JP2904357B2 - Method for producing surface-coated aluminum alloy - Google Patents

Method for producing surface-coated aluminum alloy

Info

Publication number
JP2904357B2
JP2904357B2 JP26162790A JP26162790A JP2904357B2 JP 2904357 B2 JP2904357 B2 JP 2904357B2 JP 26162790 A JP26162790 A JP 26162790A JP 26162790 A JP26162790 A JP 26162790A JP 2904357 B2 JP2904357 B2 JP 2904357B2
Authority
JP
Japan
Prior art keywords
alloy
film
crn
aluminum alloy
torr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26162790A
Other languages
Japanese (ja)
Other versions
JPH04141575A (en
Inventor
祐二 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP26162790A priority Critical patent/JP2904357B2/en
Publication of JPH04141575A publication Critical patent/JPH04141575A/en
Application granted granted Critical
Publication of JP2904357B2 publication Critical patent/JP2904357B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、耐摩耗性、耐溶着性が要求される耐摩耗部
品用に最適な表面被覆アルミニウム合金の製造方法に関
する。
Description: TECHNICAL FIELD The present invention relates to a method for producing a surface-coated aluminum alloy that is optimal for wear-resistant parts that require wear resistance and welding resistance.

(従来の技術) Al合金は軽量構造材料として、自動車部品を始め宇宙
航空機関連の主要構造材、または各種機械部品、金型等
に用いられている。しかし、Al合金は耐摩耗性が鉄鋼材
料に比べ著しく劣るという欠点を持っている。このた
め、Al合金を激しい摩耗や摩擦を受ける部材に運用する
には限界があり、理想的にはAl合金を用いるべきところ
に鉄鋼材料が用いられていることが多い。Al合金の耐摩
耗性を向上させる方法としては表面硬化法が最も有効な
方法である。
(Prior Art) Al alloys are used as lightweight structural materials in automobile parts and other main structural materials related to space aircraft, various mechanical parts, dies and the like. However, Al alloys have the drawback that wear resistance is significantly inferior to steel materials. For this reason, there is a limit in applying the Al alloy to a member that is subjected to severe wear or friction. Ideally, a steel material is used where an Al alloy should be used. A surface hardening method is the most effective method for improving the wear resistance of an Al alloy.

Al合金の表面硬化処理は硬質アルマイト処理やNiメッ
キ、Crメッキ等の各種メッキ法が実用化されているが、
硬度はアルマイト処理でHv300程度であり、メッキでHv6
00〜700であり、膜厚はせいぜい数10μmである。軽量
材料であるAl合金の需要が大きくなるに従い、大きな衝
撃や高い面圧に対して耐久性を示す数mmの厚さの表面硬
化処理や、寸法精度を維持するために数μmの厚さで高
硬度を示す処理が要求されるようになってきた。
Various plating methods such as hard alumite treatment, Ni plating, and Cr plating have been put into practical use for the surface hardening treatment of Al alloys.
Hardness is about Hv300 by alumite treatment and Hv6 by plating.
00 to 700, and the film thickness is at most several tens of μm. As the demand for Al alloys, which are lightweight materials, grows, the surface hardening process with a thickness of several mm, which is durable against large impacts and high surface pressures, and with a thickness of several μm to maintain dimensional accuracy Processing showing high hardness has been required.

(発明が解決しようとする課題) 金型や、機械部品などの寸法精度を要求される部品で
は、Al合金の持つ硬度及び強度を維持したまま、厚さ数
μmで高硬度を示す表面処理が必要となる。Al合金は通
常120℃から170℃で時効硬化処理されており、200℃以
上になると硬度や強度が以下してしまう。Al合金製の精
密部品を表面硬化処理するには200℃以下の低温で処理
することが重要となる。これらの目的を達成するには、
セラミック硬質被膜を比較的低温で製膜可能なイオンプ
レーティング法が最適であると考えられるが、蒸発源の
輻射や、イオンの運動エネルギーで基板温度は200℃以
上に上昇してしまう。製膜速度を下げる等の方法により
200℃以下で製膜することが可能であるが、著しい膜質
の低下を招き耐摩耗性が低下する問題があった。
(Problems to be Solved by the Invention) For parts requiring dimensional accuracy, such as molds and mechanical parts, a surface treatment that shows high hardness with a thickness of several micrometers while maintaining the hardness and strength of the Al alloy is required. Required. The Al alloy is usually subjected to age hardening at 120 ° C. to 170 ° C., and at a temperature of 200 ° C. or more, the hardness and strength are reduced. For surface hardening of precision parts made of Al alloy, it is important to treat at a low temperature of 200 ° C or less. To achieve these goals,
It is considered that the ion plating method capable of forming a ceramic hard coating at a relatively low temperature is optimal, but the radiation from the evaporation source and the kinetic energy of the ions increase the substrate temperature to 200 ° C. or more. By reducing the film forming speed
Although it is possible to form a film at a temperature of 200 ° C. or lower, there is a problem that the film quality is remarkably deteriorated and the wear resistance is reduced.

そこで、本発明の目的は、イオンプレーティング法を
用いて硬質被膜を200℃以下の温度でAl合金に被覆し、
耐摩耗性に優れた表面被覆Al合金の製造方法を提供する
ことにある。
Therefore, an object of the present invention is to coat a hard coating on an Al alloy at a temperature of 200 ° C. or less using an ion plating method,
An object of the present invention is to provide a method for producing a surface-coated Al alloy having excellent wear resistance.

(課題を解決するための手段) 前述の目的を達成するために、本発明は、金属クロム
を蒸発源とし、窒素ガス、アンモニアガスまたはこれら
の混合ガスを反応ガスとしてイオンプレーティング法に
より、アルミニウム合金上に窒化物被膜を形成する方法
において、上記アルミニウム合金に0〜−50Vのバイア
ス電圧を印加し、上記反応ガスの圧力を10×10-3Torr以
上にし、製膜中の温度を200℃以下に維持する、ことを
特徴とする表面被膜アルミニウム合金の製造方法を採用
するものである。
(Means for Solving the Problems) In order to achieve the above-mentioned object, the present invention provides an aluminum plating method using an ion source of chromium metal as an evaporation source, a nitrogen gas, an ammonia gas, or a mixed gas thereof as a reaction gas. In the method of forming a nitride film on an alloy, a bias voltage of 0 to −50 V is applied to the aluminum alloy, the pressure of the reaction gas is increased to 10 × 10 −3 Torr or more, and the temperature during film formation is set to 200 ° C. A method for producing a surface-coated aluminum alloy, which is maintained as follows, is employed.

このような条件中での製造方法を用いると、基板とし
てのAl合金の硬度及び強度を維持したまま、CrN単相の
析出相からなる耐摩耗性に優れた被膜を形成することが
できる。このような被膜の膜厚は好ましくは0.2〜20μ
mである。
When a production method under such conditions is used, it is possible to form a film having excellent wear resistance composed of a CrN single-phase precipitated phase while maintaining the hardness and strength of the Al alloy as a substrate. The thickness of such a coating is preferably 0.2-20 μm
m.

(作用) CrNは耐酸化性が大きい物質であり、これにより形成
された被膜は高温状態での酸化による脆性化及び摩耗を
防止するために優れた効果を発揮するが、酸化以外の原
因による耐摩耗の点で十分であるとは言えない。その理
由は、CrN被膜中におけるCr2NまたはCrの析出が強度を
低下させるからであり、本発明者は、Cr2NやCrの析出を
抑えれば極めて良好な耐摩耗性を示すことを見い出した
ものであり、特に、X線回折測定によるCr2NまたはCrに
帰属する最大の回折強度がCrNに帰属する最大の回折強
度の5%以上になると被膜強度が著しく低下することが
判明した。このため、本発明者は、被膜の硬度及び強度
の低下を防ぎながら、Cr2NやCrの析出を抑える製膜方法
を達成したものであり、製膜条件を説明すると、以下の
通りである。
(Action) CrN is a substance having high oxidation resistance, and the coating formed by this has an excellent effect to prevent embrittlement and wear due to oxidation at high temperature, but it has resistance to other causes than oxidation. It is not enough in terms of wear. The reason is that the precipitation of Cr 2 N or Cr in the CrN film reduces the strength, and the present inventor has shown that if the precipitation of Cr 2 N or Cr is suppressed, extremely good wear resistance is exhibited. In particular, it was found that when the maximum diffraction intensity attributed to Cr 2 N or Cr by X-ray diffraction measurement was 5% or more of the maximum diffraction intensity attributed to CrN, the coating strength was significantly reduced. . For this reason, the present inventor has achieved a film forming method for suppressing precipitation of Cr 2 N and Cr while preventing a decrease in hardness and strength of the film, and the film forming conditions will be described below. .

反応ガスの圧力を10×10-3Torr未満及びバイアス電圧
を−100V〜−800Vとした場合には、CrN被膜中にCr2Nの
析出が認められるようになり、この場合、CrN及びCr2N
の混相状態になる。また、反応ガス圧を10×10-3Torr未
満及びバイアス電圧を−100V未満とした場合にはCrが析
出してCrN及びCrの混相状態になる。一方、反応ガス圧
を10×10-3Torr以上にすると、CrN単相となり耐摩耗性
は著しく向上するが、このとき、バイアス電圧が−50V
を越えると、基板温度が200℃以上になる。Al合金を基
板として用いる場合、製膜温度が200℃を越えると、硬
度及び強度が低下するため、200℃以下にする必要があ
る。したがって、製膜条件としては、以上の点を要約す
ると、バイアス電圧が0〜−50Vの範囲であり、反応ガ
ス圧を10×10-3Torr以上にしなければならない。
When the pressure of the reaction gas is less than 10 × 10 −3 Torr and the bias voltage is −100 V to −800 V, the precipitation of Cr 2 N in the CrN film is observed, and in this case, CrN and Cr 2 N
In a mixed phase state. When the reaction gas pressure is less than 10 × 10 −3 Torr and the bias voltage is less than −100 V, Cr precipitates and becomes a mixed phase of CrN and Cr. On the other hand, when the reaction gas pressure is set to 10 × 10 −3 Torr or more, the phase becomes CrN single phase, and the wear resistance is remarkably improved.
Is exceeded, the substrate temperature becomes 200 ° C. or higher. When an Al alloy is used as the substrate, if the film forming temperature exceeds 200 ° C., the hardness and strength are reduced. Therefore, the film forming conditions are summarized as follows. The bias voltage is in the range of 0 to −50 V, and the reaction gas pressure must be 10 × 10 −3 Torr or more.

膜厚は、好ましくは、0.2から20μmの範囲であれば
よい。即ち、0.2μm未満の膜厚では薄すぎるため十分
な耐摩耗性が確保されず、また20μmを越える膜厚にな
るとCrN被膜内の残留圧縮応力のために割れが発生し易
くなって、やはり耐摩耗性が劣化してしまう。
Preferably, the film thickness is in the range of 0.2 to 20 μm. In other words, if the film thickness is less than 0.2 μm, sufficient wear resistance is not secured because it is too thin, and if the film thickness exceeds 20 μm, cracks are liable to occur due to residual compressive stress in the CrN film. Abrasion is deteriorated.

本発明の方法では、このような製膜条件を設定するこ
とにより、CrN被膜中におけるCr2NまたはCrの析出を制
御することができると共に、200℃以下で製膜できる。
したがって、本発明の方法により得られた被膜Al合金
は、Al合金自体の特性を維持しながら耐摩耗性を著しく
改善している。
In the method of the present invention, by setting such film forming conditions, the precipitation of Cr 2 N or Cr in the CrN film can be controlled, and the film can be formed at 200 ° C. or lower.
Therefore, the coated Al alloy obtained by the method of the present invention has significantly improved wear resistance while maintaining the properties of the Al alloy itself.

蒸発源として金属クロムを蒸発させる方法として抵抗
加熱、電子銃等、また蒸発した金属クロムをイオン化す
る方法としてアーク放電、グロー放電、高周波放電など
のいずれを使用してもよく、反応ガスとして窒素のほか
にアンモニアガスまたはこれらの混合ガスを選択選択し
うる。
As a method of evaporating metal chromium, any of resistance heating, an electron gun, etc. may be used as a method of evaporating metal chromium, and an arc discharge, a glow discharge, a high frequency discharge, etc. may be used as a method of ionizing the evaporated metal chromium. Alternatively, ammonia gas or a mixed gas thereof can be selected.

以下、本発明により本発明を詳しく説明する。 Hereinafter, the present invention will be described in detail with reference to the present invention.

実施例1 本発明の方法を実施するための装置として第1図に概
略的に示す真空アーク放電型のイオンプレーティング装
置を用いた。被覆すべき基板14としてJISA7075PのAl合
金を用いた。このAl合金を有機溶剤による洗浄後、真空
反応槽10内のターンテーブル12上にセットし、この真空
反応槽内の圧力をポート20を介して接続した真空ポンプ
(図示せず)により1×10-5Torr以上まで真空にした
後、Crイオン衝撃による洗浄、加熱を行ってCrN被膜の
形成を開始した。被膜を形成すべき金属蒸発源16として
Crを用いるが、このときの製膜条件は反応ガスとして窒
素のみを反応ガス供給口18を通して導入し、その圧力を
70×10-3Torrとする。上記蒸発源16に50Aの電流を流す
ことによりCrターゲット(蒸発源)16から真空放電によ
りCrイオンを放出させ、一方、上記Al合金に対して−30
Vのバイアス電圧を印加した。このような条件下で、Al
合金表面にCrNを生成させて、約2時間の製膜反応によ
り膜厚5μmの被膜が得られた。製膜中、温度は190℃
であった。またX線回折測定の結果、析出相はCrN単相
であった。
Example 1 As a device for carrying out the method of the present invention, a vacuum arc discharge type ion plating device schematically shown in FIG. 1 was used. As the substrate 14 to be coated, a JISA7075P Al alloy was used. After washing this Al alloy with an organic solvent, it was set on a turntable 12 in a vacuum reactor 10 and the pressure in the vacuum reactor was adjusted to 1 × 10 by a vacuum pump (not shown) connected through a port 20. After evacuating to -5 Torr or more, cleaning by Cr ion bombardment and heating were performed to start formation of a CrN film. Metal evaporation source 16 to be coated
Cr is used, but the film formation conditions at this time are such that only nitrogen is introduced as a reaction gas through the reaction gas supply port 18 and the pressure is reduced.
70 × 10 -3 Torr. By passing a current of 50 A through the evaporation source 16, Cr ions are released from the Cr target (evaporation source) 16 by vacuum discharge.
A bias voltage of V was applied. Under these conditions, Al
CrN was generated on the alloy surface, and a film having a thickness of 5 μm was obtained by a film forming reaction for about 2 hours. During film formation, temperature is 190 ℃
Met. As a result of X-ray diffraction measurement, the precipitated phase was a single phase of CrN.

このように製造した被膜Al合金に対して、ASTM D−
2714−68に規定されているファレックス摩耗試験を行っ
た。試験条件は以下の通りであり、またその結果は別紙
の表1に示す通りであった。
ASTM D-
The Falex abrasion test specified in 2714-68 was performed. The test conditions were as follows, and the results were as shown in Table 1 of the attached document.

潤滑剤 空気中無潤滑 回転数 60rpm 荷重 4.5kg 試験時間 10分 材質 A7075P 表1から明らかなように、摩耗幅は1.7mmであり、良
好な結果が得られている。
Lubricant No lubrication in air Rotation speed 60 rpm Load 4.5 kg Test time 10 minutes Material A7075P As is clear from Table 1, the wear width was 1.7 mm, and good results were obtained.

実施例2 反応槽内の窒素ガスの圧力を25×10-3Torrにした以外
は実施例1と同様な製膜条件で行った。製膜中の温度は
190℃であり、形成された被膜のX線回折結果によればC
rN単相の析出が認められた。得られたAl合金についてフ
ァレックス摩耗試験を行ったところ、表1に示すよう
に、摩耗幅は1.9mmであり、やはり良好な結果が得られ
た。
Example 2 A film was formed under the same conditions as in Example 1 except that the pressure of the nitrogen gas in the reaction tank was set to 25 × 10 −3 Torr. The temperature during film formation is
190 ° C. According to the X-ray diffraction results of the formed film, C
Precipitation of rN single phase was observed. When a Falex wear test was performed on the obtained Al alloy, as shown in Table 1, the wear width was 1.9 mm, and good results were obtained.

比較例1 反応槽内の窒素ガスの圧力を5×10-3Torr、バイアス
電圧を−200Vとして行った以外は実施例1と同様な製膜
条件で行った。製膜中の温度は320℃であり、形成され
た被膜のX線回折結果によればCrNとCr2Nの析出が認め
られた。得られたAl合金についてファレックス摩耗試験
を行ったところ、表1に示すように、摩耗幅は3.5mmで
あり、性能は劣っていた。
Comparative Example 1 A film was formed under the same film forming conditions as in Example 1 except that the pressure of the nitrogen gas in the reaction tank was set to 5 × 10 −3 Torr and the bias voltage was set to −200 V. The temperature during the film formation was 320 ° C., and according to the X-ray diffraction result of the formed film, precipitation of CrN and Cr 2 N was recognized. A Falex wear test was performed on the obtained Al alloy. As shown in Table 1, the wear width was 3.5 mm, and the performance was inferior.

比較例2 バイアス電圧を−25V、窒素ガス圧を5×10-3Torrに
設定した以外は実施例とまったく同様な条件でCrN被膜
を形成した。この場合の被膜のX線回折測定の結果によ
ればCrNとCrの析出が認められた。得られたAl合金につ
いてファレックス摩耗試験を行ったところ、表1し示す
ように、摩耗幅は2.6mmであり、性能は劣っていた。
Comparative Example 2 A CrN film was formed under exactly the same conditions as in the example except that the bias voltage was set to -25 V and the nitrogen gas pressure was set to 5 × 10 −3 Torr. According to the result of X-ray diffraction measurement of the coating in this case, precipitation of CrN and Cr was recognized. A Falex wear test was performed on the obtained Al alloy. As shown in Table 1, the wear width was 2.6 mm, and the performance was inferior.

比較例3 バイアス電圧を−200V、窒素ガス圧を30×10-3Torrに
設定した以外は実施例1とまったく同様な条件でCrN被
膜を形成した。この場合の被膜のX線回折測定の結果に
よればCrN単相であった。かし、PVD処理前にHv170であ
ったAl合金の硬度がHv140に低下していた。得られたAl
合金についてファレックス摩耗試験を行ったところ、表
1に示すように摩耗幅は3.1mmであり、性能は劣ってい
た。
Comparative Example 3 A CrN film was formed under exactly the same conditions as in Example 1 except that the bias voltage was set to -200 V and the nitrogen gas pressure was set to 30 × 10 −3 Torr. According to the result of the X-ray diffraction measurement of the coating in this case, it was a CrN single phase. However, the hardness of the Al alloy, which was Hv170 before the PVD treatment, was reduced to Hv140. Al obtained
When a Falex wear test was performed on the alloy, as shown in Table 1, the wear width was 3.1 mm, and the performance was inferior.

(発明の効果) 以上詳細に説明したように、本発明によれば、Al合金
の硬度及び強度を低下させることなく、表面処理硬化が
でき、Al合金部材の耐摩耗性を大幅に改善することがで
きる。
(Effects of the Invention) As described above in detail, according to the present invention, it is possible to perform surface treatment hardening without reducing the hardness and strength of an Al alloy, and to significantly improve the wear resistance of an Al alloy member. Can be.

【図面の簡単な説明】 第1図は、本発明の方法を実施するための真空アーク放
電型イオンプレーティング装置の概略図である。 10……反応槽、 12……ターンテーブル、 14……基板、 16……ターゲット(蒸発源)。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view of a vacuum arc discharge type ion plating apparatus for carrying out the method of the present invention. 10… Reaction tank, 12… Turntable, 14… Substrate, 16 …… Target (evaporation source).

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】金属クロムを蒸発源とし、窒素ガス、アン
モニアガスまたはこれらの混合ガスを反応ガスとしてイ
オンプレーティング法により、アルミニウム合金上に窒
化物被膜を形成する方法において、上記アルミニウム合
金に0〜−50Vのバイアス電圧を印加し、上記反応ガス
の圧力を10×10-3Torr以上にし、製膜中の温度を200℃
以下に維持する、ことを特徴とする表面被膜アルミニウ
ム合金の製造方法。
1. A method for forming a nitride film on an aluminum alloy by ion plating using metal chromium as an evaporation source and nitrogen gas, ammonia gas or a mixed gas thereof as a reaction gas. A bias voltage of ~ -50V is applied, the pressure of the above reaction gas is increased to 10 × 10 -3 Torr or more, and the temperature during film formation is set to 200 ° C.
A method for producing a surface-coated aluminum alloy, which is maintained as follows.
JP26162790A 1990-09-28 1990-09-28 Method for producing surface-coated aluminum alloy Expired - Lifetime JP2904357B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26162790A JP2904357B2 (en) 1990-09-28 1990-09-28 Method for producing surface-coated aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26162790A JP2904357B2 (en) 1990-09-28 1990-09-28 Method for producing surface-coated aluminum alloy

Publications (2)

Publication Number Publication Date
JPH04141575A JPH04141575A (en) 1992-05-15
JP2904357B2 true JP2904357B2 (en) 1999-06-14

Family

ID=17364523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26162790A Expired - Lifetime JP2904357B2 (en) 1990-09-28 1990-09-28 Method for producing surface-coated aluminum alloy

Country Status (1)

Country Link
JP (1) JP2904357B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5475552A (en) * 1992-07-31 1995-12-12 Matsushita Electric Industrial Co., Ltd. Magnetic head having a chromium nitride protective film for use in a magnetic recording and/or reproducing apparatus and a method of manufacturing the same
CN103318855A (en) * 2013-06-09 2013-09-25 上海大学 Preparation method of chromium nitride

Also Published As

Publication number Publication date
JPH04141575A (en) 1992-05-15

Similar Documents

Publication Publication Date Title
US5656364A (en) Multiple layer erosion resistant coating and a method for its production
US3900592A (en) Method for coating a substrate to provide a titanium or zirconium nitride or carbide deposit having a hardness gradient which increases outwardly from the substrate
US3754329A (en) Razor blade with rf sputtered coating
US5952085A (en) Multiple layer erosion resistant coating and a method for its production
JP2001090835A (en) Hard coating and sliding member coated therewith and its manufacturing method
JP2551745B2 (en) Chromium layer with high hardness that can withstand wear, deformation, surface fatigue and corrosion
KR100204198B1 (en) Sliding member and method of preparation
RU2370570C1 (en) Method of ion-plasma treatment of steel and hard alloy parts
JPH0931628A (en) Sliding member and its production
US20050196548A1 (en) Component protected against corrosion and method for the production thereof and device for carrying out the method
JPH06346226A (en) Improvement of life of tool and tool coated with wearproof layer
JP2904357B2 (en) Method for producing surface-coated aluminum alloy
CN109252137B (en) Preparation method of zirconium alloy surface coating
WO1990004044A1 (en) Surface treatment of metals and alloys
JP3654918B2 (en) Sliding material
Konyashin et al. TiN thin films deposited by filtered arc-evaporation: structure, properties and applications
IL34931A (en) Metal articles with protective metal layers and methods and apparatus for their manufacture
JPS63166957A (en) Surface coated steel product
Kara et al. Microstructure, mechanical, and scratch resistance properties of TiAlCrNbN-graded composite coating deposited on AISI H13 steel substrate with pulsed DC closed field unbalanced magnetron sputtering method
RU2570274C1 (en) Method of production of wear-resistant high-temperature coating
JPH05125521A (en) Sliding material and its manufacture
Zhao et al. Effect of axial magnetic field on the microstructure and mechanical properties of CrN films deposited by arc ion plating
Cai et al. Effect of Ion Source Current on the Microstructure and Properties of Cr-DLC Coatings Prepared by Ion Beam-Assisted Arc Ion Plating
JP2681875B2 (en) piston ring
JP2007217766A (en) Low friction compound film deposition method, and low friction sliding member