JPH0983450A - Radio base station, radio local area network and optical fiber feeder - Google Patents

Radio base station, radio local area network and optical fiber feeder

Info

Publication number
JPH0983450A
JPH0983450A JP7236469A JP23646995A JPH0983450A JP H0983450 A JPH0983450 A JP H0983450A JP 7236469 A JP7236469 A JP 7236469A JP 23646995 A JP23646995 A JP 23646995A JP H0983450 A JPH0983450 A JP H0983450A
Authority
JP
Japan
Prior art keywords
optical
optical fiber
signal
radio
antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7236469A
Other languages
Japanese (ja)
Other versions
JP2900853B2 (en
Inventor
Yasuhiko Matsunaga
泰彦 松永
Original Assignee
Nec Corp
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corp, 日本電気株式会社 filed Critical Nec Corp
Priority to JP7236469A priority Critical patent/JP2900853B2/en
Publication of JPH0983450A publication Critical patent/JPH0983450A/en
Application granted granted Critical
Publication of JP2900853B2 publication Critical patent/JP2900853B2/en
Anticipated expiration legal-status Critical
Application status is Expired - Fee Related legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To supply a radio signal to an antenna dead zone by providing an optical transmission line ease of connection with low noise at a low cost with respect to an antenna feeder in a radio communication system. SOLUTION: A radio signal 100 from a mobile terminal equipment 3 is received by an antenna 71a and converted into an optical signal 202a by an optical transmission section 11a. The optical signal 202a is sent to a radio base station 5 by a multi-mode optical fiber transmission line 2a and converted into a radio signal 106a by an optical receiver 13a. The radio signal 106a uses an optical branching device 30 to add radio signals from antennas 71b, 72 and the sum is given to a MODEM 40. Furthermore, the radio base station 5 branches an output radio signal 109 from the MODEM 40 by the branching device 30 and part of signal is converted into an optical signal 201a by an optical transmitter 10a. The optical signal 201a is sent through a multi-mode optical fiber transmission line 1a and converted into a radio signal 103a by the optical receiver 12a and emitted from an antenna 71a and received by a mobile terminal equipment 3.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明は、サブキャリア多重光伝送方式を用いた無線信号伝送装置に関する。 The present invention relates to relates to a wireless signal transmission device using the sub-carrier multiplexed optical transmission system.

【0002】 [0002]

【従来の技術】移動無線電話のような無線通信システムでは、サービスエリアが複数の小エリアに分割され、各小エリア毎に無線基地局が配置される。 In wireless communication systems, such as the Related Art mobile radiotelephone, the service area is divided into a plurality of small areas, the radio base station are arranged for each small area. 無線基地局は、 Radio base station,
アンテナ部、無線信号を通話信号に変換する変復調部、 Demodulation unit for converting the antenna unit, a radio signal to the call signal,
および無線チャンネルの制御をおこなう制御部等からなり、さらに大きなエリアの回転制御をおこなう中央局にケーブルで接続される。 And consists controller or the like for controlling the radio channel is further connected by a cable to a central station for controlling the rotation of the large area. 一つの無線基地局が統括するエリアを小さくすれば、無線端末と無線基地局の送信出力を低減し、かつ周波数使用効率を向上できるが、基地局の数が膨大になるために基地局の小型化と高信頼化が求められる。 By reducing the area of ​​one radio base station is responsible, small to reduce the transmission power of the radio terminal and the radio base station, and can improve the frequency use efficiency, the base station to the number of the base station becomes enormous and high reliability of is required.

【0003】また、無線通信に使用する信号は、伝送信号レートの大容量化と周波数資源の逼迫により、年々高周波化が進んでいる。 [0003] The signal used for wireless communication, the tight capacity and frequency resources of the transmission signal rate, is progressing year by year higher frequency. 一般に無線信号の周波数が高くなるにつれ、電波伝搬の直進性が強くなり、また構造物を透過する際の吸収損が大きくなる。 Generally as the frequency of the radio signal is high, the stronger the linearity of radio wave propagation, and absorption loss when passing through the structure is increased. 特に、都市部のように建物が密集した区域や屋内などにおいては、電波伝搬が構造物によって妨害を受けるため、無線信号の届きにくい地帯(アンテナ不感地帯)が生じる。 In particular, in such areas and indoor building dense as urban, since the radio wave propagation disturbed by structures of a radio signal difficult to reach areas (antenna blind zone) occurs. アンテナ不感地帯に無線信号を供給するためには、無線基地局を増設し、相互にケーブル接続すればよい。 To provide radio signal to the antenna blind zone is to install additional base stations may be mutually cabling. しかしながら、無線基地局には無線信号の変復調器や制御装置などが含まれるため、装置の小型化や低コスト化が難しいという問題があった。 However, the radio base station for the like modem and control unit of the radio signals, it is difficult size and cost of the apparatus.

【0004】そこで、無線基地局のアンテナ部の機能のみを分離し、変復調部や制御部等は中央局に配置し、両者を光ファイバで接続するという方法がある。 [0004] Therefore, to separate only the function of an antenna unit of the wireless base station, the modem unit and the control unit or the like is arranged in the central office, there is a method of connecting the two optical fibers. この方法は、たとえば渋谷らによる「光によるマイクロセル移動通信の無線信号集配方式」電子情報通信学会、無線通信システム研究会、RCS90−12等の文献に詳細に記されている。 This method, for example, "wireless signal collection and delivery system of the microcell mobile communication by light" by Shibuya et al. IEICE, Technical Committee wireless communication systems, are described in the literature such as RCS90-12. この方式では、無線基地局は光信号と電気信号の変換および無線信号の増幅のみをおこなえばよいので、基地局の小型化と高信頼化が実現できる。 In this manner, the radio base station since it is only necessary to perform the amplification of the conversion and the radio signal of the optical and electrical signals, miniaturization and high reliability of the base station can be realized.

【0005】一方無線LANに関しても、同様に小型で広帯域の光ファイバ伝送技術を用いたサービスエリア間伝送装置が提案されている。 On the other hand with regard a wireless LAN, likewise the service area between transmission apparatus using a broadband optical fiber transmission technology compact has been proposed. 光ファイバ伝送技術を無線LANシステムに適用した例としては、トーマス(H. Examples of applying the optical fiber transmission technology in the wireless LAN system, Thomas (H.
Thomas)らによる1992年電子情報通信学会秋季大会、B−334等が挙げられる。 Thomas) 1992 years by et al Institute of Electronics, Information and Communication Engineers Autumn Meeting, B-334, and the like.

【0006】 [0006]

【発明が解決しようとする課題】以上で説明した、従来の光ファイバ伝送による無線信号の集配方式では、全ての変復調器を中央局に集約し、各アンテナと中央局とを光ファイバによって1対1に接続する構成をとっている。 Described INVENTION Problems to be Solved] above, in the collection and delivery system of the conventional radio signal by the optical fiber transmission, aggregates all modem to the central station, a pair by an optical fiber and a respective antenna and the central office It has taken the configuration to connect to the 1. そのため、伝送距離は最大で20km程度となり、ファイバコア径が10μm 以下のシングルモードファイバによる伝送が必要である。 Therefore, the transmission distance is up becomes about 20km, the fiber core diameter is required transmission by the following single-mode fiber 10 [mu] m. また、光送信器の光源としては、低雑音かつ低歪な分布帰還型レーザダイオードを用いる必要がある。 Further, as the light source of the optical transmitter, it is necessary to use a low-noise and low distortion distributed feedback laser diode. これらの理由により、従来のシステムでは導入コストが高くなるという問題があった。 For these reasons, the conventional system has a problem that the introduction cost becomes high. しかし、前記のアンテナ不感地帯への無線信号の集配という目的のために、近接エリアの無線基地局あるいは無線L However, for the purpose of collection and delivery of the radio signal of the to the antenna blind zone, the wireless base station or wireless L proximity area
AN端末のアンテナへの無線信号を分岐し、アンテナ不感地帯にアンテナを増設して、両者の間を光ファイバで接続するという構成で実現できる。 It splits the radio signal to the AN terminals of the antenna, and adding the antenna to the antenna blind zone, between the two can be realized in a configuration of connecting an optical fiber. この場合に必要な伝送距離は高々500m 程度であるため、接続の容易な多モードファイバや低コストのファブリ・ペローレーザダイオード等の適用が可能になる。 In this case the transmission distance required is for at most 500m approximately, it is possible to apply such easy multimode fiber and low cost Fabry-Perot laser diode connection.

【0007】そこで、本発明は無線通信システムに於けるアンテナ給電線に関し、低雑音で接続の容易な光伝送路を低コストで提供し、アンテナ不感地帯に無線信号を供給することを目的とする。 [0007] The present invention relates in antenna feed line to a wireless communication system, easy optical transmission line connected with low noise and provided at low cost, and an object thereof is to provide a radio signal to the antenna blind zone .

【0008】 [0008]

【課題を解決するための手段】第1の発明の無線基地局は、移動端末に対して無線信号を送受信するアンテナと、該無線信号と通話信号とを変換する変復調器と、該アンテナと変復調器の間を接続する光ファイバ給電線から成り、該光ファイバ給電線は、無線信号を光信号に変換する光送信器と、該光送信器の出力光信号を伝送する光ファイバ伝送路と、該光ファイバ伝送路の出力を無線信号に変換する光受信器によって構成される無線基地局において、前記光ファイバ伝送路としてコア径100μ The radio base station of the SUMMARY OF THE INVENTION The first aspect of the present invention, an antenna for transmitting and receiving radio signals to the mobile terminal, a modem for converting the wireless signal and the speech signal, the antenna and modem made from an optical fiber feed line which connects the vessel, the optical fiber feed line, an optical transmitter for converting the radio signals into optical signals, an optical fiber transmission line for transmitting an output optical signal of the optical transmitter, in the radio base station constituted by an optical receiver for converting the output of the optical fiber transmission line into a radio signal, the core diameter 100μ as the optical fiber transmission line
m 以上の多モード光ファイバを用いることを特徴とする。 Characterized by using a multimode optical fiber of more than m.

【0009】第2の発明の無線LANは、無線ローカルエリアネットワーク(無線LAN)端末に対して無線信号を送受信する複数のアンテナと、該無線信号とベースバンド信号とを変換する変復調器と、該アンテナと変復調器の間を接続する光ファイバ給電線から成り、該光ファイバ給電線は、無線信号を光信号に変換する光送信器と、該光送信器の出力光信号を伝送する光ファイバ伝送路と、該光ファイバ伝送路の出力を無線信号に変換する光受信器によって構成される無線LANにおいて、前記光ファイバ伝送路としてコア径100μm 以上の多モード光ファイバを用いることを特徴とする。 [0009] Wireless LAN of the second invention comprises a modem for converting a plurality of antennas for transmitting and receiving radio signals to the wireless local area network (wireless LAN) terminal, a wireless signal and a baseband signal, said made from an optical fiber feed line which connects the antenna and the modem, optical fiber feed line, an optical transmitter for converting the radio signals into optical signals, an optical fiber transmission for transmitting the output optical signal of the optical transmitter and road, in a wireless LAN constituted by an optical receiver for converting the output of the optical fiber transmission line into a radio signal, characterized by using a multi-mode optical fiber over a core diameter 100μm as the optical fiber transmission line.

【0010】第3の発明の光ファイバ給電線装置は、第1の発明の無線基地局または第2の発明の無線LANにおける光ファイバ給電線装置であって、前記光送信器の光源に、ファブリ・ペローレーザダイオードまたは発光ダイオードを使用することを特徴とする。 [0010] optical fiber feeder line device of the third invention is an optical fiber feeder line apparatus in a wireless LAN of the wireless base station or the second invention of the first invention, the light source of the optical transmitter, Fabry Perrault, characterized by using a laser diode or a light emitting diode.

【0011】第4の発明の光ファイバ給電線装置は、第1の発明の無線基地局または第2の発明の無線LANにおける光ファイバ給電線装置であって、前記アンテナから光送信器への入力無線信号と光受信器からアンテナへの出力無線信号とを切り替える電気的なスイッチを有し、また前記変調器から光送信器への入力無線信号と光受信器から復調器への出力無線信号とを切り替える電気的なスイッチを有することを特徴とする。 [0011] optical fiber feeder line device of the fourth invention is an optical fiber feeder line apparatus in a wireless LAN of the wireless base station or the second invention of the first aspect, the input from the antenna to the optical transmitter having an electrical switching from the radio signal and an optical receiver switches between output radio signals to the antenna, and the output radio signals to the demodulator from the input radio signal and the optical receiver to the optical transmitter from the modulator and characterized in that it has an electrical switch for switching.

【0012】第5〜6の発明の無線基地局または無線L [0012] The radio base station or radio L of the first 5-6 of the invention
ANは、それぞれ第1の発明の無線基地局または第2の発明の無線LANであって、前記変復調器と電気的な分波器とを接続し、該分波器によって分岐した無線信号を、直接または前記光ファイバ給電線装置を介して、複数のアンテナに集配することを特徴とする。 AN is a wireless LAN radio base station or the second invention of the first invention, respectively, and connecting the modem and electrical duplexer, a radio signal split by 該分 wave device, directly or through the optical fiber feed line system, characterized by collecting and distributing the plurality of antennas.

【0013】第7〜8の発明の無線基地局または無線L [0013] The radio base station or radio L of the 7-8 invention of
ANは、それぞれ第1の発明の無線基地局または第2の発明の無線LANであって、前記変復調器とアンテナとを光ファイバ給電線で接続し、該光ファイバ給電線が光カプラを含み、該光カプラによって分岐された光信号を、前記光ファイバ給電線装置を介して複数のアンテナに集配することを特徴とする。 AN is a wireless LAN radio base station or the second invention of the first invention, respectively, and the modem and the antenna are connected by the optical fiber feed line, optical fiber feed line includes an optical coupler, the optical signal branched by the optical coupler, characterized by collecting and distributing the plurality of antennas through the optical fiber feed line system.

【0014】(作用)第1の発明の無線基地局および第2の発明の無線LAN端末において、光ファイバ伝送路のファイバコア径を100μm 以上と大きくすることにより、コア径が10μm 以下の単一モードファイバやコア径が50μm 程度の多モードファイバを使用した場合に比べて、光ファイバ同士の融着および光部品との接続の精度に関する制約が緩和されるため、より容易な光ファイバの接続を実現できる。 [0014] In the wireless LAN terminal of the wireless base station and the second invention of the first invention (action), by increasing the fiber core diameter of the optical fiber transmission line and above 100 [mu] m, a single core diameter less 10μm as compared with the case where the mode fiber or the core diameter was used multimode fiber of about 50 [mu] m, since the restriction on the accuracy of the connection between the fusing and optical components of the optical fibers are relaxed, the connection easier optical fiber realizable.

【0015】また、光ファイバ伝送路の光源としてレーザダイオードを使用した場合、レーザダイオードの相対強度雑音特性が戻り光の影響によって悪化することはよく知られている。 Further, when using a laser diode as a light source for optical fiber transmission line, It is well known to deteriorate by the relative intensity noise characteristics return light of the effects of the laser diode. ここで多モード光ファイバのコア径がレーザダイオードの発光面に比して十分大きい場合、光ファイバ伝送路の途中に反射点が存在しても、レーザダイオード内部に戻る光量は小さくなるため、相対強度雑音の劣化を軽減することができる。 Here, if the core diameter of the multimode optical fiber is compared with the light emitting surface of the laser diode sufficiently large, even if the reflection point along the optical fiber transmission line is present, the amount of light is reduced back to inside the laser diode, the relative it is possible to reduce the deterioration of the intensity noise.

【0016】なお一般的に多モード光ファイバを用いて無線信号を光伝送する場合、ファイバ端面や接続部において各モードの信号光間で干渉パターンが生じ、モード雑音が発生する。 [0016] Note that generally the case for optically transmitting a radio signal using a multimode optical fiber, the interference pattern occurs between the signal light of each mode in the fiber end face and the connecting portion, the mode noise is generated. しかし、多モード光ファイバのモード数がファイバコア径の2乗に比例して増加するため、ファイバコア径を大きくすることにより、ファイバ端面や接続部における光強度分布は平均化され、コード雑音の影響は低減される。 However, since the number of modes of the multimode optical fiber is increased in proportion to the square of the fiber core diameter, by increasing the fiber core diameter, the light intensity distribution at the fiber end face and the connecting portion are averaged, the code noise impact is reduced. この多モード光ファイバのモード数とモード雑音の関係については、例えばコーネン(A. The relationship between the number of modes and mode noise of the multimode optical fiber, for example Konen (A.
M. M. J. J. KOONEN)による、アイ・イー・イー・イージャーナルオンセレクテドエリアズインコミュニケーション(IEEE Journal of Selec According to the KOONEN), eye-e-e-e-Journal on Selected Ted area's Inn communication (IEEE Journal of Selec
ted Areas in Communicatio ted Areas in Communicatio
n)第4巻9号1515頁、式(2)に述べられている。 n) vol. 4, No. 9 1515 pp, are described in Equation (2). 本発明ではファイバコア径を100μm 以上と大きくすることにより、モード雑音を無視できる程度まで抑圧している。 In the present invention by increasing the fiber core diameter is more than 100 [mu] m, are suppressed to a negligible mode noise.

【0017】第3の発明の光ファイバ給電線装置は、光ファイバ伝送路の送信光源に、低干渉性のファブリ・ペローレーザダイオードまたは発光ダイオードを使用する。 The optical fiber feeder line device of the third invention, the transmitting light source of the optical fiber transmission line, using the low coherence of the Fabry-Perot laser diode or light emitting diode. 光源の干渉性が低下することにより、前述の多モードファイバで生じるモード雑音の影響を軽減できる。 By coherence of the light source is decreased, it can reduce the effect of mode noise from the multi-mode fiber described above.

【0018】第4の発明の光ファイバ給電線装置では、 [0018] In the optical fiber feeder line device of the fourth invention,
アンテナから光送信器、および光受信器からアンテナへの無線信号の流れは電気的なスイッチによって切り替えられる。 Optical transmitter from an antenna, and the radio signal flow from the optical receiver to the antenna is switched by an electrical switch. また、変調器から光送信器、および光受信器から復調器への無線信号の流れもまた電気的なスイッチによって切り替えられる。 Also, the flow of the radio signal of the optical transmitter from the modulator, and the optical receiver to the demodulator is also switched by an electrical switch. この様な構成にすることにより、アンテナと光ファイバ給電線装置、および変復調器と光ファイバ給電線装置の無線信号の入出力系統を単一化し、装置構成を簡略化することができる。 With this kind of configuration, the antenna and the optical fiber feed line unit, and unifies the output lines of the modem and radio signals of the optical fiber feed line system, it is possible to simplify the device configuration.

【0019】第5〜7の発明の無線基地局および無線L [0019] The radio base station of the fifth to seventh aspect of the present invention and the radio L
ANでは、光ファイバ給電線装置と変復調器とが電気的な分波器を介して接続される。 In AN, and the optical fiber feed line unit and modem is connected via an electrical demultiplexer. この様な構成にすることにより、光ファイバ給電線装置伝送路を用いない従来の無線基地局や無線LAN端末に対し、変復調器を増設することなしに、光ファイバ給電線装置を介してアンテナを接続することが可能になる。 By to such a configuration, with respect to conventional radio base station and wireless LAN terminals without using an optical fiber feeder line device transmission line, without adding a modem, an antenna via an optical fiber feeder line device it becomes possible to connect.

【0020】第7〜8の発明の無線基地局および無線L The radio base station 7-8 invention and the radio L
ANでは、光ファイバ給電線装置が光カプラを含み、この光カプラを介して無線信号が複数の無線エリアに置かれたアンテナに集配される。 In AN, optical fiber feeder line apparatus includes an optical coupler, a radio signal via the optical coupler is collection and delivery to an antenna placed in a plurality of wireless areas. この様な構成にすることにより、複数のアンテナに接続された光ファイバ給電線の、変復調器側の光送信器および光受信器を共通化し、 With this kind of configuration, the connected optical fiber feed line to a plurality of antennas, the optical transmitter and optical receiver modem side in common,
装置構成を簡略化することが可能になる。 It is possible to simplify the device configuration.

【0021】 [0021]

【発明の実施の形態】次に本発明について図面を参照して説明する。 DETAILED DESCRIPTION OF THE INVENTION the present invention will now be described with reference to the drawings.

【0022】図1に本発明の第1の実施例の無線基地局の構成を示す。 [0022] showing a configuration of a first embodiment of a radio base station of the present invention in FIG. 図1で、無線基地局5はリモートアンテナ装置4aおよび4bと、それぞれ多モード光ファイバ1a、2aおよび1b、2bを介して接続されている。 In Figure 1, the radio base station 5 is connected via a remote antenna unit 4a and 4b, the multi-mode optical fibers 1a, respectively, 2a and 1b, the 2b.
ここで、移動端末3は、無線基地局5のアンテナ72と直接無線信号を送受信不可能であるが、リモートアンテナ装置4aのアンテナ71aとは直接交信できる位置にあるものとする。 Here, the mobile terminal 3, directly to the antenna 72 of the radio base station 5 is the radio signal is transmitted and received not, the antenna 71a of the remote antenna unit 4a assumed to be at a position capable of communicating directly.

【0023】移動端末3から送信された無線信号100 The radio signal 100 transmitted from the mobile terminal 3
は、リモートアンテナ装置4aのアンテナ71aで受信され、帯域通過フィルタ20aによって不要な周波数成分を除去された後、サーキュレータ21aを介して、光送信器11aに入力される。 Is received by the antenna 71a of the remote antenna unit 4a, after removing unnecessary frequency components by the band pass filter 20a, through the circulator 21a, is input to the optical transmitter 11a. 光送信器11aは電気/光変換器、増幅器等からなり、入力無線信号104aを光信号202aに変換する。 The optical transmitter 11a is electrical / optical converter consists amplifier or the like, converts an input radio signal 104a to the optical signal 202a. 変換された光信号202a Converted optical signals 202a
は、多モード光ファイバ伝送路2aを通り、無線基地局5の光受信器13aによって受信される。 It passes through the multi-mode optical fiber transmission line 2a, is received by the optical receiver 13a of the radio base station 5. ここで、多モード光ファイバ伝送路としてファイバコア径が100μ Here, the fiber core diameter as the multimode optical fiber transmission line 100μ
m 以上のものを用いることにより、作用の項で説明したように、光ファイバ同士や光部品との接続を容易にし、 By using more than one m, as described in the section of the action, to facilitate the connection between optical fibers and optical components,
多モード光ファイバ伝送路から電気/光変換器への戻り光による雑音の影響を軽減し、さらに多モード光ファイバ伝送路中で生じるモード雑音の影響を低減できる。 To reduce the effect of noise due to return light to the electrical / optical converter from the multi-mode optical fiber transmission line, it is possible to further reduce the influence of mode noise from the multi-mode optical fiber transmission path. 光受信器13aは光/電気変換器、増幅器等からなり、入力光信号202aを無線信号106aに変換する。 Optical receiver 13a is an optical / electrical converter consists of an amplifier or the like, converts the input optical signal 202a to the radio signal 106a. 無線信号106aはサーキュレータ22aを介して分波器3 Wireless signal 106a is duplexer 3 through the circulator 22a
0に入力され、アンテナ72、リモートアンテナ4bからの無線信号と足しあわされる。 0 is inputted to the antenna 72, it is added together with the radio signals from the remote antenna 4b. 分波器の分岐数は任意であり、分岐数を増やすほど多数のアンテナを接続可能になる。 Number of branches of the duplexer is optional, it is possible connect multiple antennas as increasing the number of branches. 分波器の出力無線信号109は変復調器40に入力され、通話信号300に復調される。 Output radio signal 109 of the demultiplexer are input to the modem 40, demodulated into the call signal 300. 復調された通話信号300は、複数の無線基地局を統括する中央局へと伝送される。 The demodulated speech signal 300 is transmitted to the central office to oversee multiple radio base stations. ここでは移動端末から無線基地局への信号(上り回線)について説明したが、無線基地局から移動端末への信号(下り回線)についても同様である。 Here it has been described the signal from the mobile terminal to the radio base station (uplink) is also applies to the signal from the radio base station to the mobile terminal (downlink).

【0024】なお前項では無線基地局5のアンテナ72 [0024] The antenna 72 in the preceding paragraph radio base station 5
で送受信される無線信号と、リモートアンテナ4a、4 A radio signal transmitted and received in the remote antenna 4a, 4
bのアンテナ71a、71bで送受信される無線信号はそれぞれ互いに干渉しないものとして記述したが、現実には複数のアンテナにおいて同時に無線信号を送受信可能な場合が存在する。 b of the antenna 71a, has been described as not interfere with each other radio signals transmitted and received by 71b, in reality there if possible transmit and receive radio signals simultaneously in a plurality of antennas. この場合は、移動端末3から送信された無線信号(上り回線)は、アンテナ71a、71 In this case, the radio signal transmitted from the mobile terminal 3 (uplink) includes an antenna 71a, 71
b、および72で受信され、無線基地局の復調器40において受信レベルおよび受信遅延差の異なるマルチパス信号として認識されて、トランスバーサルフィルタまたはディジタル信号処理によって等化処理される。 b, and is received at 72, it is recognized as a multi-path signals having different reception levels and reception delay difference in the demodulator 40 of the radio base station is equalized by the transversal filter or digital signal processing. また、 Also,
無線基地局からアンテナ71a、71b、および72を介して送信された無線信号(下り回線)についても、移動端末3の復調器においてマルチパス信号として認識され、等化処理される。 Antenna 71a from the radio base station, 71b, and the even 72 sent via radio signals (downlink), is recognized as a multi-path signal in the demodulator of the mobile terminal 3 is equalized.

【0025】図2に、無線LANを部屋間で接続する従来の構成を示す。 [0025] FIG. 2 shows a conventional arrangement for connecting the wireless LAN between the room. 無線LANは主に屋内で使用され、一つのアンテナがカバーできる範囲は基本的に一つの部屋に限定される。 Wireless LAN is mainly used indoors, the range in which one of the antenna can cover is essentially limited to the one room. そのため、複数の部屋にサービスエリアを拡張するためには、部屋間を有線ケーブルを用いて接続する。 Therefore, in order to extend the service area into a plurality of rooms, for connecting the room using a wireline cable. 図2において無線エリアXと無線エリアYとは壁などによって仕切られており、相互に無線信号を直接通信できないものとする。 In Figure 2 are partitioned by a wall from the radio area X and wireless area Y, and shall not be able to communicate directly radio signals to one another. 無線LAN端末7は無線エリアXに、無線LAN端末6は無線エリアYに配置され、 Wireless LAN terminal 7 to the wireless area X, the wireless LAN terminal 6 is disposed in the wireless area Y,
両者は有線LANケーブル9によって接続されている。 Both are connected by a wired LAN cable 9.
無線エリアXにある無線LAN端末8が発する無線信号100は、アンテナ75で受信され、ベースバンド信号302に復調される。 Wireless signal 100 wireless LAN terminal 8 is emitted in the wireless area X is received by antenna 75 is demodulated into a baseband signal 302. 復調されたベースバンド信号30 Baseband signal 30 which is demodulated
2は有線LAN/無線LANブリッジ61に入力される。 2 is input to the wired LAN / wireless LAN bridge 61. 有線LAN/無線LANブリッジ61はトランスポート層でベースバンド信号302を有線LANに接続し、ベースバンド信号303を有線LANケーブル9に送出する。 Wired LAN / wireless LAN bridge 61 connects the base band signal 302 to a wired LAN at the transport layer and sends baseband signal 303 to the wired LAN cable 9. ベースバンド信号303は、有線LAN/無線LANブリッジ60においてベースバンド信号301 The baseband signal 303, the baseband signal 301 in a wired LAN / wireless LAN bridge 60
に変換され、無線LAN端末6に入力される。 Is converted to, is input to the wireless LAN terminal 6. 無線LA Radio LA
N端末6はベースバンド信号301を再度無線信号に変調し、アンテナ74から無線エリアYに向けて送信する。 N terminal 6 modulates again the radio signal a baseband signal 301 and transmitted from antenna 74 to the wireless area Y. また、無線エリアYのアンテナ74において受信された無線信号も、同様に無線エリアXに向けて送信される。 The radio signals received at the antenna 74 of the wireless area Y is also transmitted similarly to the radio area X. この様に従来の無線LANでは、部屋間接続に有線LANを用いる構成であるため、部屋毎に無線の変復調器および有線LAN/無線LANの接続ブリッジが必要となる。 In this way the conventional wireless LAN, because of the configuration using the wired LAN to room connections, wireless modem and the wired LAN / wireless LAN connection bridge for each room is required.

【0026】図3に、本発明の第2の発明である無線L [0026] FIG. 3, the radio L of the second invention of the present invention
ANの構成を示す。 Showing the configuration of the AN. 図3においても図2と同様に無線エリアXと無線エリアYとは壁などによって仕切られており、直接無線信号を相互に通信できないものとする。 Also Figure 2 are partitioned by a wall from the radio area X and wireless area Y in the same manner as, and shall not be able to communicate directly on radio signals from one another in FIG. 無線LAN端末6とリモートアンテナ4aはそれぞれ無線エリアX、Yに配置され、両者は多モード光ファイバ伝送路1a、2aで接続される。 The wireless LAN terminal 6 and the remote antenna 4a is placed in the radio area X, Y respectively, both multimode optical fiber transmission line 1a, is connected by 2a. リモートアンテナ装置4 Remote antenna device 4
aおよび無線LAN端末6の光送信器、光受信器および変復調器などの機能については、実施例1の無線基地局と同様である。 a and optical transmitter of the wireless LAN terminal 6, for features such as an optical receiver and modem is the same as the radio base station of the first embodiment. 有線LANを用いて無線LANを接続する従来の方法と比較して、本発明の光ファイバを用いてリモートアンテナ4aを増設する方法では、無線信号をそのまま光信号の強度変調におきかえ、サブキャリア多重して伝送するため、無線信号の変復調器や有線LAN Compared to conventional method for connecting a wireless LAN using a wired LAN, a method of adding a remote antenna 4a using an optical fiber of the present invention, replacing the intensity modulation of the intact optical signal to a radio signal, the sub-carrier multiplexing to to transmit a radio signal modem or a wired LAN of
との接続ブリッジ等は不要である。 Connecting bridges, etc. and is not necessary. 本構成では、無線エリアXおよびYで同一無線チャンネルを共有するため、 In this configuration, in order to share the same radio channel in a radio area X and Y,
特に無線エリアYを占める無線LAN端末の台数が比較的低く、高コストの有線LANとの接続機器の設置の必要性が低い場合に特に有効と考えられる。 In particular the number is relatively low in the wireless LAN terminal which occupies the wireless area Y, may be particularly useful when the need for installation of a connection device of the high cost of wired LAN is low.

【0027】図4に、本発明の第3の実施例である無線LANの構成を示す。 [0027] FIG. 4 shows a configuration of a wireless LAN according to a third embodiment of the present invention. 無線LANのような無線システムの場合、端末の送信と受信は時間的に切り替えられる。 For wireless systems such as a wireless LAN, transmission and reception of the terminal is switched in time.
そこで、無線LAN端末6の分波器31にスイッチ27 Accordingly, the switch 27 to the demultiplexer 31 of the wireless LAN terminal 6
を接続し、分波器31の入出力無線信号107aを、光送信器10aへの入力無線信号105aと光受信器13 Connect the outgoing radio signal 107a of the demultiplexer 31, the input to the optical transmitter 10a radio signal 105a and an optical receiver 13
aからの出力無線信号106aとに切り替える。 Switch to an output radio signal 106a from a. スイッチ27の制御信号は、変復調器41からスイッチ制御信号400を取り出して用いる。 Control signal of the switch 27 is used from the modem 41 takes out the switch control signal 400. 実際に無線LAN端末では消費電力の低減のため、無線信号送出時、受信時、および待機時で電子回路の動作モードを変化させるための制御信号を有しているので、これを使用する。 For actually reduce the power consumption in the wireless LAN terminal, when a radio signal transmission, reception, and since it has a control signal for changing the operation mode of the electronic circuit in the standby mode, which is used. また、スイッチ制御信号400は振幅変調器81によって無線信号よりも十分低い周波数の制御信号401に変調され、 The switch control signal 400 is modulated to a control signal 401 of the frequency sufficiently lower than the radio signal by the amplitude modulator 81,
合波器33によって無線信号にサブキャリア多重される。 Is the sub-carrier multiplexing on the radio signal by the multiplexer 33. リモートアンテナ4aでは、受信無線信号103a Remote antenna 4a, the receiving wireless signals 103a
の一部を分波器32によって取り出し、低周波通過フィルタ23によって制御信号を取り出した後、振幅復調器80によってスイッチ制御信号403を取り出す。 Taking out a part of the demultiplexer 32, after removal of the control signal by a low-pass filter 23 extracts the switch control signal 403 by the amplitude demodulator 80. この様な構成にすることにより、無線信号の光送信器入力と光受信器出力を、サーキュレータを用いずにアンテナ端子に接続することが可能になる。 By to such a configuration, the optical transmitter input and the optical receiver power of the radio signal, it becomes possible to connect to the antenna terminal without using a circulator. また、光送受信器に送受信切り替えの信号を利用して、未使用時には増幅器を低電力動作モードに切り替えることにより、装置の低消費電力化を図ることができる。 Moreover, by utilizing the signal transmission and reception switching in the optical transceiver, when not used by switching the amplifier to the low-power operation mode, it is possible to reduce the power consumption of the device.

【0028】図5に、本発明の第4の実施例である無線基地局の構成を示す。 [0028] FIG. 5 shows a configuration of a radio base station according to a fourth embodiment of the present invention. 無線基地局5およびリモートアンテナ装置4a、4bの機能は実施例1と同じである。 The wireless base station 5 and the remote antenna unit 4a, function of 4b are the same as in Example 1. 無線基地局5からの出力光信号201aは光カプラ24によって光信号201c、201dに分岐され、それぞれリモートアンテナ装置4a、4bの光受信器に入力される。 The output optical signal 201a is an optical signal 201c by the optical coupler 24 from the radio base station 5 is branched into 201d, the remote antenna unit 4a respectively inputted into 4b of the optical receiver. また、リモートアンテナ装置4a、4bの出力光信号202c、202dは、光カプラ25によって合波され、無線基地局の光受信器に入力される。 Also, the remote antenna unit 4a, 4b of the output optical signal 202c, 202d are multiplexed by the optical coupler 25 is input to the optical receiver of the radio base station. この様な構成にすることによって、リモートアンテナ装置4a、4b By to such a configuration, the remote antenna unit 4a, 4b
に対する無線基地局側の光送受信器を共有化でき、装置構成を単純化することが可能になる。 Can share the optical transceiver of the radio base station for, it is possible to simplify the device configuration. 但し、本構成の場合、リモートアンテナ装置4aの光送信器11aの光源と、リモートアンテナ装置4bの光送信器11bの光源とは、光受信器13aにおいてビート雑音を発生しないように波長を離す必要がある。 However, in this configuration, necessary to separate the light source of the optical transmitter 11a of the remote antenna unit 4a, and the light source of the remote antenna device 4b of the optical transmitter 11b, and wavelength so as not to generate beat noise in the optical receiver 13a there is.

【0029】図6に、本発明の第5の実施例である無線基地局の構成を示す。 [0029] FIG. 6 shows a configuration of a radio base station according to a fifth embodiment of the present invention. 無線基地局5とリモートアンテナ装置4aとは多モード光ファイバ1aおよび2aにより接続され、リモートアンテナ装置4aと4bとは多モード光ファイバ1bおよび2bにより接続される。 The radio base station 5 and the remote antenna unit 4a is connected by a multi-mode optical fibers 1a and 2a, the remote antenna unit 4a and 4b are connected by the multi-mode optical fiber 1b and 2b. 光信号はリモートアンテナ装置4aにおいて非再生中継される。 Optical signal is a non-regenerative relay in remote antenna unit 4a. すなわち、リモートアンテナ装置4bから多モード光ファイバ2bを通して伝送される光信号202bは、 That is, the optical signal 202b transmitted from the remote antenna unit 4b through the multi-mode optical fiber 2b is
リモートアンテナ装置4aの光受信器15で一度無線信号に変換され、アンテナ71aにおいて受信された無線信号113と分波器35を介して合波され、光送信器1 Once converted to a radio signal by the optical receiver 15 of the remote antenna unit 4a, it is multiplexed via a radio signal 113 and the demultiplexer 35 received by the antenna 71a, the optical transmitter 1
1aにより再度光信号202aに変換されて、多モード光ファイバ伝送路2aを通り無線基地局5の光受信器で受信される。 Is converted back to optical signals 202a by 1a, it is receiving the multi-mode optical fiber transmission line 2a at optical receiver as a radio base station 5. また、無線基地局からの送信光信号201 The transmission optical signal from the radio base station 201
aは、リモートアンテナ装置4aの光受信器12aによって電気信号に変換された後、分波器34によって分岐される。 a is converted into an electrical signal by optical receiver 12a of the remote antenna unit 4a, it is split by the demultiplexer 34. 分岐された無線信号110は、増幅器90によって適切な強度に増幅された後、サーキュレータ12a Branched wireless signal 110 is amplified to an appropriate intensity by the amplifier 90, the circulator 12a
および帯域通過フィルタ20aを経てアンテナ71aから送信される。 And it is transmitted from the antenna 71a via a bandpass filter 20a. また、分波器34によって分岐されたもう一方の無線信号111は、光送信器14に入力され、 Also, the other radio signal 111 branched by the demultiplexer 34 is input to the optical transmitter 14,
光信号201bに変換される。 It is converted into an optical signal 201b. 変換された光信号201 Converted optical signal 201
bは、多モード光ファイバ伝送路1bを通ってリモートアンテナ装置4bに伝送され、光受信器12bによって無線信号103bに変換される。 b is transmitted to the remote antenna unit 4b through the multimode optical fiber transmission line 1b, it is converted into a radio signal 103b by the optical receiver 12b. 変換された無線信号1 Converted radio signal 1
03bは、サーキュレータ21bおよび帯域通過フィルタ20bを経て、アンテナ71bから送信される。 03b passes through the circulator 21b and the band pass filter 20b, is transmitted from the antenna 71b. この様な構成にすることにより、光ファイバ伝送路を通る光源の波長が単一となる。 With this kind of configuration, the wavelength of the light source is a single passing through the optical fiber transmission line. 従って、光ファイバ伝送路上で光信号を多重する方式で問題であったビート雑音の問題を回避することができ、光源の波長管理が不要となる。 Accordingly, in the optical fiber transmission line can be avoided beat noise problem has been a problem in a manner that multiplexes optical signals, the wavelength of the light source management is not required.

【0030】 [0030]

【発明の効果】以上述べたように本発明によれば、移動電話や無線LANなどの無線通信システムにおいて、低雑音で接続の容易な光伝送路を用いてアンテナ不感地帯に無線信号を供給することが実現できる。 According to the present invention as described above, according to the present invention supplies a wireless signal in a wireless communication system such as a mobile phone or a wireless LAN, the antenna dead spots using readily optical transmission line connected with low noise it can be realized.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明の第1の実施例の無線基地局の構成である。 1 is a first radio base station of embodiment configuration of the present invention.

【図2】従来の無線LANを部屋間で接続する構成である。 2 is a configuration of connecting the conventional wireless LAN between room.

【図3】本発明の第2の実施例の無線LANの構成である。 3 is a second embodiment of a wireless LAN of the configuration of the present invention.

【図4】本発明の第3の実施例の無線LANの構成である。 4 is a third embodiment of the wireless LAN configuration of the present invention.

【図5】本発明の第4の実施例の無線基地局の構成である。 5 is a fourth radio base station of embodiment of the configuration of the present invention.

【図6】本発明の第5の実施例の無線基地局の構成である。 6 is a fifth radio base station of embodiment of the configuration of the present invention.

【符号の説明】 DESCRIPTION OF SYMBOLS

1a〜1d、2a〜2d 多モード光ファイバ伝送路 3 移動端末 4a、4b リモートアンテナ装置 5 無線基地局 6、7、8 無線LAN端末 9 有線LANケーブル 10a、10b、11a、11b、14 光送信器 12a、12b、13a、13b、15 光受信器 20a、20b、23 フィルタ 21a、21b、22a、22b サーキュレータ 24、25 光カプラ 26、27 スイッチ 30〜35 分波器 40、41 変復調器 60、61 無線LAN/有線LANブリッジ 70、71a、71b、72、73 アンテナ 80 振幅復調器 81 振幅変調器 100、101a、101b、102a、102b、1 1 a to 1 d, 2 a to 2 d multimode optical fiber transmission line 3 mobile terminals 4a, 4b remote antenna unit 5 wireless base station 6,7,8 wireless LAN terminal 9 wired LAN cable 10a, 10b, 11a, 11b, 14 optical transmitter 12a, 12b, 13a, 13b, 15 optical receiver 20a, 20b, 23 filters 21a, 21b, 22a, 22b circulator 24 and 25 the optical coupler 26, 27 switch 30-35 duplexer 40 and 41 modem 60, 61 radio LAN / wired LAN bridge 70,71a, 71b, 72,73 antenna 80 the amplitude demodulator 81 amplitude modulator 100,101a, 101b, 102a, 102b, 1
03a〜103c、104a、104b、105a、1 03a~103c, 104a, 104b, 105a, 1
05b、106a、106b、107a、107b、1 05b, 106a, 106b, 107a, 107b, 1
08〜112 無線信号 201a〜201d、202a〜202d 光信号 300 通信信号 301〜303 ベースバンド信号 400〜403 スイッチ制御信号 X、Y 無線エリア 08-112 radio signal 201 a to 201 d, 202 a to 202 d optical signal 300 communication signals 301-303 baseband signals 400 to 403 switch control signals X, Y wireless area

Claims (8)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】移動端末に対して無線信号を送受信するアンテナと、該無線信号と通話信号とを変換する変復調器と、該アンテナと変復調器の間を接続する光ファイバ給電線から成り、該光ファイバ給電線は、無線信号を光信号に変換する光送信器と、該光送信器の出力光信号を伝送する光ファイバ伝送路と、該光ファイバ伝送路の出力を無線信号に変換する光受信器によって構成される無線基地局において、 前記光ファイバ伝送路としてコア径100μm 以上の多モード光ファイバを用いることを特徴とする無線基地局。 An antenna for transmitting and receiving radio signals to 1. A mobile terminal, a modem for converting the wireless signal and the speech signal consists of optical fiber feed line which connects the said antenna and the modem, the optical fiber feed line, converts an optical transmitter for converting the radio signals into optical signals, an optical fiber transmission line for transmitting an output optical signal of the optical transmitter, the output of the optical fiber transmission line into a radio signal light in the radio base station configured by the receiver, the radio base station, which comprises using a multi-mode optical fiber over a core diameter 100μm as the optical fiber transmission line.
  2. 【請求項2】無線ローカルエリアネットワーク(無線L 2. A wireless local area network (wireless L
    AN)端末に対して無線信号を送受信する複数のアンテナと、該無線信号とベースバンド信号とを変換する変復調器と、該アンテナと変復調器の間を接続する光ファイバ給電線から成り、該光ファイバ給電線は、無線信号を光信号に変換する光送信器と、該光送信器の出力光信号を伝送する光ファイバ伝送路と、該光ファイバ伝送路の出力を無線信号に変換する光受信器によって構成される無線LANにおいて、 前記光ファイバ伝送路としてコア径100μm 以上の多モード光ファイバを用いることを特徴とする無線LA A plurality of antennas for transmitting and receiving radio signals to AN) terminal, and a modem for converting the wireless signal and the baseband signal comprises an optical fiber feeder line connecting between said antenna and modem, optical fiber feed line, an optical transmitter for converting the radio signals into optical signals, an optical receiver for converting the optical fiber transmission line for transmitting an output optical signal of the optical transmitter, the output of the optical fiber transmission line into a radio signal in a wireless LAN constituted by the vessels, the wireless LA, which comprises using a multi-mode optical fiber over a core diameter 100μm as the optical fiber transmission line
    N。 N.
  3. 【請求項3】請求項1記載の無線基地局または請求項2 3. A radio base station according to claim 1, wherein or claim 2
    記載の無線LANにおける光ファイバ給電線装置であって、 前記光送信器の光源に、ファブリ・ペローレーザダイオードまたは発光ダイオードを使用することを特徴とする光ファイバ給電線装置。 An optical fiber feeder line apparatus in a wireless LAN according to the light source of the optical transmitter, an optical fiber feed line and wherein the use of Fabry-Perot laser diode or light emitting diode.
  4. 【請求項4】請求項1記載の無線基地局または請求項2 4. The method of claim 1 radio base station or claim 2, wherein
    記載の無線LANにおける光ファイバ給電線装置であって、 前記アンテナから光送信器への入力無線信号と光受信器からアンテナへの出力無線信号とを切り替える電気的なスイッチを有し、また前記変調器から光送信器への入力無線信号と光受信器から復調器への出力無線信号とを切り替える電気的なスイッチを有することを特徴とする光ファイバ給電線装置。 An optical fiber feeder line apparatus in a wireless LAN according, has an electrical switch for switching the incoming radio signals and output the radio signals from the optical receiver to the antenna from the antenna to the optical transmitter and said modulation vessels from the input radio signal and an optical fiber feeder line device characterized by having an electrical switch for switching the output radio signals to the demodulator from the optical receiver to the optical transmitter.
  5. 【請求項5】変復調器と電気的な分波器とを接続し、該分波器によって分岐した無線信号を、直接または前記光ファイバ給電線装置を介して、複数のアンテナに集配することを特徴とする請求項1記載の無線基地局。 5. Connect the modem electrical duplexer, a radio signal split by 該分 duplexer, directly or via the optical fiber feed line device, to pick-up a plurality of antennas the radio base station according to claim 1, wherein.
  6. 【請求項6】変復調器と電気的な分波器とを接続し、該分波器によって分岐した無線信号を、直接または前記光ファイバ給電線装置を介して、複数のアンテナに集配することを特徴とする請求項2記載の無線LAN。 6. connects the modem electrical duplexer, a radio signal split by 該分 duplexer, directly or via the optical fiber feed line device, to pick-up a plurality of antennas wireless LAN according to claim 2, wherein.
  7. 【請求項7】変復調器とアンテナとを光ファイバ給電線で接続し、該光ファイバ給電線が光カプラを含み、該光カプラによって分岐された光信号を、前記光ファイバ給電線装置を介して複数のアンテナに集配することを特徴とする請求項1記載の無線基地局。 7. Connect the modem and the antenna in the optical fiber feed line includes optical fiber feed line an optical coupler, an optical signal branched by the optical coupler, through the optical fiber feed line device the radio base station according to claim 1, characterized in that the collection and distribution to a plurality of antennas.
  8. 【請求項8】変復調器とアンテナとを光ファイバ給電線で接続し、該光ファイバ給電線が光カプラを含み、該光カプラによって分岐された光信号を、前記光ファイバ給電線装置を介して複数のアンテナに集配することを特徴とする請求項2記載の無線LAN。 8. Connect the modem and the antenna in the optical fiber feed line includes optical fiber feed line an optical coupler, an optical signal branched by the optical coupler, through the optical fiber feed line device wireless LAN according to claim 2, characterized in that the collection and distribution to a plurality of antennas.
JP7236469A 1995-09-14 1995-09-14 Radio base station and a wireless local area network and an optical fiber feeder line device Expired - Fee Related JP2900853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7236469A JP2900853B2 (en) 1995-09-14 1995-09-14 Radio base station and a wireless local area network and an optical fiber feeder line device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7236469A JP2900853B2 (en) 1995-09-14 1995-09-14 Radio base station and a wireless local area network and an optical fiber feeder line device

Publications (2)

Publication Number Publication Date
JPH0983450A true JPH0983450A (en) 1997-03-28
JP2900853B2 JP2900853B2 (en) 1999-06-02

Family

ID=17001210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7236469A Expired - Fee Related JP2900853B2 (en) 1995-09-14 1995-09-14 Radio base station and a wireless local area network and an optical fiber feeder line device

Country Status (1)

Country Link
JP (1) JP2900853B2 (en)

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006295309A (en) * 2005-04-06 2006-10-26 Chugoku Electric Power Co Inc:The Optical multi-stage relaying system
JP2008166893A (en) * 2006-12-27 2008-07-17 Nec Infrontia Corp Transmission/reception circuit of wireless terminal equipment by dual mode communication
US7495560B2 (en) 2006-05-08 2009-02-24 Corning Cable Systems Llc Wireless picocellular RFID systems and methods
JP2009065569A (en) * 2007-09-07 2009-03-26 Chubu Electric Power Co Inc Relay device, and radio communication apparatus
JP2009534930A (en) * 2006-04-19 2009-09-24 コーニング ケーブル システムズ リミテッド ライアビリティ カンパニー Electricity for the wireless system - optical cable
JP2011503930A (en) * 2007-10-12 2011-01-27 コーニング ケーブル システムズ リミテッド ライアビリティ カンパニー Hybrid wireless / wired transponder and hybrid RoF communication system using the same
US8391247B2 (en) 2006-03-28 2013-03-05 Kyocera Corporation Base station device and signal processing method
US8867919B2 (en) 2007-07-24 2014-10-21 Corning Cable Systems Llc Multi-port accumulator for radio-over-fiber (RoF) wireless picocellular systems
US8873585B2 (en) 2006-12-19 2014-10-28 Corning Optical Communications Wireless Ltd Distributed antenna system for MIMO technologies
US8913892B2 (en) 2010-10-28 2014-12-16 Coring Optical Communications LLC Sectorization in distributed antenna systems, and related components and methods
US9037143B2 (en) 2010-08-16 2015-05-19 Corning Optical Communications LLC Remote antenna clusters and related systems, components, and methods supporting digital data signal propagation between remote antenna units
US9042732B2 (en) 2010-05-02 2015-05-26 Corning Optical Communications LLC Providing digital data services in optical fiber-based distributed radio frequency (RF) communication systems, and related components and methods
US9112611B2 (en) 2009-02-03 2015-08-18 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US9178635B2 (en) 2014-01-03 2015-11-03 Corning Optical Communications Wireless Ltd Separation of communication signal sub-bands in distributed antenna systems (DASs) to reduce interference
US9184843B2 (en) 2011-04-29 2015-11-10 Corning Optical Communications LLC Determining propagation delay of communications in distributed antenna systems, and related components, systems, and methods
US9219879B2 (en) 2009-11-13 2015-12-22 Corning Optical Communications LLC Radio-over-fiber (ROF) system for protocol-independent wired and/or wireless communication
US9240835B2 (en) 2011-04-29 2016-01-19 Corning Optical Communications LLC Systems, methods, and devices for increasing radio frequency (RF) power in distributed antenna systems
US9247543B2 (en) 2013-07-23 2016-01-26 Corning Optical Communications Wireless Ltd Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9258052B2 (en) 2012-03-30 2016-02-09 Corning Optical Communications LLC Reducing location-dependent interference in distributed antenna systems operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9319138B2 (en) 2010-02-15 2016-04-19 Corning Optical Communications LLC Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods
US9325429B2 (en) 2011-02-21 2016-04-26 Corning Optical Communications LLC Providing digital data services as electrical signals and radio-frequency (RF) communications over optical fiber in distributed communications systems, and related components and methods
US9357551B2 (en) 2014-05-30 2016-05-31 Corning Optical Communications Wireless Ltd Systems and methods for simultaneous sampling of serial digital data streams from multiple analog-to-digital converters (ADCS), including in distributed antenna systems
US9385810B2 (en) 2013-09-30 2016-07-05 Corning Optical Communications Wireless Ltd Connection mapping in distributed communication systems
US9420542B2 (en) 2014-09-25 2016-08-16 Corning Optical Communications Wireless Ltd System-wide uplink band gain control in a distributed antenna system (DAS), based on per band gain control of remote uplink paths in remote units
US9455784B2 (en) 2012-10-31 2016-09-27 Corning Optical Communications Wireless Ltd Deployable wireless infrastructures and methods of deploying wireless infrastructures
US9525472B2 (en) 2014-07-30 2016-12-20 Corning Incorporated Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9525488B2 (en) 2010-05-02 2016-12-20 Corning Optical Communications LLC Digital data services and/or power distribution in optical fiber-based distributed communications systems providing digital data and radio frequency (RF) communications services, and related components and methods
US9531452B2 (en) 2012-11-29 2016-12-27 Corning Optical Communications LLC Hybrid intra-cell / inter-cell remote unit antenna bonding in multiple-input, multiple-output (MIMO) distributed antenna systems (DASs)
US9602210B2 (en) 2014-09-24 2017-03-21 Corning Optical Communications Wireless Ltd Flexible head-end chassis supporting automatic identification and interconnection of radio interface modules and optical interface modules in an optical fiber-based distributed antenna system (DAS)
US9621293B2 (en) 2012-08-07 2017-04-11 Corning Optical Communications Wireless Ltd Distribution of time-division multiplexed (TDM) management services in a distributed antenna system, and related components, systems, and methods
US9647758B2 (en) 2012-11-30 2017-05-09 Corning Optical Communications Wireless Ltd Cabling connectivity monitoring and verification
US9661781B2 (en) 2013-07-31 2017-05-23 Corning Optical Communications Wireless Ltd Remote units for distributed communication systems and related installation methods and apparatuses
US9673904B2 (en) 2009-02-03 2017-06-06 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US9681313B2 (en) 2015-04-15 2017-06-13 Corning Optical Communications Wireless Ltd Optimizing remote antenna unit performance using an alternative data channel
US9715157B2 (en) 2013-06-12 2017-07-25 Corning Optical Communications Wireless Ltd Voltage controlled optical directional coupler
US9729267B2 (en) 2014-12-11 2017-08-08 Corning Optical Communications Wireless Ltd Multiplexing two separate optical links with the same wavelength using asymmetric combining and splitting
US9730228B2 (en) 2014-08-29 2017-08-08 Corning Optical Communications Wireless Ltd Individualized gain control of remote uplink band paths in a remote unit in a distributed antenna system (DAS), based on combined uplink power level in the remote unit
US9775123B2 (en) 2014-03-28 2017-09-26 Corning Optical Communications Wireless Ltd. Individualized gain control of uplink paths in remote units in a distributed antenna system (DAS) based on individual remote unit contribution to combined uplink power
US9807700B2 (en) 2015-02-19 2017-10-31 Corning Optical Communications Wireless Ltd Offsetting unwanted downlink interference signals in an uplink path in a distributed antenna system (DAS)
US9948349B2 (en) 2015-07-17 2018-04-17 Corning Optical Communications Wireless Ltd IOT automation and data collection system
US9974074B2 (en) 2013-06-12 2018-05-15 Corning Optical Communications Wireless Ltd Time-division duplexing (TDD) in distributed communications systems, including distributed antenna systems (DASs)
US10096909B2 (en) 2014-11-03 2018-10-09 Corning Optical Communications Wireless Ltd. Multi-band monopole planar antennas configured to facilitate improved radio frequency (RF) isolation in multiple-input multiple-output (MIMO) antenna arrangement
US10110308B2 (en) 2014-12-18 2018-10-23 Corning Optical Communications Wireless Ltd Digital interface modules (DIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US10128951B2 (en) 2009-02-03 2018-11-13 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for monitoring and configuring thereof
US10135533B2 (en) 2014-11-13 2018-11-20 Corning Optical Communications Wireless Ltd Analog distributed antenna systems (DASS) supporting distribution of digital communications signals interfaced from a digital signal source and analog radio frequency (RF) communications signals
US10136200B2 (en) 2012-04-25 2018-11-20 Corning Optical Communications LLC Distributed antenna system architectures
US10187151B2 (en) 2014-12-18 2019-01-22 Corning Optical Communications Wireless Ltd Digital-analog interface modules (DAIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US10236924B2 (en) 2016-03-31 2019-03-19 Corning Optical Communications Wireless Ltd Reducing out-of-channel noise in a wireless distribution system (WDS)

Cited By (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006295309A (en) * 2005-04-06 2006-10-26 Chugoku Electric Power Co Inc:The Optical multi-stage relaying system
US8391247B2 (en) 2006-03-28 2013-03-05 Kyocera Corporation Base station device and signal processing method
JP2009534930A (en) * 2006-04-19 2009-09-24 コーニング ケーブル システムズ リミテッド ライアビリティ カンパニー Electricity for the wireless system - optical cable
US7495560B2 (en) 2006-05-08 2009-02-24 Corning Cable Systems Llc Wireless picocellular RFID systems and methods
US9130613B2 (en) 2006-12-19 2015-09-08 Corning Optical Communications Wireless Ltd Distributed antenna system for MIMO technologies
US8873585B2 (en) 2006-12-19 2014-10-28 Corning Optical Communications Wireless Ltd Distributed antenna system for MIMO technologies
JP4512085B2 (en) * 2006-12-27 2010-07-28 Necインフロンティア株式会社 Wireless terminal
JP2008166893A (en) * 2006-12-27 2008-07-17 Nec Infrontia Corp Transmission/reception circuit of wireless terminal equipment by dual mode communication
US8867919B2 (en) 2007-07-24 2014-10-21 Corning Cable Systems Llc Multi-port accumulator for radio-over-fiber (RoF) wireless picocellular systems
JP2009065569A (en) * 2007-09-07 2009-03-26 Chubu Electric Power Co Inc Relay device, and radio communication apparatus
JP2011503930A (en) * 2007-10-12 2011-01-27 コーニング ケーブル システムズ リミテッド ライアビリティ カンパニー Hybrid wireless / wired transponder and hybrid RoF communication system using the same
US9673904B2 (en) 2009-02-03 2017-06-06 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US9900097B2 (en) 2009-02-03 2018-02-20 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US9112611B2 (en) 2009-02-03 2015-08-18 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US10128951B2 (en) 2009-02-03 2018-11-13 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for monitoring and configuring thereof
US10153841B2 (en) 2009-02-03 2018-12-11 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US9729238B2 (en) 2009-11-13 2017-08-08 Corning Optical Communications LLC Radio-over-fiber (ROF) system for protocol-independent wired and/or wireless communication
US9219879B2 (en) 2009-11-13 2015-12-22 Corning Optical Communications LLC Radio-over-fiber (ROF) system for protocol-independent wired and/or wireless communication
US9485022B2 (en) 2009-11-13 2016-11-01 Corning Optical Communications LLC Radio-over-fiber (ROF) system for protocol-independent wired and/or wireless communication
US9319138B2 (en) 2010-02-15 2016-04-19 Corning Optical Communications LLC Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods
US9042732B2 (en) 2010-05-02 2015-05-26 Corning Optical Communications LLC Providing digital data services in optical fiber-based distributed radio frequency (RF) communication systems, and related components and methods
US9853732B2 (en) 2010-05-02 2017-12-26 Corning Optical Communications LLC Digital data services and/or power distribution in optical fiber-based distributed communications systems providing digital data and radio frequency (RF) communications services, and related components and methods
US9270374B2 (en) 2010-05-02 2016-02-23 Corning Optical Communications LLC Providing digital data services in optical fiber-based distributed radio frequency (RF) communications systems, and related components and methods
US9525488B2 (en) 2010-05-02 2016-12-20 Corning Optical Communications LLC Digital data services and/or power distribution in optical fiber-based distributed communications systems providing digital data and radio frequency (RF) communications services, and related components and methods
US10014944B2 (en) 2010-08-16 2018-07-03 Corning Optical Communications LLC Remote antenna clusters and related systems, components, and methods supporting digital data signal propagation between remote antenna units
US9037143B2 (en) 2010-08-16 2015-05-19 Corning Optical Communications LLC Remote antenna clusters and related systems, components, and methods supporting digital data signal propagation between remote antenna units
US8913892B2 (en) 2010-10-28 2014-12-16 Coring Optical Communications LLC Sectorization in distributed antenna systems, and related components and methods
US9325429B2 (en) 2011-02-21 2016-04-26 Corning Optical Communications LLC Providing digital data services as electrical signals and radio-frequency (RF) communications over optical fiber in distributed communications systems, and related components and methods
US10205538B2 (en) 2011-02-21 2019-02-12 Corning Optical Communications LLC Providing digital data services as electrical signals and radio-frequency (RF) communications over optical fiber in distributed communications systems, and related components and methods
US9813164B2 (en) 2011-02-21 2017-11-07 Corning Optical Communications LLC Providing digital data services as electrical signals and radio-frequency (RF) communications over optical fiber in distributed communications systems, and related components and methods
US9240835B2 (en) 2011-04-29 2016-01-19 Corning Optical Communications LLC Systems, methods, and devices for increasing radio frequency (RF) power in distributed antenna systems
US9369222B2 (en) 2011-04-29 2016-06-14 Corning Optical Communications LLC Determining propagation delay of communications in distributed antenna systems, and related components, systems, and methods
US9807722B2 (en) 2011-04-29 2017-10-31 Corning Optical Communications LLC Determining propagation delay of communications in distributed antenna systems, and related components, systems, and methods
US9184843B2 (en) 2011-04-29 2015-11-10 Corning Optical Communications LLC Determining propagation delay of communications in distributed antenna systems, and related components, systems, and methods
US10148347B2 (en) 2011-04-29 2018-12-04 Corning Optical Communications LLC Systems, methods, and devices for increasing radio frequency (RF) power in distributed antenna systems
US9806797B2 (en) 2011-04-29 2017-10-31 Corning Optical Communications LLC Systems, methods, and devices for increasing radio frequency (RF) power in distributed antenna systems
US9258052B2 (en) 2012-03-30 2016-02-09 Corning Optical Communications LLC Reducing location-dependent interference in distributed antenna systems operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9813127B2 (en) 2012-03-30 2017-11-07 Corning Optical Communications LLC Reducing location-dependent interference in distributed antenna systems operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US10136200B2 (en) 2012-04-25 2018-11-20 Corning Optical Communications LLC Distributed antenna system architectures
US9621293B2 (en) 2012-08-07 2017-04-11 Corning Optical Communications Wireless Ltd Distribution of time-division multiplexed (TDM) management services in a distributed antenna system, and related components, systems, and methods
US9973968B2 (en) 2012-08-07 2018-05-15 Corning Optical Communications Wireless Ltd Distribution of time-division multiplexed (TDM) management services in a distributed antenna system, and related components, systems, and methods
US9455784B2 (en) 2012-10-31 2016-09-27 Corning Optical Communications Wireless Ltd Deployable wireless infrastructures and methods of deploying wireless infrastructures
US9531452B2 (en) 2012-11-29 2016-12-27 Corning Optical Communications LLC Hybrid intra-cell / inter-cell remote unit antenna bonding in multiple-input, multiple-output (MIMO) distributed antenna systems (DASs)
US9647758B2 (en) 2012-11-30 2017-05-09 Corning Optical Communications Wireless Ltd Cabling connectivity monitoring and verification
US9715157B2 (en) 2013-06-12 2017-07-25 Corning Optical Communications Wireless Ltd Voltage controlled optical directional coupler
US9974074B2 (en) 2013-06-12 2018-05-15 Corning Optical Communications Wireless Ltd Time-division duplexing (TDD) in distributed communications systems, including distributed antenna systems (DASs)
US9967754B2 (en) 2013-07-23 2018-05-08 Corning Optical Communications Wireless Ltd Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US10292056B2 (en) 2013-07-23 2019-05-14 Corning Optical Communications LLC Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9526020B2 (en) 2013-07-23 2016-12-20 Corning Optical Communications Wireless Ltd Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9247543B2 (en) 2013-07-23 2016-01-26 Corning Optical Communications Wireless Ltd Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9661781B2 (en) 2013-07-31 2017-05-23 Corning Optical Communications Wireless Ltd Remote units for distributed communication systems and related installation methods and apparatuses
US9385810B2 (en) 2013-09-30 2016-07-05 Corning Optical Communications Wireless Ltd Connection mapping in distributed communication systems
US9178635B2 (en) 2014-01-03 2015-11-03 Corning Optical Communications Wireless Ltd Separation of communication signal sub-bands in distributed antenna systems (DASs) to reduce interference
US9775123B2 (en) 2014-03-28 2017-09-26 Corning Optical Communications Wireless Ltd. Individualized gain control of uplink paths in remote units in a distributed antenna system (DAS) based on individual remote unit contribution to combined uplink power
US9807772B2 (en) 2014-05-30 2017-10-31 Corning Optical Communications Wireless Ltd. Systems and methods for simultaneous sampling of serial digital data streams from multiple analog-to-digital converters (ADCs), including in distributed antenna systems
US9357551B2 (en) 2014-05-30 2016-05-31 Corning Optical Communications Wireless Ltd Systems and methods for simultaneous sampling of serial digital data streams from multiple analog-to-digital converters (ADCS), including in distributed antenna systems
US9929786B2 (en) 2014-07-30 2018-03-27 Corning Incorporated Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US10256879B2 (en) 2014-07-30 2019-04-09 Corning Incorporated Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9525472B2 (en) 2014-07-30 2016-12-20 Corning Incorporated Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9730228B2 (en) 2014-08-29 2017-08-08 Corning Optical Communications Wireless Ltd Individualized gain control of remote uplink band paths in a remote unit in a distributed antenna system (DAS), based on combined uplink power level in the remote unit
US9929810B2 (en) 2014-09-24 2018-03-27 Corning Optical Communications Wireless Ltd Flexible head-end chassis supporting automatic identification and interconnection of radio interface modules and optical interface modules in an optical fiber-based distributed antenna system (DAS)
US9602210B2 (en) 2014-09-24 2017-03-21 Corning Optical Communications Wireless Ltd Flexible head-end chassis supporting automatic identification and interconnection of radio interface modules and optical interface modules in an optical fiber-based distributed antenna system (DAS)
US9788279B2 (en) 2014-09-25 2017-10-10 Corning Optical Communications Wireless Ltd System-wide uplink band gain control in a distributed antenna system (DAS), based on per-band gain control of remote uplink paths in remote units
US9420542B2 (en) 2014-09-25 2016-08-16 Corning Optical Communications Wireless Ltd System-wide uplink band gain control in a distributed antenna system (DAS), based on per band gain control of remote uplink paths in remote units
US10096909B2 (en) 2014-11-03 2018-10-09 Corning Optical Communications Wireless Ltd. Multi-band monopole planar antennas configured to facilitate improved radio frequency (RF) isolation in multiple-input multiple-output (MIMO) antenna arrangement
US10135533B2 (en) 2014-11-13 2018-11-20 Corning Optical Communications Wireless Ltd Analog distributed antenna systems (DASS) supporting distribution of digital communications signals interfaced from a digital signal source and analog radio frequency (RF) communications signals
US10135561B2 (en) 2014-12-11 2018-11-20 Corning Optical Communications Wireless Ltd Multiplexing two separate optical links with the same wavelength using asymmetric combining and splitting
US9729267B2 (en) 2014-12-11 2017-08-08 Corning Optical Communications Wireless Ltd Multiplexing two separate optical links with the same wavelength using asymmetric combining and splitting
US10187151B2 (en) 2014-12-18 2019-01-22 Corning Optical Communications Wireless Ltd Digital-analog interface modules (DAIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US10110308B2 (en) 2014-12-18 2018-10-23 Corning Optical Communications Wireless Ltd Digital interface modules (DIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US10292114B2 (en) 2015-02-19 2019-05-14 Corning Optical Communications LLC Offsetting unwanted downlink interference signals in an uplink path in a distributed antenna system (DAS)
US9807700B2 (en) 2015-02-19 2017-10-31 Corning Optical Communications Wireless Ltd Offsetting unwanted downlink interference signals in an uplink path in a distributed antenna system (DAS)
US9681313B2 (en) 2015-04-15 2017-06-13 Corning Optical Communications Wireless Ltd Optimizing remote antenna unit performance using an alternative data channel
US10009094B2 (en) 2015-04-15 2018-06-26 Corning Optical Communications Wireless Ltd Optimizing remote antenna unit performance using an alternative data channel
US9948349B2 (en) 2015-07-17 2018-04-17 Corning Optical Communications Wireless Ltd IOT automation and data collection system
US10236924B2 (en) 2016-03-31 2019-03-19 Corning Optical Communications Wireless Ltd Reducing out-of-channel noise in a wireless distribution system (WDS)

Also Published As

Publication number Publication date
JP2900853B2 (en) 1999-06-02

Similar Documents

Publication Publication Date Title
KR100221287B1 (en) Distributed transceiver antenna device for shadow area in cdma
US6415132B1 (en) Blossom/wilt for dynamic reallocation in a distributed fiber system
JP2520530B2 (en) Microcell communications station, the method of radio signal processing in the microcell communications station, microcellular communication system, and a cellular communication base station
CN1166230C (en) Microcelllular mobile communication system
US5377255A (en) RF repeaters for time division duplex cordless telephone systems
US6292673B1 (en) Radio signal transmitter
US6374124B1 (en) Dynamic reallocation of transceivers used to interconnect wireless telephones to a broadband network
US5890055A (en) Method and system for connecting cells and microcells in a wireless communications network
CN100375550C (en) Base station system
US5838474A (en) Process and circuit arrangement for transmitting received signals from an antenna to a base station of a radio system
US7263293B2 (en) Indoor wireless voice and data distribution system
US8326218B2 (en) Point-to-multipoint digital radio frequency transport
EP1271974A1 (en) Cellular communications system featuring a central radio pool/traffic router
CA2253413C (en) Telecommunications system simultaneously receiving and modulating an optical signal
CA2219304C (en) Transmission of cdma signals over an analog optical link
KR100842533B1 (en) Radio over fiber rink based on time division duplex
JP3703736B2 (en) Mobile communication network system using the digital optical link
US5946622A (en) Method and apparatus for providing cellular telephone service to a macro-cell and pico-cell within a building using shared equipment
US7072586B2 (en) Radio base station system and central control station with unified transmission format
US5400391A (en) Mobile communication system
US5969837A (en) Communications system
US20030007214A1 (en) Wireless base station network system, contorl station, base station switching method, signal processing method, and handover control method
US5809395A (en) Remote antenna driver for a radio telephony system
JP4124710B2 (en) Wireless communication system
KR100419041B1 (en) Relay system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080319

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees