JP2900853B2 - Wireless base station, wireless local area network, and optical fiber feeder - Google Patents

Wireless base station, wireless local area network, and optical fiber feeder

Info

Publication number
JP2900853B2
JP2900853B2 JP7236469A JP23646995A JP2900853B2 JP 2900853 B2 JP2900853 B2 JP 2900853B2 JP 7236469 A JP7236469 A JP 7236469A JP 23646995 A JP23646995 A JP 23646995A JP 2900853 B2 JP2900853 B2 JP 2900853B2
Authority
JP
Japan
Prior art keywords
optical
signal
wireless
optical fiber
antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7236469A
Other languages
Japanese (ja)
Other versions
JPH0983450A (en
Inventor
泰彦 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP7236469A priority Critical patent/JP2900853B2/en
Publication of JPH0983450A publication Critical patent/JPH0983450A/en
Application granted granted Critical
Publication of JP2900853B2 publication Critical patent/JP2900853B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、サブキャリア多重
光伝送方式を用いた無線信号伝送装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radio signal transmission apparatus using a subcarrier multiplexing optical transmission system.

【0002】[0002]

【従来の技術】移動無線電話のような無線通信システム
では、サービスエリアが複数の小エリアに分割され、各
小エリア毎に無線基地局が配置される。無線基地局は、
アンテナ部、無線信号を通話信号に変換する変復調部、
および無線チャンネルの制御をおこなう制御部等からな
り、さらに大きなエリアの回転制御をおこなう中央局に
ケーブルで接続される。一つの無線基地局が統括するエ
リアを小さくすれば、無線端末と無線基地局の送信出力
を低減し、かつ周波数使用効率を向上できるが、基地局
の数が膨大になるために基地局の小型化と高信頼化が求
められる。
2. Description of the Related Art In a radio communication system such as a mobile radio telephone, a service area is divided into a plurality of small areas, and a radio base station is arranged for each small area. The radio base station
An antenna unit, a modem unit for converting a radio signal into a call signal,
And a control unit for controlling a radio channel, and is connected by a cable to a central office for controlling the rotation of a larger area. If the area controlled by one wireless base station is reduced, the transmission output of the wireless terminal and the wireless base station can be reduced, and the frequency use efficiency can be improved.However, since the number of base stations becomes enormous, the size of the base station becomes smaller. And high reliability are required.

【0003】また、無線通信に使用する信号は、伝送信
号レートの大容量化と周波数資源の逼迫により、年々高
周波化が進んでいる。一般に無線信号の周波数が高くな
るにつれ、電波伝搬の直進性が強くなり、また構造物を
透過する際の吸収損が大きくなる。特に、都市部のよう
に建物が密集した区域や屋内などにおいては、電波伝搬
が構造物によって妨害を受けるため、無線信号の届きに
くい地帯(アンテナ不感地帯)が生じる。アンテナ不感
地帯に無線信号を供給するためには、無線基地局を増設
し、相互にケーブル接続すればよい。しかしながら、無
線基地局には無線信号の変復調器や制御装置などが含ま
れるため、装置の小型化や低コスト化が難しいという問
題があった。
[0003] Further, the frequency of signals used for wireless communication is increasing year by year due to the increase in transmission signal rate and the tightness of frequency resources. In general, as the frequency of a radio signal increases, the straightness of radio wave propagation increases, and the absorption loss when passing through a structure increases. In particular, in an area where buildings are densely packed, such as in an urban area, or in an indoor area, a radio wave propagation is obstructed by a structure, so that a zone where a radio signal is difficult to reach (an antenna dead zone) occurs. In order to supply a radio signal to the antenna blind zone, radio base stations may be added and connected to each other via a cable. However, since the radio base station includes a radio signal modulator / demodulator, a control device, and the like, there has been a problem that it is difficult to reduce the size and cost of the device.

【0004】そこで、無線基地局のアンテナ部の機能の
みを分離し、変復調部や制御部等は中央局に配置し、両
者を光ファイバで接続するという方法がある。この方法
は、たとえば渋谷らによる「光によるマイクロセル移動
通信の無線信号集配方式」電子情報通信学会、無線通信
システム研究会、RCS90−12等の文献に詳細に記
されている。この方式では、無線基地局は光信号と電気
信号の変換および無線信号の増幅のみをおこなえばよい
ので、基地局の小型化と高信頼化が実現できる。
Therefore, there is a method in which only the function of the antenna section of the radio base station is separated, the modulation / demodulation section, the control section, and the like are arranged in the central station, and both are connected by an optical fiber. This method is described in detail in Shibuya et al.'S documents such as "Wireless signal collection / distribution method of microcell mobile communication by light", IEICE, RCS90-12, RCS90-12, etc. In this method, since the wireless base station only needs to convert the optical signal and the electric signal and amplify the wireless signal, the size and the reliability of the base station can be reduced.

【0005】一方無線LANに関しても、同様に小型で
広帯域の光ファイバ伝送技術を用いたサービスエリア間
伝送装置が提案されている。光ファイバ伝送技術を無線
LANシステムに適用した例としては、トーマス(H.
Thomas)らによる1992年電子情報通信学会秋
季大会、B−334等が挙げられる。
[0005] On the other hand, with respect to wireless LANs, similarly, a transmission device between service areas using a small and wide band optical fiber transmission technology has been proposed. As an example of applying the optical fiber transmission technology to a wireless LAN system, Thomas (H.
Thomas, et al., 1992 Fall Meeting of the Institute of Electronics, Information and Communication Engineers, B-334.

【0006】[0006]

【発明が解決しようとする課題】以上で説明した、従来
の光ファイバ伝送による無線信号の集配方式では、全て
の変復調器を中央局に集約し、各アンテナと中央局とを
光ファイバによって1対1に接続する構成をとってい
る。そのため、伝送距離は最大で20km程度となり、フ
ァイバコア径が10μm 以下のシングルモードファイバ
による伝送が必要である。また、光送信器の光源として
は、低雑音かつ低歪な分布帰還型レーザダイオードを用
いる必要がある。これらの理由により、従来のシステム
では導入コストが高くなるという問題があった。しか
し、前記のアンテナ不感地帯への無線信号の集配という
目的のために、近接エリアの無線基地局あるいは無線L
AN端末のアンテナへの無線信号を分岐し、アンテナ不
感地帯にアンテナを増設して、両者の間を光ファイバで
接続するという構成で実現できる。この場合に必要な伝
送距離は高々500m 程度であるため、接続の容易な多
モードファイバや低コストのファブリ・ペローレーザダ
イオード等の適用が可能になる。
In the conventional radio signal collection and distribution system using optical fiber transmission described above, all modems are centralized in a central station, and each antenna and central station are paired by an optical fiber. 1 is connected. Therefore, the transmission distance is about 20 km at the maximum, and transmission using a single mode fiber having a fiber core diameter of 10 μm or less is required. Further, it is necessary to use a low-noise and low-distortion distributed feedback laser diode as a light source of the optical transmitter. For these reasons, the conventional system has a problem that the introduction cost is high. However, for the purpose of collecting and delivering wireless signals to the above-mentioned antenna blind zone, a wireless base station or wireless L
It can be realized by a configuration in which a radio signal to the antenna of the AN terminal is branched, an antenna is added in an antenna blind zone, and the two are connected by an optical fiber. In this case, the required transmission distance is at most about 500 m, so that it is possible to apply a multimode fiber that can be easily connected or a low-cost Fabry-Perot laser diode.

【0007】そこで、本発明は無線通信システムに於け
るアンテナ給電線に関し、低雑音で接続の容易な光伝送
路を低コストで提供し、アンテナ不感地帯に無線信号を
供給することを目的とする。
Accordingly, the present invention relates to an antenna feed line in a wireless communication system, which aims to provide a low-noise, easily connectable optical transmission line at low cost and supply a radio signal to an antenna blind zone. .

【0008】[0008]

【課題を解決するための手段】第1の発明の光ファイバ
給電線装置は、移動端末に対して無線信号を送受信する
アンテナと、該無線信号と通話信号とを変換する変復調
器と、該アンテナと変復調器の間を接続する光ファイバ
給電線から成り、該光ファイバ給電線は、無線信号を光
信号に変換する光送信器と、該光送信器の出力光信号を
伝送する光ファイバ伝送路と、該光ファイバ伝送路の出
力を無線信号に変換する光受信器によって構成される無
線基地局において、前記光ファイバ伝送路としてコア径
100μm以上の多モード光ファイバを用いる無線基地
局における光ファイバ給電線装置であって、前記アンテ
ナから光送信器への入力無線信号と光受信器からアンテ
ナへの出力無線信号とを切り替える電気的なスイッチを
有し、また前記変調器から光送信器への入力無線信号と
光受信器から復調器への出力無線信号とを切り替える電
気的なスイッチを有することを特徴とする。
SUMMARY OF THE INVENTION An optical fiber according to the first invention
The feed line device includes an antenna that transmits and receives a radio signal to and from a mobile terminal, a modem that converts the radio signal and a call signal, and an optical fiber feed line that connects the antenna and the modem. The optical fiber feed line includes an optical transmitter that converts a wireless signal into an optical signal, an optical fiber transmission line that transmits an optical signal output from the optical transmitter, and an optical fiber that converts the output of the optical fiber transmission line into a wireless signal. in the radio base station configured by the receiver, the radio base using multimode optical fiber over a core diameter 100μm as the optical fiber transmission line
An optical fiber feeder device in a station, comprising:
From the receiver to the optical transmitter and the antenna from the optical receiver.
Electrical switch to switch between the output radio signal to
Having an input radio signal from the modulator to the optical transmitter;
An electric signal for switching between the optical receiver and the output radio signal to the demodulator.
It has a mechanical switch .

【0009】第2の発明の光ファイバ給電線装置は、無
線ローカルエリアネットワーク(無線LAN)端末に対
して無線信号を送受信する複数のアンテナと、該無線信
号とベースバンド信号とを変換する変復調器と、該アン
テナと変復調器の間を接続する光ファイバ給電線から成
り、該光ファイバ給電線は、無線信号を光信号に変換す
る光送信器と、該光送信器の出力光信号を伝送する光フ
ァイバ伝送路と、該光ファイバ伝送路の出力を無線信号
に変換する光受信器によって構成される無線LANにお
いて、前記光ファイバ伝送路としてコア径100μm以
上の多モード光ファイバを用いる無線LANにおける光
ファイバ給電線装置であって、前記アンテナから光送信
器への入力無線信号と光受信器からアンテナへの出力無
線信号とを切り替える電気的なスイッチを有し、また前
記変調器から光送信器への入力無線信号と光受信器から
復調器への出力無線信号とを切り替える電気的なスイッ
チを有することを特徴とする。
An optical fiber feeder according to a second aspect of the present invention includes a plurality of antennas for transmitting / receiving a radio signal to / from a wireless local area network (wireless LAN) terminal, and a modem for converting the radio signal and a baseband signal. And an optical fiber feed line connecting between the antenna and the modem, the optical fiber feed line transmitting an optical transmitter for converting a radio signal to an optical signal, and transmitting an output optical signal of the optical transmitter. In a wireless LAN configured by an optical fiber transmission line and an optical receiver that converts an output of the optical fiber transmission line into a wireless signal, a wireless LAN using a multimode optical fiber having a core diameter of 100 μm or more as the optical fiber transmission line . light
A fiber feed line device, wherein light is transmitted from the antenna.
No radio signal input to the receiver and no output from the optical receiver to the antenna
It has an electrical switch to switch between the line signal and
The input radio signal from the modulator to the optical transmitter and from the optical receiver
An electrical switch for switching between the output radio signal to the demodulator
Characterized by having

【0010】第3の発明の無線基地局は、移動端末に対
して無線信号を送受信するアンテナと、該無線信号と通
話信号とを変換する変復調器と、該アンテナと変復調器
の間を接続する光ファイバ給電線から成り、該光ファイ
バ給電線は、無線信号を光信号に変換する光送信器と、
該光送信器の出力光信号を伝送する光ファイバ伝送路
と、該光ファイバ伝送路の出力を無線信号に変換する光
受信器によって構成される無線基地局において、前記光
ファイバ伝送路としてコア径100μm以上の多モード
光ファイバを用い、前記変復調器と電気的な分波器とを
接続し、該分波器によって分岐した無線信号を直接また
は前記光ファイバ給電線装置を介して複数のアンテナに
集配することを特徴とする。
A wireless base station according to a third aspect of the present invention provides
An antenna for transmitting and receiving radio signals, and
A modem for converting a speech signal, the antenna and the modem
And an optical fiber feed line connecting the
An optical transmitter that converts a wireless signal into an optical signal;
Optical fiber transmission line for transmitting an output optical signal of the optical transmitter
And light for converting the output of the optical fiber transmission line into a radio signal.
In a wireless base station constituted by a receiver,
Multimode with a core diameter of 100μm or more as a fiber transmission line
Using an optical fiber, the modem and the electrical duplexer
And directly and wirelessly split the radio signal split by the duplexer.
Is connected to a plurality of antennas via the optical fiber feeder.
It is characterized by collecting and delivering.

【0011】第4の発明の無線LANは、無線ローカル
エリアネットワーク(無線LAN)端末に対して無線信
号を送受信する複数のアンテナと、該無線信号とベース
バンド信号とを変換する変復調器と、該アンテナと変復
調器の間を接続する光ファイバ給電線から成り、該光フ
ァイバ給電線は、無線信号を光信号に変換する光送信器
と、該光送信器の出力光信号を伝送する光ファイバ伝送
路と、該光ファイバ伝送路の出力を無線信号に変換する
光受信器によって構成される無線LANにおいて、前記
光ファイバ伝送路としてコア径100μm以上の多モー
ド光ファイバを用い、前記変復調器と電気的な分波器と
を接続し、該分波器によって分岐した無線信号を直接ま
たは前記光ファイバ給電線装置を介して複数のアンテナ
に集配することを特徴とする。
A wireless LAN according to a fourth aspect of the present invention is a wireless local area network.
Wireless communication to area network (wireless LAN) terminals
Antennas for transmitting and receiving signals, the radio signal and the base
A modem for converting a band signal,
And an optical fiber feed line connecting between the controllers.
The fiber feeder is an optical transmitter that converts wireless signals into optical signals.
And an optical fiber transmission for transmitting an output optical signal of the optical transmitter.
And converting the output of the optical fiber transmission line into a wireless signal
In a wireless LAN configured by an optical receiver,
Multimode with a core diameter of 100 μm or more as an optical fiber transmission line
Using optical fiber, said modem and electrical demultiplexer
And directly connect the wireless signal split by the duplexer.
Or a plurality of antennas via the optical fiber feed line device.
It is characterized by being collected and delivered to

【0012】(作用)第1および第2の発明の光ファイ
バ給電線装置において、光ファイバ伝送路のファイバコ
ア径を100μm以上と大きくすることにより、コア径
が10μm以下の単一モードファイバやコア径が50μ
m程度の多モードファイバを使用した場合に比べて、光
ファイバ同士の融着および光部品との接続の精度に関す
る制約が緩和されるため、より容易な光ファイバの接続
を実現できる。
(Operation ) The optical fiber of the first and second inventions
The fiber feeder of the optical fiber transmission line
The core diameter can be increased by increasing the diameter to 100 μm or more.
Is 10μm or less single mode fiber or 50μ core diameter
m compared to using multimode fiber of about m
Regarding the accuracy of fusion between fibers and connection with optical components
Optical fiber connection easier
Can be realized.

【0013】また、光ファイバ伝送路の光源としてレー
ザダイオードを使用した場合、レーザダイオードの相対
強度雑音特性が戻り光の影響によって悪化することはよ
く知られている。ここで多モード光ファイバのコア径が
レーザダイオードの発光面に比して十分大きい場合、光
ファイバ伝送路の途中に反射点が存在しても、レーザダ
イオード内部に戻る光量は小さくなるため、相対強度雑
音の劣化を軽減することができる。
[0013] In addition, a laser is used as a light source for an optical fiber transmission line.
When using a diode, the relative
Intensity noise characteristics are not likely to be degraded by the effects of returning light.
Well known. Where the core diameter of the multimode optical fiber is
If it is large enough compared to the light emitting surface of the laser diode,
Even if there is a reflection point in the middle of the fiber transmission line, the laser
Since the amount of light returning to the inside of the iode is small, the relative intensity
Sound deterioration can be reduced.

【0014】なお一般的に多モード光ファイバを用いて
無線信号を光伝送する場合、ファイバ端面や接続部にお
いて各モードの信号光間で干渉パターンが生じ、モード
雑音が発生する。
In general, using a multimode optical fiber
When transmitting wireless signals optically, the fiber end face or connection
Interference patterns between the signal lights in each mode
Noise occurs.

【0015】しかし、多モード光ファイバのモード数が
ファイバコア径の2乗に比例して増加するため、ファイ
バコア径を大きくすることにより、ファイバ端面や接続
部における光強度分布は平均化され、コード雑音の影響
は低減される。
However, the number of modes of the multimode optical fiber is
Since it increases in proportion to the square of the fiber core diameter,
Increasing the diameter of the fiber core and the connection
The light intensity distribution in the section is averaged, and the effect of code noise
Is reduced.

【0016】この多モード光ファイバのモード数とモー
ド雑音の関係については、例えばコーネン(A.M.
J.KOONEN)による、アイ・イー・イー・イージ
ャーナルオンセレクテドエリアズインコミュニケーショ
ン(IEEE Journalof Selected
Areas in Communication)第
4巻9号1515頁、式(2)に述べられている。本発
明ではファイバコア径を100μm以上と大きくするこ
とにより、モード雑音を無視できる程度まで抑圧してい
る。
The number of modes and modes of this multimode optical fiber
As for the relationship between the noises, for example, Koenen (A.M.
J. KOENEN)
Journal on Selected Areas Communication
(IEEE Journal of Selected)
Areas in Communication)
It is described in equation (2), Vol. 4, No. 9, page 1515. Departure
In the light, the fiber core diameter should be as large as 100 μm or more.
And the mode noise is suppressed to a negligible level.
You.

【0017】また、第1および第2の発明の光ファイバ
給電線装置では、アンテナから光送信器、および光受信
器からアンテナへの無線信号の流れは電気的なスイッチ
によって切り替えられる。また、変調器から光送信器、
および光受信器から復調器への無線信号の流れもまた電
気的なスイッチによって切り替えられる。
Also, the optical fiber of the first and second inventions
In the feeder device, the optical transmitter and the optical receiver
The flow of radio signals from the device to the antenna is an electrical switch
Is switched by Also, from the modulator to the optical transmitter,
And the flow of radio signals from the optical receiver to the demodulator is also
It can be switched by a smart switch.

【0018】この様な構成にすることにより、アンテナ
と光ファイバ給電線装置、および変復調器と光ファイバ
給電線装置の無線信号の入出力系統を単一化し、装置構
成を簡略化することができる。
With such a configuration, the antenna
And optical fiber feeder, and modem and optical fiber
By unifying the input / output system of the wireless signal of the feeder device,
Configuration can be simplified.

【0019】第3の発明の無線基地局および第4の発明
の無線LANでは、光ファイバ給電線装置と変復調器と
が電気的な分波器を介して接続される。
A wireless base station according to a third invention and a fourth invention
In a wireless LAN, an optical fiber feeder and a modem
Are connected via an electrical duplexer.

【0020】この様な構成にすることにより、光ファイ
バ給電線装置伝送路を用いない従来の無線基地局や無線
LAN端末に対し、変復調器を増設することなしに、光
ファイバ給電線装置を介してアンテナを接続することが
可能になる。
With such a configuration, the optical fiber
Conventional wireless base stations and wireless systems that do not use
For LAN terminals, without adding a modem,
Connecting an antenna via a fiber feeder
Will be possible.

【0021】[0021]

【発明の実施の形態】次に本発明について図面を参照し
て説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings.

【0022】図1に本発明の第1の実施例の無線基地局
の構成を示す。図1で、無線基地局5はリモートアンテ
ナ装置4aおよび4bと、それぞれ多モード光ファイバ
1a、2aおよび1b、2bを介して接続されている。
ここで、移動端末3は、無線基地局5のアンテナ72と
直接無線信号を送受信不可能であるが、リモートアンテ
ナ装置4aのアンテナ71aとは直接交信できる位置に
あるものとする。
FIG. 1 shows the configuration of a radio base station according to a first embodiment of the present invention. In FIG. 1, a radio base station 5 is connected to remote antenna devices 4a and 4b via multimode optical fibers 1a, 2a and 1b, 2b, respectively.
Here, it is assumed that the mobile terminal 3 cannot transmit / receive a radio signal directly to / from the antenna 72 of the radio base station 5 but is located at a position where it can directly communicate with the antenna 71a of the remote antenna device 4a.

【0023】移動端末3から送信された無線信号100
は、リモートアンテナ装置4aのアンテナ71aで受信
され、帯域通過フィルタ20aによって不要な周波数成
分を除去された後、サーキュレータ21aを介して、光
送信器11aに入力される。光送信器11aは電気/光
変換器、増幅器等からなり、入力無線信号104aを光
信号202aに変換する。変換された光信号202a
は、多モード光ファイバ伝送路2aを通り、無線基地局
5の光受信器13aによって受信される。ここで、多モ
ード光ファイバ伝送路としてファイバコア径が100μ
m 以上のものを用いることにより、作用の項で説明した
ように、光ファイバ同士や光部品との接続を容易にし、
多モード光ファイバ伝送路から電気/光変換器への戻り
光による雑音の影響を軽減し、さらに多モード光ファイ
バ伝送路中で生じるモード雑音の影響を低減できる。光
受信器13aは光/電気変換器、増幅器等からなり、入
力光信号202aを無線信号106aに変換する。無線
信号106aはサーキュレータ22aを介して分波器3
0に入力され、アンテナ72、リモートアンテナ4bか
らの無線信号と足しあわされる。分波器の分岐数は任意
であり、分岐数を増やすほど多数のアンテナを接続可能
になる。分波器の出力無線信号109は変復調器40に
入力され、通話信号300に復調される。復調された通
話信号300は、複数の無線基地局を統括する中央局へ
と伝送される。ここでは移動端末から無線基地局への信
号(上り回線)について説明したが、無線基地局から移
動端末への信号(下り回線)についても同様である。
Wireless signal 100 transmitted from mobile terminal 3
Is received by the antenna 71a of the remote antenna device 4a, and after unnecessary frequency components are removed by the band-pass filter 20a, the signal is input to the optical transmitter 11a via the circulator 21a. The optical transmitter 11a includes an electric / optical converter, an amplifier, etc., and converts the input wireless signal 104a into an optical signal 202a. Converted optical signal 202a
Is received by the optical receiver 13a of the wireless base station 5 through the multimode optical fiber transmission line 2a. Here, the fiber core diameter is 100 μm as a multimode optical fiber transmission line.
As described in the section of the operation, the use of a fiber having a length of at least m facilitates connection between optical fibers and optical components,
The effect of noise due to return light from the multi-mode optical fiber transmission line to the electric / optical converter can be reduced, and the effect of mode noise generated in the multi-mode optical fiber transmission line can be reduced. The optical receiver 13a includes an optical / electrical converter, an amplifier, etc., and converts an input optical signal 202a into a wireless signal 106a. The radio signal 106a is transmitted to the duplexer 3 via the circulator 22a.
0 and is added to the radio signals from the antenna 72 and the remote antenna 4b. The number of branches of the duplexer is arbitrary, and as the number of branches increases, more antennas can be connected. The output radio signal 109 of the duplexer is input to the modulator / demodulator 40 and is demodulated into a speech signal 300. Demodulated speech signal 300 is transmitted to a central office that controls a plurality of wireless base stations. Here, the signal from the mobile terminal to the wireless base station (uplink) has been described, but the same applies to the signal from the wireless base station to the mobile terminal (downlink).

【0024】なお前項では無線基地局5のアンテナ72
で送受信される無線信号と、リモートアンテナ4a、4
bのアンテナ71a、71bで送受信される無線信号は
それぞれ互いに干渉しないものとして記述したが、現実
には複数のアンテナにおいて同時に無線信号を送受信可
能な場合が存在する。この場合は、移動端末3から送信
された無線信号(上り回線)は、アンテナ71a、71
b、および72で受信され、無線基地局の復調器40に
おいて受信レベルおよび受信遅延差の異なるマルチパス
信号として認識されて、トランスバーサルフィルタまた
はディジタル信号処理によって等化処理される。また、
無線基地局からアンテナ71a、71b、および72を
介して送信された無線信号(下り回線)についても、移
動端末3の復調器においてマルチパス信号として認識さ
れ、等化処理される。
In the preceding paragraph, the antenna 72 of the radio base station 5
Wireless signals transmitted and received by the remote antennas 4a and 4
The wireless signals transmitted and received by the b antennas 71a and 71b are described as not interfering with each other, but in reality there are cases where wireless signals can be transmitted and received simultaneously by a plurality of antennas. In this case, the radio signal (uplink) transmitted from mobile terminal 3 is transmitted through antennas 71a, 71
b, and 72, are recognized as multipath signals having different reception levels and reception delay differences by the demodulator 40 of the radio base station, and are equalized by a transversal filter or digital signal processing. Also,
A radio signal (downlink) transmitted from the radio base station via the antennas 71a, 71b, and 72 is also recognized as a multipath signal by the demodulator of the mobile terminal 3 and subjected to equalization processing.

【0025】図2に、無線LANを部屋間で接続する従
来の構成を示す。無線LANは主に屋内で使用され、一
つのアンテナがカバーできる範囲は基本的に一つの部屋
に限定される。そのため、複数の部屋にサービスエリア
を拡張するためには、部屋間を有線ケーブルを用いて接
続する。図2において無線エリアXと無線エリアYとは
壁などによって仕切られており、相互に無線信号を直接
通信できないものとする。無線LAN端末7は無線エリ
アXに、無線LAN端末6は無線エリアYに配置され、
両者は有線LANケーブル9によって接続されている。
無線エリアXにある無線LAN端末8が発する無線信号
100は、アンテナ75で受信され、ベースバンド信号
302に復調される。復調されたベースバンド信号30
2は有線LAN/無線LANブリッジ61に入力され
る。有線LAN/無線LANブリッジ61はトランスポ
ート層でベースバンド信号302を有線LANに接続
し、ベースバンド信号303を有線LANケーブル9に
送出する。ベースバンド信号303は、有線LAN/無
線LANブリッジ60においてベースバンド信号301
に変換され、無線LAN端末6に入力される。無線LA
N端末6はベースバンド信号301を再度無線信号に変
調し、アンテナ74から無線エリアYに向けて送信す
る。また、無線エリアYのアンテナ74において受信さ
れた無線信号も、同様に無線エリアXに向けて送信され
る。この様に従来の無線LANでは、部屋間接続に有線
LANを用いる構成であるため、部屋毎に無線の変復調
器および有線LAN/無線LANの接続ブリッジが必要
となる。
FIG. 2 shows a conventional configuration for connecting a wireless LAN between rooms. The wireless LAN is mainly used indoors, and the range that one antenna can cover is basically limited to one room. Therefore, in order to extend the service area to a plurality of rooms, the rooms are connected using a wired cable. In FIG. 2, the wireless area X and the wireless area Y are separated by a wall or the like, and it is assumed that wireless signals cannot be directly communicated with each other. The wireless LAN terminal 7 is located in the wireless area X, the wireless LAN terminal 6 is located in the wireless area Y,
Both are connected by a wired LAN cable 9.
The wireless signal 100 emitted by the wireless LAN terminal 8 in the wireless area X is received by the antenna 75 and demodulated into a baseband signal 302. Demodulated baseband signal 30
2 is input to the wired LAN / wireless LAN bridge 61. The wired LAN / wireless LAN bridge 61 connects the baseband signal 302 to the wired LAN at the transport layer, and sends the baseband signal 303 to the wired LAN cable 9. The baseband signal 303 is transmitted from the wired LAN / wireless LAN bridge 60 to the baseband signal 301.
And input to the wireless LAN terminal 6. Wireless LA
The N terminal 6 modulates the baseband signal 301 again into a radio signal and transmits the radio signal from the antenna 74 to the radio area Y. The wireless signal received by the antenna 74 in the wireless area Y is also transmitted toward the wireless area X. As described above, in the conventional wireless LAN, since a wired LAN is used for connection between rooms, a wireless modem and a wired LAN / wireless LAN connection bridge are required for each room.

【0026】図3に、本発明の第2の実施例である無線
LANの構成を示す。図3においても図2と同様に無線
エリアXと無線エリアYとは壁などによって仕切られて
おり直接無線信号を相互に通信できないものとする。無
線LAN端末6とリモートアンテナ4aはそれぞれ無線
エリアX、Yに配置され、両者は多モード光ファイバ伝
送路1a、2aで接続される。リモートアンテナ装置4
aおよび無線LAN端末6の光送信器、光受信器および
変復調器などの機能については、実施例1の無線基地局
と同様である。有線LANを用いて無線LANを接続す
る従来の方法と比較して、本発明の光ファイバを用いて
リモートアンテナ4aを増設する方法では、無線信号を
そのまま光信号の強度変調におきかえ、サブキャリア多
重して伝送するため、無線信号の変復調器や有線LAN
との接続ブリッジ等は不要である。本構成では、無線エ
リアXおよびYで同一無線チャンネルを共有するため、
特に無線エリアYを占める無線LAN端末の台数が比較
的低く、高コストの有線LANとの接続機器の設置の必
要性が低い場合に特に有効と考えられる。
FIG. 3 shows the configuration of a wireless LAN according to a second embodiment of the present invention. In FIG. 3, as in FIG. 2, the wireless area X and the wireless area Y are separated by a wall or the like, and wireless signals cannot be directly communicated with each other. The wireless LAN terminal 6 and the remote antenna 4a are arranged in wireless areas X and Y, respectively, and both are connected by multimode optical fiber transmission lines 1a and 2a. Remote antenna device 4
a and the functions of the wireless LAN terminal 6 such as an optical transmitter, an optical receiver, and a modem are the same as those of the wireless base station of the first embodiment. Compared with the conventional method of connecting a wireless LAN using a wired LAN, in the method of adding the remote antenna 4a using the optical fiber of the present invention, the radio signal is directly replaced with the intensity modulation of the optical signal, and subcarrier multiplexing is performed. To transmit and receive, wireless signal modem and wired LAN
No connection bridge or the like is required. In this configuration, since the same wireless channel is shared by the wireless areas X and Y,
In particular, it is considered to be particularly effective when the number of wireless LAN terminals occupying the wireless area Y is relatively low and the necessity of installing a high-cost wired LAN connection device is low.

【0027】図4に、本発明の第3の実施例である無線
LANの構成を示す。無線LANのような無線システム
の場合、端末の送信と受信は時間的に切り替えられる。
そこで、無線LAN端末6の分波器31にスイッチ27
を接続し、分波器31の入出力無線信号107aを、光
送信器10aへの入力無線信号105aと光受信器13
aからの出力無線信号106aとに切り替える。スイッ
チ27の制御信号は、変復調器41からスイッチ制御信
号400を取り出して用いる。実際に無線LAN端末で
は消費電力の低減のため、無線信号送出時、受信時、お
よび待機時で電子回路の動作モードを変化させるための
制御信号を有しているので、これを使用する。また、ス
イッチ制御信号400は振幅変調器81によって無線信
号よりも十分低い周波数の制御信号401に変調され、
合波器33によって無線信号にサブキャリア多重され
る。リモートアンテナ4aでは、受信無線信号103a
の一部を分波器32によって取り出し、低周波通過フィ
ルタ23によって制御信号を取り出した後、振幅復調器
80によってスイッチ制御信号403を取り出す。この
様な構成にすることにより、無線信号の光送信器入力と
光受信器出力を、サーキュレータを用いずにアンテナ端
子に接続することが可能になる。また、光送受信器に送
受信切り替えの信号を利用して、未使用時には増幅器を
低電力動作モードに切り替えることにより、装置の低消
費電力化を図ることができる。
FIG. 4 shows the configuration of a wireless LAN according to a third embodiment of the present invention. In the case of a wireless system such as a wireless LAN, transmission and reception of a terminal are temporally switched.
Therefore, the switch 27 is connected to the duplexer 31 of the wireless LAN terminal 6.
And the input / output wireless signal 107a of the duplexer 31 is connected to the input wireless signal 105a to the optical transmitter 10a and the optical receiver 13
The output wireless signal 106a is switched to the output wireless signal 106a. As a control signal of the switch 27, a switch control signal 400 is extracted from the modem 41 and used. Actually, in order to reduce power consumption, a wireless LAN terminal has a control signal for changing the operation mode of the electronic circuit at the time of sending, receiving, and waiting for a wireless signal. Further, the switch control signal 400 is modulated by the amplitude modulator 81 into a control signal 401 having a frequency sufficiently lower than the radio signal,
Subcarrier multiplexing is performed on the radio signal by the multiplexer 33. In the remote antenna 4a, the received radio signal 103a
Is extracted by the demultiplexer 32 and the control signal is extracted by the low frequency pass filter 23, and then the switch control signal 403 is extracted by the amplitude demodulator 80. With such a configuration, it is possible to connect the optical transmitter input and the optical receiver output of the radio signal to the antenna terminal without using a circulator. In addition, by using the transmission / reception switching signal for the optical transceiver and switching the amplifier to the low power operation mode when not in use, the power consumption of the device can be reduced.

【0028】図5に、本発明の参考例である無線基地局
の構成を示す。無線基地局5およびリモートアンテナ装
置4a、4bの機能は実施例1と同じである。無線基地
局5からの出力光信号201aは光カプラ24によって
光信号201c、201dに分岐され、それぞれリモー
トアンテナ装置4a、4bの光受信器に入力される。ま
た、リモートアンテナ装置4a、4bの出力光信号20
2c、202dは、光カプラ25によって合波され、無
線基地局の光受信器に入力される。この様な構成にする
ことによって、リモートアンテナ装置4a、4bに対す
る無線基地局側の光送受信器を共有化でき、装置構成を
単純化することが可能になる。但し、本構成の場合、リ
モートアンテナ装置4aの光送信器11aの光源と、リ
モートアンテナ装置4bの光送信器11bの光源とは、
光受信器13aにおいてビート雑音を発生しないように
波長を離す必要がある。
FIG. 5 shows a configuration of a radio base station according to a reference example of the present invention. The functions of the wireless base station 5 and the remote antenna devices 4a and 4b are the same as in the first embodiment. The output optical signal 201a from the wireless base station 5 is split into optical signals 201c and 201d by the optical coupler 24 and input to the optical receivers of the remote antenna devices 4a and 4b, respectively. Also, the output optical signals 20 of the remote antenna devices 4a, 4b
2c and 202d are multiplexed by the optical coupler 25 and input to the optical receiver of the radio base station. With this configuration, the optical transceiver on the wireless base station side can be shared with the remote antenna devices 4a and 4b, and the device configuration can be simplified. However, in the case of this configuration, the light source of the optical transmitter 11a of the remote antenna device 4a and the light source of the optical transmitter 11b of the remote antenna device 4b are:
It is necessary to separate wavelengths so that beat noise is not generated in the optical receiver 13a.

【0029】図6に、本発明の第4の実施例である無線
基地局の構成を示す。無線基地局5とリモートアンテナ
装置4aとは多モード光ファイバ1aおよび2aにより
接続され、リモートアンテナ装置4aと4bとは多モー
ド光ファイバ1bおよび2bにより接続される。光信号
はリモートアンテナ装置4aにおいて非再生中継され
る。すなわち、リモートアンテナ装置4bから多モード
光ファイバ2bを通して伝送される光信号202bは、
リモートアンテナ装置4aの光受信器15で一度無線信
号に変換され、アンテナ71aにおいて受信された無線
信号113と分波器35を介して合波され、光送信器1
1aにより再度光信号202aに変換されて、多モード
光ファイバ伝送路2aを通り無線基地局5の光受信器で
受信される。また、無線基地局からの送信光信号201
aは、リモートアンテナ装置4aの光受信器12aによ
って電気信号に変換された後、分波器34によって分岐
される。分岐された無線信号110は、増幅器90によ
って適切な強度に増幅された後、サーキュレータ12a
および帯域通過フィルタ20aを経てアンテナ71aか
ら送信される。また、分波器34によって分岐されたも
う一方の無線信号111は、光送信器14に入力され、
光信号201bに変換される。変換された光信号201
bは、多モード光ファイバ伝送路1bを通ってリモート
アンテナ装置4bに伝送され、光受信器12bによって
無線信号103bに変換される。変換された無線信号1
03bは、サーキュレータ21bおよび帯域通過フィル
タ20bを経て、アンテナ71bから送信される。この
様な構成にすることにより、光ファイバ伝送路を通る光
源の波長が単一となる。従って、光ファイバ伝送路上で
光信号を多重する方式で問題であったビート雑音の問題
を回避することができ、光源の波長管理が不要となる。
FIG. 6 shows the configuration of a radio base station according to a fourth embodiment of the present invention. The wireless base station 5 and the remote antenna device 4a are connected by multimode optical fibers 1a and 2a, and the remote antenna devices 4a and 4b are connected by multimode optical fibers 1b and 2b. The optical signal is non-regeneratively relayed in the remote antenna device 4a. That is, the optical signal 202b transmitted from the remote antenna device 4b through the multimode optical fiber 2b is
The optical signal is once converted into a radio signal by the optical receiver 15 of the remote antenna device 4a, multiplexed with the radio signal 113 received by the antenna 71a via the demultiplexer 35, and
The signal is again converted into an optical signal 202a by 1a, and is received by the optical receiver of the wireless base station 5 through the multimode optical fiber transmission line 2a. Also, the transmission optical signal 201 from the radio base station
a is converted into an electric signal by the optical receiver 12a of the remote antenna device 4a, and then branched by the splitter 34. The branched radio signal 110 is amplified to an appropriate intensity by the amplifier 90, and then the circulator 12a
And transmitted from the antenna 71a via the band-pass filter 20a. The other radio signal 111 branched by the demultiplexer 34 is input to the optical transmitter 14,
It is converted into an optical signal 201b. Converted optical signal 201
b is transmitted to the remote antenna device 4b through the multimode optical fiber transmission line 1b, and is converted into a radio signal 103b by the optical receiver 12b. Converted wireless signal 1
03b is transmitted from the antenna 71b via the circulator 21b and the band-pass filter 20b. With such a configuration, the wavelength of the light source passing through the optical fiber transmission line becomes a single wavelength. Therefore, the problem of beat noise, which has been a problem in the system of multiplexing optical signals on the optical fiber transmission line, can be avoided, and the wavelength management of the light source becomes unnecessary.

【0030】[0030]

【発明の効果】以上述べたように本発明によれば、移動
電話や無線LANなどの無線通信システムにおいて、低
雑音で接続の容易な光伝送路を用いてアンテナ不感地帯
に無線信号を供給することが実現できる。
As described above, according to the present invention, in a radio communication system such as a mobile telephone or a wireless LAN, a radio signal is supplied to an antenna blind zone using an optical transmission line with low noise and easy connection. Can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例の無線基地局の構成であ
る。
FIG. 1 shows the configuration of a wireless base station according to a first embodiment of the present invention.

【図2】従来の無線LANを部屋間で接続する構成であ
る。
FIG. 2 shows a configuration in which a conventional wireless LAN is connected between rooms.

【図3】本発明の第2の実施例の無線LANの構成であ
る。
FIG. 3 shows a configuration of a wireless LAN according to a second embodiment of the present invention.

【図4】本発明の第3の実施例の無線LANの構成であ
る。
FIG. 4 shows a configuration of a wireless LAN according to a third embodiment of the present invention.

【図5】本発明の参考例の無線基地局の構成である。FIG. 5 is a configuration of a wireless base station according to a reference example of the present invention.

【図6】本発明の第4の実施例の無線基地局の構成であ
る。
FIG. 6 is a configuration of a wireless base station according to a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1a〜1d、2a〜2d 多モード光ファイバ伝送路 3 移動端末 4a、4b リモートアンテナ装置 5 無線基地局 6、7、8 無線LAN端末 9 有線LANケーブル 10a、10b、11a、11b、14 光送信器 12a、12b、13a、13b、15 光受信器 20a、20b、23 フィルタ 21a、21b、22a、22b サーキュレータ 24、25 光カプラ 26、27 スイッチ 30〜35 分波器 40、41 変復調器 60、61 無線LAN/有線LANブリッジ 70、71a、71b、72、73 アンテナ 80 振幅復調器 81 振幅変調器 100、101a、101b、102a、102b、1
03a〜103c、104a、104b、105a、1
05b、106a、106b、107a、107b、1
08〜112 無線信号 201a〜201d、202a〜202d 光信号 300 通信信号 301〜303 ベースバンド信号 400〜403 スイッチ制御信号 X、Y 無線エリア
1a to 1d, 2a to 2d Multimode optical fiber transmission line 3 Mobile terminal 4a, 4b Remote antenna device 5 Wireless base station 6, 7, 8 Wireless LAN terminal 9 Wired LAN cable 10a, 10b, 11a, 11b, 14 Optical transmitter 12a, 12b, 13a, 13b, 15 Optical receiver 20a, 20b, 23 Filter 21a, 21b, 22a, 22b Circulator 24, 25 Optical coupler 26, 27 Switch 30-35 Demultiplexer 40, 41 Modulator / demodulator 60, 61 Radio LAN / wired LAN bridge 70, 71a, 71b, 72, 73 Antenna 80 Amplitude demodulator 81 Amplitude modulator 100, 101a, 101b, 102a, 102b, 1
03a to 103c, 104a, 104b, 105a, 1
05b, 106a, 106b, 107a, 107b, 1
08-112 Wireless signal 201a-201d, 202a-202d Optical signal 300 Communication signal 301-303 Baseband signal 400-403 Switch control signal X, Y Wireless area

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−268622(JP,A) 特開 平5−122135(JP,A) 特開 平2−9240(JP,A) 特開 平4−48832(JP,A) 特開 平5−276113(JP,A) 伊賀健一、国分泰雄著、「新OHM文 庫光ファイバ」第1版、オーム社、昭和 61年2月25日、P83 平山博、福富秀雄、加藤嘉則、岩橋栄 治、島田潤一編集、「光通信要覧」、初 版、科学新聞社、1984年8月、P331− 348 (58)調査した分野(Int.Cl.6,DB名) H04B 10/00 - 10/28 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-6-268622 (JP, A) JP-A-5-122135 (JP, A) JP-A-2-9240 (JP, A) JP-A-4- 48832 (JP, A) JP-A-5-276113 (JP, A) Kenichi Iga, Yasuo Kokubu, "New OHM Library Optical Fiber," First Edition, Ohmsha, February 25, 1986, P83 Hiroshi Hirayama , Hideo Fukutomi, Yoshinori Kato, Osamu Sakae Iwahashi, Junichi Shimada editing, "optical communication handbook", the first edition, science newspaper, in August 1984, P331- 348 (58) investigated the field (Int.Cl. 6, DB Name) H04B 10/00-10/28

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】移動端末に対して無線信号を送受信するア
ンテナと、該無線信号と通話信号とを変換する変復調器
と、該アンテナと変復調器の間を接続する光ファイバ給
電線から成り、該光ファイバ給電線は、無線信号を光信
号に変換する光送信器と、該光送信器の出力光信号を伝
送する光ファイバ伝送路と、該光ファイバ伝送路の出力
を無線信号に変換する光受信器によって構成される無線
基地局において、 前記光ファイバ伝送路としてコア径100μm以上の多
モード光ファイバを用いる無線基地局における光ファイ
バ給電線装置であって、 前記アンテナから光送信器への入力無線信号と光受信器
からアンテナへの出力無線信号とを切り替える電気的な
スイッチを有し、また前記変調器から光送信器への入力
無線信号と光受信器から復調器への出力無線信号とを切
り替える電気的なスイッチを有することを特徴とする光
ファイバ給電線装置。
An antenna for transmitting / receiving a radio signal to / from a mobile terminal; a modem for converting the radio signal and a speech signal; and an optical fiber feed line connecting the antenna and the modem. The optical fiber feed line includes an optical transmitter that converts a wireless signal into an optical signal, an optical fiber transmission line that transmits an optical signal output from the optical transmitter, and an optical fiber that converts the output of the optical fiber transmission line into a wireless signal. In a wireless base station constituted by a receiver, an optical fiber in a wireless base station using a multimode optical fiber having a core diameter of 100 μm or more as the optical fiber transmission line.
A feed line device, comprising an electrical switch for switching between an input wireless signal from the antenna to the optical transmitter and an output wireless signal from the optical receiver to the antenna, and from the modulator to the optical transmitter. An optical switch for switching between an input wireless signal and an output wireless signal from an optical receiver to a demodulator.
【請求項2】無線ローカルエリアネットワーク(無線L
AN)端末に対して無線信号を送受信する複数のアンテ
ナと、該無線信号とベースバンド信号とを変換する変復
調器と、該アンテナと変復調器の間を接続する光ファイ
バ給電線から成り、該光ファイバ給電線は、無線信号を
光信号に変換する光送信器と、該光送信器の出力光信号
を伝送する光ファイバ伝送路と、該光ファイバ伝送路の
出力を無線信号に変換する光受信器によって構成される
無線LANにおいて、 前記光ファイバ伝送路としてコア径100μm以上の多
モード光ファイバを用いる無線LANにおける光ファイ
バ給電線装置であって、 前記アンテナから光送信器への入力無線信号と光受信器
からアンテナへの出力無線信号とを切り替える電気的な
スイッチを有し、また前記変調器から光送信器への入力
無線信号と光受信器から復調器への出力無線信号とを切
り替える電気的なスイッチを有することを特徴とする光
ファイバ給電線装置。
2. A wireless local area network (wireless L
AN) a plurality of antennas for transmitting / receiving a radio signal to / from a terminal, a modem for converting the radio signal and a baseband signal, and an optical fiber feed line connecting between the antenna and the modem; The fiber feeder includes an optical transmitter that converts a wireless signal into an optical signal, an optical fiber transmission line that transmits an output optical signal from the optical transmitter, and an optical receiver that converts the output of the optical fiber transmission line into a wireless signal. An optical fiber in a wireless LAN using a multimode optical fiber having a core diameter of 100 μm or more as the optical fiber transmission line.
A bar feeder line device, the input radio signal and the optical receiver from the antenna to the optical transmitter
Switch between the output radio signal from the
A switch, and an input from the modulator to an optical transmitter.
Disconnects the wireless signal and the output wireless signal from the optical receiver to the demodulator.
Light having an electrical switch for switching
Fiber feed line device.
【請求項3】移動端末に対して無線信号を送受信するア
ンテナと、該無線信号と通話信号とを変換する変復調器
と、該アンテナと変復調器の間を接続する光ファイバ給
電線 から成り、該光ファイバ給電線は、無線信号を光信
号に変換する光送信器と、該光送信器の出力光信号を伝
送する光ファイバ伝送路と、該光ファイバ伝送路の出力
を無線信号に変換する光受信器によって構成される無線
基地局において、 前記光ファイバ伝送路としてコア径100μm以上の多
モード光ファイバを用い、 前記変復調器と電気的な分波器とを接続し、該分波器に
よって分岐した無線信号を、直接または前記光ファイバ
給電線装置を介して、複数のアンテナに集配することを
特徴とする無線基地局。
3. An apparatus for transmitting / receiving a radio signal to / from a mobile terminal.
Antenna and a modem for converting the radio signal and the call signal
And an optical fiber feeder for connecting between the antenna and the modem.
And an optical fiber feeder for transmitting wireless signals to optical signals.
An optical transmitter for converting the signal into an optical signal, and an optical signal output from the optical transmitter.
Optical fiber transmission line to send and output of the optical fiber transmission line
Wireless configured by an optical receiver that converts a signal into a wireless signal
In the base station, the optical fiber transmission line has a core diameter of 100 μm or more.
Using a mode optical fiber, the modem and the electrical duplexer are connected to each other,
Therefore, the branched radio signal can be directly or
Collecting and distributing to multiple antennas via feeder devices
Characteristic radio base station.
【請求項4】無線ローカルエリアネットワーク(無線L
AN)端末に対して無線信号を送受信する複数のアンテ
ナと、該無線信号とベースバンド信号とを変換する変復
調器と、該アンテナと変復調器の間を接続する光ファイ
バ給電線から成り、該光ファイバ給電線は、無線信号を
光信号に変換する光送信器と、該光送信器の出力光信号
を伝送する光ファイバ伝送路と、該光ファイバ伝送路の
出力を無線信号に変換する光受信器によって構成される
無線LANにおいて、 前記光ファイバ伝送路としてコア径100μm以上の多
モード光ファイバを用い、 前記変復調器と電気的な分波器とを接続し、該分波器に
よって分岐した無線信号を、直接または前記光ファイバ
給電線装置を介して、複数のアンテナに集配することを
特徴とする無線LAN。
4. A wireless local area network (wireless L
AN) Multiple antennas for transmitting and receiving wireless signals to and from a terminal
And a converter for converting the radio signal and the baseband signal.
And an optical fiber connecting the antenna and the modem.
And the optical fiber feed line transmits radio signals.
Optical transmitter for converting to an optical signal, and output optical signal of the optical transmitter
An optical fiber transmission line for transmitting
Consists of an optical receiver that converts the output to a wireless signal
In a wireless LAN, a multi-core optical fiber transmission line having a core diameter of 100 μm or more is used.
Using a mode optical fiber, the modem and the electrical duplexer are connected to each other,
Therefore, the branched radio signal can be directly or
Collecting and distributing to multiple antennas via feeder devices
Characteristic wireless LAN.
JP7236469A 1995-09-14 1995-09-14 Wireless base station, wireless local area network, and optical fiber feeder Expired - Fee Related JP2900853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7236469A JP2900853B2 (en) 1995-09-14 1995-09-14 Wireless base station, wireless local area network, and optical fiber feeder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7236469A JP2900853B2 (en) 1995-09-14 1995-09-14 Wireless base station, wireless local area network, and optical fiber feeder

Publications (2)

Publication Number Publication Date
JPH0983450A JPH0983450A (en) 1997-03-28
JP2900853B2 true JP2900853B2 (en) 1999-06-02

Family

ID=17001210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7236469A Expired - Fee Related JP2900853B2 (en) 1995-09-14 1995-09-14 Wireless base station, wireless local area network, and optical fiber feeder

Country Status (1)

Country Link
JP (1) JP2900853B2 (en)

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004180202A (en) * 2002-11-29 2004-06-24 Synclayer Inc Transmission system of optical fiber network system, optical network system thereof, and terminal equipment thereof
JP2006295309A (en) * 2005-04-06 2006-10-26 Yagi Antenna Co Ltd Optical multi-stage relaying system
JP2007266819A (en) 2006-03-28 2007-10-11 Kyocera Corp Base station unit, and signal processing method
US20070248358A1 (en) * 2006-04-19 2007-10-25 Michael Sauer Electrical-optical cable for wireless systems
US7495560B2 (en) 2006-05-08 2009-02-24 Corning Cable Systems Llc Wireless picocellular RFID systems and methods
US8873585B2 (en) 2006-12-19 2014-10-28 Corning Optical Communications Wireless Ltd Distributed antenna system for MIMO technologies
JP4512085B2 (en) * 2006-12-27 2010-07-28 Necインフロンティア株式会社 Wireless terminal
US20100054746A1 (en) 2007-07-24 2010-03-04 Eric Raymond Logan Multi-port accumulator for radio-over-fiber (RoF) wireless picocellular systems
JP2009065569A (en) * 2007-09-07 2009-03-26 Chubu Electric Power Co Inc Relay device, and radio communication apparatus
US8175459B2 (en) * 2007-10-12 2012-05-08 Corning Cable Systems Llc Hybrid wireless/wired RoF transponder and hybrid RoF communication system using same
CN102396171B (en) 2009-02-03 2015-09-30 康宁光缆系统有限责任公司 Based on the distributing antenna system of optical fiber, assembly and the correlation technique for monitoring and configure distributing antenna system based on optical fiber, assembly
CN102369678B (en) 2009-02-03 2015-08-19 康宁光缆系统有限责任公司 Based on the distributing antenna system of optical fiber, assembly and the correlation technique for calibrating distributing antenna system based on optical fiber, assembly
US9673904B2 (en) 2009-02-03 2017-06-06 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US8548330B2 (en) 2009-07-31 2013-10-01 Corning Cable Systems Llc Sectorization in distributed antenna systems, and related components and methods
US8280259B2 (en) 2009-11-13 2012-10-02 Corning Cable Systems Llc Radio-over-fiber (RoF) system for protocol-independent wired and/or wireless communication
US8275265B2 (en) 2010-02-15 2012-09-25 Corning Cable Systems Llc Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods
US20110268446A1 (en) 2010-05-02 2011-11-03 Cune William P Providing digital data services in optical fiber-based distributed radio frequency (rf) communications systems, and related components and methods
US9525488B2 (en) 2010-05-02 2016-12-20 Corning Optical Communications LLC Digital data services and/or power distribution in optical fiber-based distributed communications systems providing digital data and radio frequency (RF) communications services, and related components and methods
CN103119865A (en) 2010-08-16 2013-05-22 康宁光缆系统有限责任公司 Remote antenna clusters and related systems, components, and methods supporting digital data signal propagation between remote antenna units
US9252874B2 (en) 2010-10-13 2016-02-02 Ccs Technology, Inc Power management for remote antenna units in distributed antenna systems
CN203504582U (en) 2011-02-21 2014-03-26 康宁光缆系统有限责任公司 Distributed antenna system and power supply apparatus for distributing electric power thereof
WO2012148940A1 (en) 2011-04-29 2012-11-01 Corning Cable Systems Llc Systems, methods, and devices for increasing radio frequency (rf) power in distributed antenna systems
WO2012148938A1 (en) 2011-04-29 2012-11-01 Corning Cable Systems Llc Determining propagation delay of communications in distributed antenna systems, and related components, systems and methods
WO2013148986A1 (en) 2012-03-30 2013-10-03 Corning Cable Systems Llc Reducing location-dependent interference in distributed antenna systems operating in multiple-input, multiple-output (mimo) configuration, and related components, systems, and methods
EP2842245A1 (en) 2012-04-25 2015-03-04 Corning Optical Communications LLC Distributed antenna system architectures
EP2883416A1 (en) 2012-08-07 2015-06-17 Corning Optical Communications Wireless Ltd. Distribution of time-division multiplexed (tdm) management services in a distributed antenna system, and related components, systems, and methods
US9455784B2 (en) 2012-10-31 2016-09-27 Corning Optical Communications Wireless Ltd Deployable wireless infrastructures and methods of deploying wireless infrastructures
WO2014085115A1 (en) 2012-11-29 2014-06-05 Corning Cable Systems Llc HYBRID INTRA-CELL / INTER-CELL REMOTE UNIT ANTENNA BONDING IN MULTIPLE-INPUT, MULTIPLE-OUTPUT (MIMO) DISTRIBUTED ANTENNA SYSTEMS (DASs)
US9647758B2 (en) 2012-11-30 2017-05-09 Corning Optical Communications Wireless Ltd Cabling connectivity monitoring and verification
EP3008828B1 (en) 2013-06-12 2017-08-09 Corning Optical Communications Wireless Ltd. Time-division duplexing (tdd) in distributed communications systems, including distributed antenna systems (dass)
WO2014199384A1 (en) 2013-06-12 2014-12-18 Corning Optical Communications Wireless, Ltd. Voltage controlled optical directional coupler
US9247543B2 (en) 2013-07-23 2016-01-26 Corning Optical Communications Wireless Ltd Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9661781B2 (en) 2013-07-31 2017-05-23 Corning Optical Communications Wireless Ltd Remote units for distributed communication systems and related installation methods and apparatuses
US9385810B2 (en) 2013-09-30 2016-07-05 Corning Optical Communications Wireless Ltd Connection mapping in distributed communication systems
US9178635B2 (en) 2014-01-03 2015-11-03 Corning Optical Communications Wireless Ltd Separation of communication signal sub-bands in distributed antenna systems (DASs) to reduce interference
US9775123B2 (en) 2014-03-28 2017-09-26 Corning Optical Communications Wireless Ltd. Individualized gain control of uplink paths in remote units in a distributed antenna system (DAS) based on individual remote unit contribution to combined uplink power
US9357551B2 (en) 2014-05-30 2016-05-31 Corning Optical Communications Wireless Ltd Systems and methods for simultaneous sampling of serial digital data streams from multiple analog-to-digital converters (ADCS), including in distributed antenna systems
US9525472B2 (en) 2014-07-30 2016-12-20 Corning Incorporated Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9730228B2 (en) 2014-08-29 2017-08-08 Corning Optical Communications Wireless Ltd Individualized gain control of remote uplink band paths in a remote unit in a distributed antenna system (DAS), based on combined uplink power level in the remote unit
US9602210B2 (en) 2014-09-24 2017-03-21 Corning Optical Communications Wireless Ltd Flexible head-end chassis supporting automatic identification and interconnection of radio interface modules and optical interface modules in an optical fiber-based distributed antenna system (DAS)
US10659163B2 (en) 2014-09-25 2020-05-19 Corning Optical Communications LLC Supporting analog remote antenna units (RAUs) in digital distributed antenna systems (DASs) using analog RAU digital adaptors
US9420542B2 (en) 2014-09-25 2016-08-16 Corning Optical Communications Wireless Ltd System-wide uplink band gain control in a distributed antenna system (DAS), based on per band gain control of remote uplink paths in remote units
WO2016071902A1 (en) 2014-11-03 2016-05-12 Corning Optical Communications Wireless Ltd. Multi-band monopole planar antennas configured to facilitate improved radio frequency (rf) isolation in multiple-input multiple-output (mimo) antenna arrangement
WO2016075696A1 (en) 2014-11-13 2016-05-19 Corning Optical Communications Wireless Ltd. Analog distributed antenna systems (dass) supporting distribution of digital communications signals interfaced from a digital signal source and analog radio frequency (rf) communications signals
US9729267B2 (en) 2014-12-11 2017-08-08 Corning Optical Communications Wireless Ltd Multiplexing two separate optical links with the same wavelength using asymmetric combining and splitting
WO2016098111A1 (en) 2014-12-18 2016-06-23 Corning Optical Communications Wireless Ltd. Digital- analog interface modules (da!ms) for flexibly.distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (dass)
WO2016098109A1 (en) 2014-12-18 2016-06-23 Corning Optical Communications Wireless Ltd. Digital interface modules (dims) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (dass)
US20160249365A1 (en) 2015-02-19 2016-08-25 Corning Optical Communications Wireless Ltd. Offsetting unwanted downlink interference signals in an uplink path in a distributed antenna system (das)
US9681313B2 (en) 2015-04-15 2017-06-13 Corning Optical Communications Wireless Ltd Optimizing remote antenna unit performance using an alternative data channel
US9948349B2 (en) 2015-07-17 2018-04-17 Corning Optical Communications Wireless Ltd IOT automation and data collection system
US10560214B2 (en) 2015-09-28 2020-02-11 Corning Optical Communications LLC Downlink and uplink communication path switching in a time-division duplex (TDD) distributed antenna system (DAS)
US10236924B2 (en) 2016-03-31 2019-03-19 Corning Optical Communications Wireless Ltd Reducing out-of-channel noise in a wireless distribution system (WDS)
JP2020068485A (en) * 2018-10-25 2020-04-30 日本放送協会 Relay device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
伊賀健一、国分泰雄著、「新OHM文庫光ファイバ」第1版、オーム社、昭和61年2月25日、P83
平山博、福富秀雄、加藤嘉則、岩橋栄治、島田潤一編集、「光通信要覧」、初版、科学新聞社、1984年8月、P331−348

Also Published As

Publication number Publication date
JPH0983450A (en) 1997-03-28

Similar Documents

Publication Publication Date Title
JP2900853B2 (en) Wireless base station, wireless local area network, and optical fiber feeder
US6337754B1 (en) Optical conversion relay amplification system
CA2219304C (en) Transmission of cdma signals over an analog optical link
US6496290B1 (en) Optic repeater system for extending coverage
US6807374B1 (en) Mobile communication system
EP1113594B1 (en) Radio base station system and central control station with unified transmission format
JP3737896B2 (en) Relay system
EP0859478B1 (en) Wireless communications systems employing free-space optical communications links
JPH09200840A (en) Private radio communication system
JPH02288624A (en) Travelling radio system
US6560441B1 (en) Low noise in-building distribution network for wireless signals
WO2002039615A2 (en) Cellular base station with remote antenna
CN105790838A (en) Water-land optical communication network architecture and communication method based on interconnection between underwater visible light communication network units (UVNU) and fiber
JPH09130322A (en) Relay amplification system for vehicular communication
JP2000333240A (en) Optical transmission system for mobile communication
KR100638794B1 (en) Repeater composing link by wireless
CN101145845B (en) Full duplex optical fiber radio communication base station without light source and modulator
JPH09233050A (en) Radio network system and optical transmission method
KR100330407B1 (en) Apparatus for allocating sectors dynamically in a connected base station of optical repeater system for mobile telephone and method thereof
KR100289984B1 (en) Small base station apparatus using led in wireless communication base station system
JP2000049676A (en) Mobile communication system capable of effectively covering shadow area of base station and easily expanding its service area
JPH07250029A (en) Optical loop network transmitting system
JP2005191905A (en) Mobile object communication system and mobile object communication method
CN218868226U (en) Repeater and communication system
JPH0435234A (en) Optical fiber radio communication system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080319

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees