JP2901144B2 - Zoom lens - Google Patents

Zoom lens

Info

Publication number
JP2901144B2
JP2901144B2 JP8124021A JP12402196A JP2901144B2 JP 2901144 B2 JP2901144 B2 JP 2901144B2 JP 8124021 A JP8124021 A JP 8124021A JP 12402196 A JP12402196 A JP 12402196A JP 2901144 B2 JP2901144 B2 JP 2901144B2
Authority
JP
Japan
Prior art keywords
lens
lens group
refractive power
group
negative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8124021A
Other languages
Japanese (ja)
Other versions
JPH08278446A (en
Inventor
一夫 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14875076&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2901144(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP8124021A priority Critical patent/JP2901144B2/en
Publication of JPH08278446A publication Critical patent/JPH08278446A/en
Application granted granted Critical
Publication of JP2901144B2 publication Critical patent/JP2901144B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Focusing (AREA)
  • Lenses (AREA)
  • Automatic Focus Adjustment (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明はズームレンズに関し、特
にスチールカメラ、ビデオカメラ、放送用TVカメラ等
に好適な高変倍でしかも大口径比のリヤーフォーカス方
式を採用したズームレンズに関するものである。 【0002】 【従来の技術】従来よりスチールカメラやビデオカメラ
等に用いられている比較的高変倍でしかも大口径比のズ
ームレンズとして所謂4群ズームレンズがある。この4
群ズームレンズは物体側より順に合焦用の第1レンズ
群、変倍用の第2レンズ群、変倍に伴う像面変動を補正
する為の第3レンズ群、そして全系の焦点距離や収差補
正のバランスを採る為の第4レンズ群より成っている。
4群ズームレンズでは変倍の為に2つのレンズ群と合焦
の為の1つのレンズ群の合計3つのレンズ群を移動させ
る構成を採っている。この為、比較的レンズ鏡筒が複雑
になる傾向があった。又、近距離物体に合焦する際、第
1レンズ群を物体側へ繰り出して行う為に軸外光束を十
分確保しようとすると前玉レンズ径が増大する傾向があ
った。 【0003】この為従来より第1レンズ群以外のレンズ
群を移動させて合焦を行った所謂リヤーフォーカス方式
を利用したズームレンズが種々提案されている。 【0004】例えば、米国特許4364642号では、
4群ズームレンズにおいて第3レンズ群を移動させて合
焦を行っている。又、米国特許4460251号では同
じく4群ズームレンズにおいて第2レンズ群と第3レン
ズ群を一体的に移動させて合焦を行っている。又、特開
昭58−136012号公報では変倍部を3つ以上のレ
ンズ群で構成し、このうち一部のレンズ群を移動させて
合焦を行ったズームレンズを提案している。しかしなが
ら、これらのズームレンズは何れも前玉レンズ径は小さ
くなるが無限遠物体と近距離物体とで合焦用レンズ群の
移動軌跡が大きく変わる為に、予めレンズ系中に余分な
空間を確保しておかねばならず、レンズ全長が増大する
傾向があった。 【0005】この他、実開昭59−63314号公報で
は、4群ズームレンズの第4レンズ群を2つのレンズ群
に分け、このうち一方のレンズ群を移動させて合焦を行
っている。しかしながら、このズームレンズは全部で3
つのレンズ群を移動させねばならず、レンズ鏡筒が複雑
化する傾向があった。 【0006】 【発明が解決しようとする課題】本発明は高変倍でしか
も大口径比のレンズ系全体の小型化を図った簡易な構成
のリヤーフォーカス方式を用いたズームレンズの提供を
目的とする。 【0007】 【課題を解決するための手段】本発明のズームレンズ
は、物体側より順に正の屈折力の第1レンズ群、負の屈
折力の第2レンズ群、正の屈折力の第3レンズ群、そし
て正の屈折力の第4レンズ群の4つのレンズ群を有し、
前記第3レンズ群内若しくはその近傍に絞りを有してお
り、前記第1,第3レンズ群を固定とし、前記第2レン
ズ群を一方向に移動させて変倍を行い、前記第4レンズ
群を変倍に伴う像面変動を補正するように非直線的に移
動させると共に該第4レンズ群を物体側へ移動させて無
限遠物体から至近物体への合焦を行い、前記第1レンズ
群は少なくとも2枚の正レンズと1枚の負レンズを有
し、前記第2レンズ群は少なくとも1枚の正レンズと2
枚の負レンズを有し、前記第3レンズ群は少なくとも1
枚ずつの正レンズと負レンズを有し、前記第4レンズ群
は少なくとも1枚ずつの正レンズと負レンズを有してい
ることを特徴としている。 【0008】この他、本発明の特徴は実施例において記
載されている。 【0009】 【実施例】図19に本発明の一実施例の光学系の基本構
成の概略図を示す。同図においてIは正の屈折力の第1
レンズ群、IIは負の屈折力の第2レンズ群、III は正の
屈折力の第3レンズ群、IVは正の屈折力の第4レンズ群
である。変倍は第2,第4レンズ群を矢印の方向へ移動
させて行っている。 【0010】このうち第2レンズ群は主に変倍を行い第
4レンズ群は変倍に伴う像面変動を補正している。この
とき第4レンズ群は図19に示すように物体側に凸状の
軌跡を有するように非直線的に移動させている。そして
更に第4レンズ群を物体側へ移動させることにより無限
遠物体から至近物体への合焦を行っている。尚、第1,
第3レンズ群は変倍及び合焦の際固定である。 【0011】本実施例においては正の屈折力の第1レン
ズ群とリレーレンズ群に相当する第3レンズ群との間に
配置した負の屈折力の第2レンズ群を一方向へ移動させ
ることにより第1,第3レンズ群の結像と共に変倍を効
率良く行っている。そして変倍の際、第4レンズ群を同
図に示すように第3レンズ群側へ非直線的に移動させて
像面変動の補正を行うと共に第3レンズ群と第4レンズ
群との空間の有効利用を図りレンズ全長の短縮化を図っ
ている。 【0012】尚、19図において曲線L2は無限遠物体
のとき、又曲線L3は至近物体のときの第4レンズ群の
変倍に伴う移動軌跡を各々示している。 【0013】本実施例においては合焦の際に第1レンズ
群を繰り出さずに常に固定とし、前方へ繰り出すことに
より生じるレンズ径の増大を防止している。そして合焦
の際には第1レンズ群の代わりに変倍系の一部である第
4レンズ群を移動させることにより全体的に可動レンズ
群の数を減らし機構上の簡素化及びレンズ系全体の小型
化を図っている。即ち第4レンズ群に変倍と合焦の双方
の機能を持たせつつ、かつ第3レンズ群と第4レンズ群
との空間内を移動させることによりレンズ系中の空間内
の有効利用を図ってレンズ全長の短縮化を図っている。 【0014】尚、第1,第3レンズ群により全系の焦点
距離、画角、バックフォーカス等の近軸諸量を調整しつ
つ、かつ可動レンズ群による収差変動を良好に補正して
いる。又、本実施例において絞りは第3レンズ群内若し
くはその近傍に配置するのが可動レンズ群による収差変
動を少なくし、かつ第1レンズ群と第4レンズ群のレン
ズ径の大きさを共にバランス良く維持するのに好まし
い。 【0015】そして本実施例においては第1レンズ群を
少なくとも2枚の正レンズと1枚の負レンズ、第2レン
ズ群を少なくとも1枚の正レンズと2枚の負レンズ、第
3レンズ群を少なくとも1枚ずつの正レンズと負レン
ズ、そして第4レンズ群を少なくとも1枚ずつの正レン
ズと負レンズを有するように構成し、これにより各レン
ズ群内での色収差を良好に補正し、又第1レンズ群にお
いては望遠側の球面収差を、第2レンズ群においては広
角側での非点収差及び歪曲収差を良好に補正している。 【0016】更に本発明において変倍に伴う収差変動を
少なくし、レンズ系全体の小型化を図るには第iレンズ
群の焦点距離をfi、全系の広角端の焦点距離をfwと
するとき 0.7 <|f2/fw|< 2.1 ・・・・・・(1) 1.2 < f4/fw < 4.0 ・・・・・・(2) 1.2 <|f4/f2|< 3.6 ・・・・・・(3) 0.72< f1/f3 < 2.9 ・・・・・・(4) 1.8 < f3/fw < 4.2 ・・・・・・(5) なる条件を満足するように構成するのが良い。 【0017】次に前述の各条件式の技術的意味について
説明する。 【0018】条件式(1)は第2レンズ群の屈折力に関
し、下限値を越えて第2レンズ群の屈折力が強くなって
くるとレンズ系の小型化には望ましいが、ペッツバール
和が負の方向に増大し像面湾曲が大きくなってくる。又
上限値を越えて第2レンズ群の屈折力が弱くなってくる
と変倍に伴う収差変動は少なくなるが所定の変倍比を得
る為の移動量を増大させねばならずレンズ全長が長くな
ってくる。 【0019】条件式(2)は第4レンズ群の屈折力に関
し、下限値を越えて第4レンズ群の屈折力が強くなると
広角側での軸上球面収差が補正不足となり、又全変倍域
にわたり外向性コマ収差が多く発生してくる。又上限値
を越えて第4レンズ群の屈折力が弱くなると変倍に伴う
移動量が大きくなりレンズ全長が増大すると共に合焦の
際の収差変動が増大してくる。 【0020】条件式(3)は第2レンズ群と第4レンズ
群との屈折力比に関し、下限値を越えて第4レンズ群の
屈折力が強くなりすぎると変倍の際の収差変動を良好に
補正するのが困難となり、逆に上限値を越えて第4レン
ズ群の屈折力が弱くなりすぎると移動量が増大し、又バ
ックフォーカスが必要以上に長くなり、第1レンズ群か
ら像面までの光学全長が長くなりすぎるので好ましくな
い。 【0021】条件式(4)は第1レンズ群と第3レンズ
群の屈折力比に関し、下限値を越えて第1レンズ群の屈
折力が強くなりすぎると望遠側での軸上収差が補正不足
傾向となり、又上限値を越えて第1レンズ群の屈折力が
弱くなりすぎると第1レンズ群と第3レンズ群との間隔
が第2レンズ群の移動量よりも広くなりすぎ、不必要な
空間が生じてくるので好ましくない。 【0022】条件式(5)は第3レンズ群の屈折力に関
し、下限値を越えて第3レンズ群の屈折力が強くなると
広角側での球面収差が補正不足傾向となり、更に第4レ
ンズ群の屈折力を弱くしなければならず、これに伴い第
4レンズ群の移動量が増大してくる。又上限値を越えて
第3レンズ群の屈折力が弱くなりすぎると広角側での球
面収差が補正過剰傾向となってくるので好ましくない。 【0023】次に本発明の数値実施例を示す。数値実施
例において、Riは物体側より順に第i番目のレンズ面
の曲率半径、Diは物体側より第i番目のレンズ厚及び
空気間隔、Niとνiは各々物体側より順に第i番目の
レンズのガラスの屈折率とアッベ数である。又表−1に
各数値実施例における各レンズ群の焦点距離を示す。 【0024】 【表1】 【0025】 【表2】 【0026】 【表3】 【0027】 【表4】 【0028】 【表5】 【0029】 【表6】 【0030】 【表7】 【0031】 【表8】 【0032】 【表9】【0033】 【発明の効果】本発明によれば変倍比6、Fナンバー
1.2程度の高変倍でしかも大口径比のレンズ系全体の
小型化を図りつつ良好に収差補正を達成したリヤーフォ
ーカス方式を利用したズームレンズを達成することがで
きる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zoom lens, and more particularly to a high-magnification and large-aperture ratio rear focus suitable for a still camera, a video camera, a broadcast TV camera and the like. The present invention relates to a zoom lens employing a system. 2. Description of the Related Art There is a so-called four-unit zoom lens as a zoom lens having a relatively high zoom ratio and a large aperture ratio, which has been conventionally used for a still camera, a video camera and the like. This 4
The group zoom lens includes, in order from the object side, a first lens group for focusing, a second lens group for zooming, a third lens group for correcting an image plane variation due to zooming, and a focal length of the entire system. It comprises a fourth lens unit for balancing aberration correction.
The four-unit zoom lens employs a configuration in which a total of three lens units including two lens units for zooming and one lens unit for focusing are moved. For this reason, the lens barrel tends to be relatively complicated. Also, when focusing on a short-distance object, the diameter of the front lens tends to increase if an attempt is made to secure a sufficient off-axis light beam because the first lens group is extended toward the object side. For this reason, conventionally, various zoom lenses using a so-called rear focus system in which a lens group other than the first lens group is moved to perform focusing have been proposed. For example, in US Pat. No. 4,364,642,
Focusing is performed by moving the third lens group in the four-unit zoom lens. In U.S. Pat. No. 4,460,251, focusing is performed by moving the second lens unit and the third lens unit together in a four-unit zoom lens. Further, Japanese Patent Application Laid-Open No. 58-136012 proposes a zoom lens in which a zooming unit is constituted by three or more lens groups, and a part of the lens groups is moved to perform focusing. However, in these zoom lenses, the diameter of the front lens becomes small, but the movement locus of the focusing lens group changes greatly between an object at infinity and an object at a close distance, so extra space is secured in the lens system in advance. And the overall length of the lens tends to increase. In Japanese Utility Model Laid-Open No. 59-63314, the fourth lens group of the four-group zoom lens is divided into two lens groups, and one of the lens groups is moved to perform focusing. However, this zoom lens has a total of 3
One lens group must be moved, and the lens barrel tends to be complicated. SUMMARY OF THE INVENTION An object of the present invention is to provide a zoom lens using a rear focus system having a high zoom ratio and a simple configuration that achieves miniaturization of the entire lens system having a large aperture ratio. I do. A zoom lens according to the present invention comprises, in order from the object side, a first lens unit having a positive refractive power, a second lens unit having a negative refractive power, and a third lens unit having a positive refractive power. A lens group, and a fourth lens group having a positive refractive power,
An aperture is provided in or near the third lens group, the first and third lens groups are fixed, and the second lens group is moved in one direction to perform zooming, and the fourth lens is The first lens is moved in a non-linear manner so as to correct the image plane variation accompanying zooming, and the fourth lens group is moved to the object side to focus from an object at infinity to a close object. The group has at least two positive lenses and one negative lens, and the second lens group has at least one positive lens and two negative lenses.
The third lens group has at least one negative lens.
The fourth lens group includes at least one positive lens and at least one negative lens. Other features of the present invention are described in the embodiments. FIG. 19 is a schematic diagram showing the basic structure of an optical system according to an embodiment of the present invention. In the figure, I is the first positive refractive power.
A lens group, II is a second lens group having a negative refractive power, III is a third lens group having a positive refractive power, and IV is a fourth lens group having a positive refractive power. Zooming is performed by moving the second and fourth lens groups in the directions of the arrows. Of these, the second lens group mainly performs zooming, and the fourth lens group corrects image plane fluctuation due to zooming. At this time, the fourth lens group is moved non-linearly so as to have a locus convex toward the object side as shown in FIG. Further, the fourth lens group is moved to the object side to perform focusing from an object at infinity to a close object. In addition, the first,
The third lens group is fixed during zooming and focusing. In this embodiment, the second lens unit having a negative refractive power disposed between the first lens unit having a positive refractive power and the third lens unit corresponding to the relay lens unit is moved in one direction. As a result, zooming is efficiently performed together with the image formation of the first and third lens groups. At the time of zooming, the fourth lens group is non-linearly moved toward the third lens group as shown in the figure to correct the image plane fluctuation, and the space between the third lens group and the fourth lens group. To reduce the overall length of the lens. In FIG. 19, a curve L2 represents a moving trajectory of the fourth lens group when the object is at infinity, and a curve L3 represents a moving trajectory accompanying zooming of the fourth lens group when the object is a close object. In the present embodiment, the first lens unit is always fixed without being extended at the time of focusing, and an increase in the lens diameter caused by extending forward is prevented. At the time of focusing, the number of movable lens groups is reduced by moving the fourth lens group, which is a part of the variable power system, instead of the first lens group, thereby simplifying the mechanism and improving the overall lens system. Is being downsized. That is, while the fourth lens group has both functions of zooming and focusing, and is moved in the space between the third lens group and the fourth lens group, effective use in the space in the lens system is achieved. To shorten the overall length of the lens. The first and third lens groups adjust the paraxial amounts such as the focal length, the angle of view, and the back focus of the entire system, and satisfactorily correct the aberration fluctuation caused by the movable lens group. In this embodiment, the diaphragm is disposed in or near the third lens group to reduce the variation in aberration due to the movable lens group and to balance the lens diameters of the first lens group and the fourth lens group. Good for good maintenance. In this embodiment, the first lens group is composed of at least two positive lenses and one negative lens, the second lens group is composed of at least one positive lens and two negative lenses, and the third lens group is composed of at least one positive lens and two negative lenses. At least one positive lens and one negative lens, and the fourth lens group is configured to have at least one positive lens and one negative lens, thereby satisfactorily correcting chromatic aberration in each lens group. The first lens group favorably corrects spherical aberration on the telephoto side, and the second lens group favorably corrects astigmatism and distortion on the wide-angle side. Further, in the present invention, in order to reduce aberration fluctuations caused by zooming and to reduce the size of the entire lens system, the focal length of the i-th lens unit is fi and the focal length at the wide-angle end of the entire system is fw. 0.7 <| f2 / fw | <2.1 (1) 1.2 <f4 / fw <4.0 (2) 1.2 <| f4 / f2 | <3.6 (3) 0.72 <f1 / f3 <2.9 (4) 1.8 <f3 / fw <4.2 ... (5) It is preferable to configure so as to satisfy the following condition. Next, the technical meaning of each of the above conditional expressions will be described. Conditional expression (1) relates to the refractive power of the second lens group. If the refractive power of the second lens group is increased beyond the lower limit, it is desirable to reduce the size of the lens system, but the Petzval sum is negative. And the curvature of field increases. When the refractive power of the second lens group becomes weaker than the upper limit, the fluctuation of aberration due to zooming is reduced, but the amount of movement for obtaining a predetermined zooming ratio must be increased, and the overall length of the lens becomes longer. It is becoming. Conditional expression (2) relates to the refractive power of the fourth lens unit. If the refractive power of the fourth lens unit exceeds the lower limit and the refractive power of the fourth lens unit becomes stronger, the axial spherical aberration on the wide-angle side will be insufficiently corrected, and the entire zoom ratio will be reduced. Extro-coma aberration occurs frequently over the region. If the refractive power of the fourth lens group is weakened beyond the upper limit, the amount of movement accompanying zooming is increased, the overall length of the lens is increased, and the fluctuation of aberrations during focusing increases. Conditional expression (3) relates to the refractive power ratio between the second lens unit and the fourth lens unit. If the refractive power of the fourth lens unit exceeds the lower limit and the refractive power of the fourth lens unit becomes too strong, the aberration variation during zooming will be reduced. If it is difficult to satisfactorily correct it, and if the refractive power of the fourth lens group exceeds the upper limit and the refractive power of the fourth lens group becomes too weak, the amount of movement increases, and the back focus becomes longer than necessary. This is not preferable because the total optical length up to the surface becomes too long. Conditional expression (4) relates to the refractive power ratio between the first lens unit and the third lens unit. If the refractive power of the first lens unit exceeds the lower limit and becomes too strong, the axial aberration on the telephoto side is corrected. If the refractive power of the first lens unit becomes too weak beyond the upper limit, the distance between the first lens unit and the third lens unit becomes too large than the movement amount of the second lens unit, and it becomes unnecessary. It is not preferable because a complicated space is generated. Conditional expression (5) relates to the refractive power of the third lens unit. If the refractive power of the third lens unit exceeds the lower limit and the refractive power of the third lens unit increases, spherical aberration on the wide-angle side tends to be insufficiently corrected. Must be reduced, and the amount of movement of the fourth lens group increases accordingly. On the other hand, if the refractive power of the third lens group is too weak beyond the upper limit, the spherical aberration on the wide-angle side tends to be overcorrected, which is not preferable. Next, numerical examples of the present invention will be described. In the numerical examples, Ri is the radius of curvature of the i-th lens surface in order from the object side, Di is the i-th lens thickness and air gap from the object side, and Ni and νi are the i-th lens in order from the object side. Are the refractive index and Abbe number of the glass. Table 1 shows the focal length of each lens group in each numerical example. [Table 1] [Table 2] [Table 3] [Table 4] [Table 5] [Table 6] [Table 7] [Table 8] [Table 9] According to the present invention, aberration correction is favorably achieved while miniaturizing the entire lens system having a high zoom ratio of about 6 and an F number of about 1.2 and a large aperture ratio. A zoom lens using the rear focus method can be achieved.

【図面の簡単な説明】 【図1】 本発明の数値実施例1のレンズ断面図 【図2】 本発明の数値実施例1の諸収差図 【図3】 本発明の数値実施例2のレンズ断面図 【図4】 本発明の数値実施例2の諸収差図 【図5】 本発明の数値実施例3のレンズ断面図 【図6】 本発明の数値実施例3の諸収差図 【図7】 本発明の数値実施例4のレンズ断面図 【図8】 本発明の数値実施例4の諸収差図 【図9】 本発明の数値実施例5のレンズ断面図 【図10】 本発明の数値実施例5の諸収差図 【図11】 本発明の数値実施例6のレンズ断面図 【図12】 本発明の数値実施例6の諸収差図 【図13】 本発明の数値実施例7のレンズ断面図 【図14】 本発明の数値実施例7の諸収差図 【図15】 本発明の数値実施例8のレンズ断面図 【図16】 本発明の数値実施例8の諸収差図 【図17】 本発明の数値実施例9のレンズ断面図 【図18】 本発明の数値実施例9の諸収差図 【図19】 本発明の一実施例の光学系の基本構成の概
略図 【符号の説明】 d d線 g g線 M メリディオナル像面 S サジタル像面 I 第1レンズ群 II 第2レンズ群 III 第3レンズ群 IV 第4レンズ群
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view of a lens according to Numerical Embodiment 1 of the present invention. FIG. 2 is a diagram illustrating various aberrations of Numerical Embodiment 1 of the present invention. FIG. 3 is a lens of Numerical Embodiment 2 of the present invention. FIG. 4 is a sectional view of various aberrations of Numerical Embodiment 2 of the present invention. FIG. 5 is a lens sectional view of Numerical Embodiment 3 of the present invention. FIG. 6 is a diagram of various aberrations of Numerical Embodiment 3 of the present invention. FIG. 8 is a sectional view of a lens according to a numerical example 4 of the present invention. FIG. 8 is a diagram showing various aberrations of a numerical example 4 of the present invention. FIG. 9 is a sectional view of a lens according to a numerical example 5 of the present invention. Various aberration diagrams of Example 5 [FIG. 11] Lens sectional view of Numerical Example 6 of the present invention [FIG. 12] Various aberration diagrams of Numerical Example 6 of the present invention [FIG. 13] Lens of Numerical Example 7 of the present invention FIG. 14 is a sectional view of various aberrations of Numerical Embodiment 7 of the present invention. FIG. 15 is a lens cross-sectional view of Numerical Embodiment 8 of the present invention. FIG. 17 is a sectional view of a lens according to a numerical example 9 of the present invention. FIG. 18 is an aberration diagram of a numerical example 9 according to the present invention. FIG. 19 is an optical system according to an example of the present invention. [Description of symbols] d d-line g g-line M meridional image plane S sagittal image plane I first lens group II second lens group III third lens group IV fourth lens group

Claims (1)

(57)【特許請求の範囲】 1.物体側より順に正の屈折力の第1レンズ群、負の屈
折力の第2レンズ群、正の屈折力の第3レンズ群、そし
て正の屈折力の第4レンズ群の4つのレンズ群を有し、
前記第3レンズ群内若しくはその近傍に絞りを有してお
り、前記第1,第3レンズ群を固定とし、前記第2レン
ズ群を一方向に移動させて変倍を行い、前記第4レンズ
群を変倍に伴う像面変動を補正するように非直線的に移
動させると共に該第4レンズ群を物体側へ移動させて無
限遠物体から至近物体への合焦を行い、前記第1レンズ
群は少なくとも2枚の正レンズと1枚の負レンズを有
し、前記第2レンズ群は少なくとも1枚の正レンズと2
枚の負レンズを有し、前記第3レンズ群は少なくとも1
枚ずつの正レンズと負レンズを有し、前記第4レンズ群
は少なくとも1枚ずつの正レンズと負レンズを有してい
ることを特徴とするズームレンズ。
(57) [Claims] Four lens groups of a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a fourth lens group having a positive refractive power are arranged in order from the object side. Have
An aperture is provided in or near the third lens group, the first and third lens groups are fixed, and the second lens group is moved in one direction to perform zooming, and the fourth lens is The first lens is moved in a non-linear manner so as to correct the image plane variation accompanying zooming, and the fourth lens group is moved to the object side to focus from an object at infinity to a close object. The group has at least two positive lenses and one negative lens, and the second lens group has at least one positive lens and two negative lenses.
The third lens group has at least one negative lens.
A zoom lens having a positive lens and a negative lens for each lens, and wherein the fourth lens group includes at least one positive lens and a negative lens.
JP8124021A 1996-04-22 1996-04-22 Zoom lens Expired - Lifetime JP2901144B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8124021A JP2901144B2 (en) 1996-04-22 1996-04-22 Zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8124021A JP2901144B2 (en) 1996-04-22 1996-04-22 Zoom lens

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP6305371A Division JP2746155B2 (en) 1994-11-14 1994-11-14 Zoom lens

Publications (2)

Publication Number Publication Date
JPH08278446A JPH08278446A (en) 1996-10-22
JP2901144B2 true JP2901144B2 (en) 1999-06-07

Family

ID=14875076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8124021A Expired - Lifetime JP2901144B2 (en) 1996-04-22 1996-04-22 Zoom lens

Country Status (1)

Country Link
JP (1) JP2901144B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6525885B2 (en) 2000-05-17 2003-02-25 Ricoh Company, Ltd. Zoom lens, camera and portable information terminal device
US6982836B2 (en) 2004-05-12 2006-01-03 Pentax Corporation Zoom lens system
US7304803B2 (en) 2005-10-19 2007-12-04 Ricoh Company, Ltd. Zoom lens unit, imaging device and photographing device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4580510B2 (en) * 2000-06-22 2010-11-17 オリンパス株式会社 Zoom lens
JP5528157B2 (en) * 2010-02-26 2014-06-25 キヤノン株式会社 Zoom lens and imaging apparatus having the same
WO2014067091A1 (en) 2012-10-31 2014-05-08 深圳市大族激光科技股份有限公司 Variofocusing monitoring shot and monitoring device
KR102066941B1 (en) * 2013-12-16 2020-01-16 한화테크윈 주식회사 Zoom lens system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2746155B2 (en) * 1994-11-14 1998-04-28 キヤノン株式会社 Zoom lens

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6525885B2 (en) 2000-05-17 2003-02-25 Ricoh Company, Ltd. Zoom lens, camera and portable information terminal device
US6982836B2 (en) 2004-05-12 2006-01-03 Pentax Corporation Zoom lens system
US7304803B2 (en) 2005-10-19 2007-12-04 Ricoh Company, Ltd. Zoom lens unit, imaging device and photographing device

Also Published As

Publication number Publication date
JPH08278446A (en) 1996-10-22

Similar Documents

Publication Publication Date Title
JP2538526B2 (en) Zoom lens
JP3584107B2 (en) Zoom lens
JP2984469B2 (en) Rear focus zoom lens
JP2628633B2 (en) Compact zoom lens
JPH07253542A (en) Zoom lens
JP2740890B2 (en) Rear focus zoom lens
JPH06281861A (en) Small variable power lens
JPH07294816A (en) Zoom lens
JP3160846B2 (en) Telephoto zoom lens
JP3412908B2 (en) Zoom lens
JPH07140388A (en) Zoom lens
JP2901144B2 (en) Zoom lens
JP3029148B2 (en) Rear focus zoom lens
JP2546293B2 (en) Small zoom lens
JPH08220439A (en) Zoom lens
JPH05313066A (en) Zoom lens
JP3015192B2 (en) Rear focus zoom lens
JPS6144288B2 (en)
JP3219574B2 (en) Zoom lens
JP2746155B2 (en) Zoom lens
JP4072276B2 (en) Zoom lens
JP3593400B2 (en) Rear focus zoom lens
JP2819727B2 (en) Inner focus zoom lens
JP2832092B2 (en) Rear focus zoom lens
JP3423508B2 (en) Rear focus zoom lens

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term