を停止させるポ
ンプ電流カット手段と、前記酸素ポンプ素子に印加する
ポンプ電圧を検出するポソプ電圧検出手段と、前記ヒー
タに電力を供給するヒータ電力供給手段と、前記ポンプ
電流または機関の目標空燃比に対応して異ならせた
ンプ電圧許容範囲があらかじめ記憶された記憶手段と、
ポンプ電流カット状態にて前記ヒータ電力供給手段から
前記ヒータに電力の供給を開始するとともに、この供給
の開始時刻より所定期間ごとに所定時間ポンプ電流カッ
トを解除するタイマ手段と、このタイマ手段の設定時問
に基づき上記ポンプ電流制御手段にポンプ電流制御を行
わせてポンプ電圧を測定し、このポンプ電圧が前記あら
かじめ記憶されたポンプ電圧許容範囲内となった場合に
前記空燃比センサが活性状態であると判定するととも
に、前記ポンプ電流カット状態を解除する空燃比制御装
置とを備えた空燃比センサの活性化判定装置。
1. An oxygen concentration cell element comprising an oxygen ion-conductive solid electrolyte material provided in an exhaust system of an engine and having electrodes attached thereto and arranged across a diffusion chamber into which exhaust gas of the engine is diffused and introduced. An air-fuel ratio sensor comprising an oxygen pump element, a heater for heating the oxygen concentration cell element and the oxygen pump element, and a pump current flowing through the oxygen pump element so that the electromotive force of the oxygen concentration cell element becomes a predetermined reference voltage. , A pump current detecting means for detecting a pump current controlled by the pump current controlling means, a pump current cutting means for stopping the supply of the pump current, and a voltage applied to the oxygen pump element. Posop voltage detection means for detecting a pump voltage, heater power supply means for supplying power to the heater, and each of the pump current or the engine Storage means for storing in advance a pump voltage allowable range that has been varied according to the target air-fuel ratio;
Timer means for starting supply of power to the heater from the heater power supply means in a pump current cut state, and for canceling the pump current cut for a predetermined time every predetermined period from the start time of the supply, and setting of the timer means The pump current control means performs pump current control based on time and measures a pump voltage.If the pump voltage falls within the previously stored pump voltage allowable range, the air-fuel ratio sensor is activated. An activation determination device for an air-fuel ratio sensor, comprising: an air-fuel ratio control device that determines that there is a pump current and cancels the pump current cut state.
JP3069845A 1991-04-02 1991-04-02 Activation determination device for air-fuel ratio sensor Expired - Fee Related JP2905304B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP3069845A JP2905304B2 (en) 1991-04-02 1991-04-02 Activation determination device for air-fuel ratio sensor
US07/842,624 US5172678A (en) 1991-04-02 1992-02-27 Device for determining activation of an air-fuel ratio sensor
DE69221185T DE69221185T2 (en) 1991-04-02 1992-03-10 Device for determining the operational readiness of a lambda probe
EP92104075A EP0507115B1 (en) 1991-04-02 1992-03-10 A device for determining activation of an air-fuel ratio sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3069845A JP2905304B2 (en) 1991-04-02 1991-04-02 Activation determination device for air-fuel ratio sensor

Publications (2)

Publication Number Publication Date
JPH04313055A JPH04313055A (en) 1992-11-05
JP2905304B2 true JP2905304B2 (en) 1999-06-14

Family

ID=13414552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3069845A Expired - Fee Related JP2905304B2 (en) 1991-04-02 1991-04-02 Activation determination device for air-fuel ratio sensor

Country Status (4)

Country Link
US (1) US5172678A (en)
EP (1) EP0507115B1 (en)
JP (1) JP2905304B2 (en)
DE (1) DE69221185T2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5337722A (en) * 1992-04-16 1994-08-16 Yamaha Hatsudoki Kabushiki Kaisha Fuel control and feed system for gas fueled engine
JP2855971B2 (en) * 1992-06-25 1999-02-10 三菱電機株式会社 Air-fuel ratio sensor
JP3139592B2 (en) * 1993-08-31 2001-03-05 ヤマハ発動機株式会社 Gas-fuel mixture mixture formation device
US5575266A (en) * 1993-08-31 1996-11-19 Yamaha Hatsudoki Kabushiki Kaisha Method of operating gaseous fueled engine
US5546919A (en) * 1993-08-31 1996-08-20 Yamaha Hatsudoki Kabushiki Kaisha Operating arrangement for gaseous fueled engine
JPH07253049A (en) * 1994-03-14 1995-10-03 Yamaha Motor Co Ltd Fuel supply device for gaseous fuel engine
JPH07253048A (en) * 1994-03-15 1995-10-03 Yamaha Motor Co Ltd Air-fuel mixture forming method of gaseous fuel engine and device thereof
JP3436611B2 (en) * 1995-04-28 2003-08-11 日本特殊陶業株式会社 Method and apparatus for controlling energization of heater for oxygen sensor
JPH1073564A (en) * 1996-08-29 1998-03-17 Ngk Spark Plug Co Ltd Method and device for detecting active state of full-range air-fuel ratio sensor
JP3621280B2 (en) 1998-12-16 2005-02-16 株式会社日立ユニシアオートモティブ Air-fuel ratio sensor activity diagnostic device
US6409969B1 (en) 1999-06-01 2002-06-25 Cummins, Inc. System and method for controlling a self-heated gas sensor based on sensor impedance
DE102008042505A1 (en) * 2008-09-30 2010-04-01 Robert Bosch Gmbh Method for operating an exhaust gas sensor and device for carrying out the method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5934439A (en) * 1982-08-19 1984-02-24 Honda Motor Co Ltd Air-fuel feedback control method
JPS61241652A (en) * 1985-04-18 1986-10-27 Honda Motor Co Ltd Method for discriminating activation of oxygen concentration sensor
JPS61294355A (en) * 1985-06-22 1986-12-25 Honda Motor Co Ltd Oxygen concentration detector
JPH0627721B2 (en) * 1985-09-26 1994-04-13 本田技研工業株式会社 Control method of oxygen concentration sensor
JPS62278443A (en) * 1986-05-28 1987-12-03 Nissan Motor Co Ltd Air/fuel ratio measuring apparatus
JP2511049B2 (en) * 1987-07-01 1996-06-26 本田技研工業株式会社 Activity determination method for oxygen concentration sensor
US4860712A (en) * 1987-07-01 1989-08-29 Honda Giken Kogyo Kabushiki Kaisha Method of controlling an oxygen concentration sensor
JPH01147138A (en) * 1987-12-01 1989-06-08 Mitsubishi Electric Corp Heater controller for air-fuel ratio sensor
JPH01211638A (en) * 1988-02-18 1989-08-24 Mitsubishi Electric Corp Air-fuel ratio control device for internal combustion engine
DE3840148A1 (en) * 1988-11-29 1990-05-31 Bosch Gmbh Robert METHOD AND DEVICE FOR DETECTING AN ERROR STATE OF A LAMB PROBE
JP2704991B2 (en) * 1989-09-12 1998-01-26 本田技研工業株式会社 Activation determination method for exhaust concentration sensor with heater

Also Published As

Publication number Publication date
JPH04313055A (en) 1992-11-05
DE69221185D1 (en) 1997-09-04
EP0507115A2 (en) 1992-10-07
US5172678A (en) 1992-12-22
EP0507115B1 (en) 1997-07-30
EP0507115A3 (en) 1994-03-23
DE69221185T2 (en) 1997-12-18

Similar Documents

Publication Publication Date Title
JP2855971B2 (en) Air-fuel ratio sensor
US6314790B1 (en) Oxygen concentration detecting apparatus
US5172677A (en) Device for determining activation of an air-fuel ratio sensor
JP2905304B2 (en) Activation determination device for air-fuel ratio sensor
JP3972432B2 (en) Learning apparatus for oxygen concentration sensor for internal combustion engine control and learning method thereof
JP3284862B2 (en) Active state determination device for air-fuel ratio sensor
US6550305B2 (en) Activation diagnosis method and activation diagnosis apparatus for air-fuel ratio sensor
JPH01158335A (en) Device for controlling heater for oxygen concentration sensor
JP3500976B2 (en) Abnormality diagnosis device for gas concentration sensor
JP3887871B2 (en) Air-fuel ratio control device for internal combustion engine
JPH03100353A (en) Activation discriminating method for exhaust concentration sensor with heater
JP2812247B2 (en) Active state determination device for air-fuel ratio sensor
JP2002048761A (en) Heater control device of gas concentration sensor
JP2000074873A (en) Heater controller for oxygen concentration sensor
EP0778405B1 (en) A heater controller for an air-fuel ratio sensor
JPS6033988B2 (en) Air fuel ratio control device
JPH1182112A (en) Heater control device and heater control method for oxygen concentration sensor for internal combustion engine
JP2511049B2 (en) Activity determination method for oxygen concentration sensor
JPH07325066A (en) Control device for heating means for air-fuel ratio sensor
JP3869629B2 (en) Air-fuel ratio sensor activity determination device
JP2527930B2 (en) Deterioration determination method for O2 sensor in internal combustion engine
JPH0520579B2 (en)
JP3555123B2 (en) Control device for internal combustion engine
JP2004245843A (en) Oxygen concentration sensing system
JPH01123141A (en) Air-fuel-ratio control apparatus for internal combustion engine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080326

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090326

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees