JP2900320B1 - High-strength polymer cement solidifying material and method for producing the same - Google Patents
High-strength polymer cement solidifying material and method for producing the sameInfo
- Publication number
- JP2900320B1 JP2900320B1 JP17115798A JP17115798A JP2900320B1 JP 2900320 B1 JP2900320 B1 JP 2900320B1 JP 17115798 A JP17115798 A JP 17115798A JP 17115798 A JP17115798 A JP 17115798A JP 2900320 B1 JP2900320 B1 JP 2900320B1
- Authority
- JP
- Japan
- Prior art keywords
- resin emulsion
- polymer cement
- copolymer resin
- strength polymer
- solidified material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2103/00—Function or property of ingredients for mortars, concrete or artificial stone
- C04B2103/0045—Polymers chosen for their physico-chemical characteristics
- C04B2103/0053—Water-soluble polymers
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
【要約】
【課題】 水硬性セメントと水溶性合成樹脂ディスパー
ジョンを用いたポリマーセメント固化材であって、特に
寸法安定性に優れた高強度ポリマーセメント固化材及び
その製造方法を提供する。
【解決手段】 水硬性セメントと二極性結晶体を有する
天然ケイ酸塩鉱物の微細粉粒の混合物に、アクリル・ス
チレン共重合樹脂エマルジョンと酢酸ビニル・エチレン
・塩化ビニル共重合樹脂エマルジョンとを組合わせた混
合水溶性合成樹脂エマルジョンを混練、型詰め、乾燥固
化して得られる。An object of the present invention is to provide a solidified polymer cement using a hydraulic cement and a water-soluble synthetic resin dispersion, particularly a high-strength polymer cement solidified with excellent dimensional stability and a method for producing the same. SOLUTION: An acrylic / styrene copolymer resin emulsion and a vinyl acetate / ethylene / vinyl chloride copolymer resin emulsion are combined with a mixture of hydraulic cement and fine particles of a natural silicate mineral having bipolar crystals. The mixed water-soluble synthetic resin emulsion is kneaded, filled into a mold, and dried and solidified.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、水硬性セメントと
水溶性合成樹脂エマルジョンを混練、固化してなる高強
度ポリマーセメント固化材に関し、特に寸法安定性に優
れた高強度ポリマーセメント固化材及びその製造方法に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength polymer cement solidified material obtained by kneading and solidifying a hydraulic cement and a water-soluble synthetic resin emulsion, and more particularly to a high-strength polymer cement solidified material having excellent dimensional stability and the same. It relates to a manufacturing method.
【0002】[0002]
【従来の技術】従来のポリマー系セメント固化材は、水
硬性セメントと水溶性合成樹脂エマルジョンに、骨材と
して砂利、砂等を混合し、コンクリートブロック、レン
ガ、タイル、石等の接着材などとして広く利用されてい
る。2. Description of the Related Art A conventional polymer cement solidifying material is a mixture of hydraulic cement and a water-soluble synthetic resin emulsion mixed with gravel and sand as an aggregate, and used as an adhesive for concrete blocks, bricks, tiles, stones and the like. Widely used.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、従来の
ポリマー系セメント固化材は、構造物の基材面の接着乃
至表面仕上げ材としては有効な接着特性を示すものの、
その製造段階で混練物を型詰めした寸法と、乾燥して得
られる固化材の寸法とが一致せず、乾燥収縮性、特に寸
法安定性については解決すべき問題があった。However, although the conventional polymer cement solidifying material exhibits an effective adhesive property as an adhesive or a surface finishing material for the substrate surface of a structure,
In the production stage, the dimensions of the kneaded material were not matched with the dimensions of the solidified material obtained by drying, and there was a problem to be solved regarding drying shrinkage, particularly dimensional stability.
【0004】一方、現在、我が国では環境保全、資源の
有効利用等の観点から、廃棄物のリサイクル処理が重要
な課題となり、特にガラス屑廃材の処理及び再利用の手
段としては、多くの提案がなされているが、ガラスを水
硬性セメントに混入すると、ガラス組成であるケイ酸成
分が水硬性セメントのアルカリ分と化学反応(アルカリ
骨材反応)を起こし、セメント結晶体中で組成変化を生
じて膨張、剥離、亀裂などの劣化現象を引き起こすた
め、ガラス廃材をコンクリート固化材の骨材として多量
に使用することができなかった。On the other hand, at present, recycling of waste is an important issue in Japan from the viewpoint of environmental protection and effective use of resources, and many proposals have been made especially as means for treating and recycling glass waste. However, when glass is mixed with hydraulic cement, the silicic acid component of the glass composition causes a chemical reaction with the alkali component of the hydraulic cement (alkali-aggregate reaction), causing a change in composition in the cement crystal. Since a deterioration phenomenon such as expansion, peeling or cracking is caused, a large amount of glass waste material cannot be used as an aggregate of concrete solidified material.
【0005】そこで本発明者は、寸法安定性に極めて良
好な値が得られるポリマー系セメント固化材の開発を目
的とし、さらには骨材として多量のガラス廃材を配合し
てなるポリマー系セメント固化材の開発を目的とするも
のである。Accordingly, the present inventors have aimed at developing a polymer cement solidified material capable of obtaining an extremely good value of dimensional stability, and further, a polymer cement solidified material containing a large amount of glass waste as an aggregate. It is intended for the development of.
【0006】[0006]
【課題を解決するための手段】本発明は、上記した問題
点を解決すべく鋭意研究を重ねた結果、水硬性セメント
と天然ケイ酸塩鉱物の微細粉粒の混合物に、アクリル・
スチレン共重合樹脂エマルジョンと酢酸ビニル・エチレ
ン・塩化ビニル共重合樹脂エマルジョンを組合わせた混
合水溶性合成樹脂エマルジョンを混練し、該混練物を型
詰め、固化乾燥して得られるポリマーセメント固化材
が、収縮率が極めて小さく、寸法安定性に優れた高強度
ポリマーセメント固化材になることを見出した。SUMMARY OF THE INVENTION As a result of intensive studies to solve the above-mentioned problems, the present invention has found that a mixture of hydraulic cement and fine particles of natural silicate mineral has an acrylic /
A polymer cement solidifying material obtained by kneading a mixed water-soluble synthetic resin emulsion obtained by combining a styrene copolymer resin emulsion and a vinyl acetate / ethylene / vinyl chloride copolymer resin emulsion, filling the kneaded product, solidifying and drying, It has been found that a high-strength polymer cement solidified material having an extremely small shrinkage and excellent dimensional stability.
【0007】現在、水溶性合成樹脂エマルジョンは、土
木、建築分野用の他、塗料、接着、フィルム加工用とし
て広く利用されている。土木、建築分野では、水溶性合
成樹脂エマルジョンとして、酢酸ビニル系エマルジョ
ン、酢酸ビニル・アクリル共重合樹脂エマルジョン、酢
酸ビニル・エチレン共重合樹脂エマルジョン、アクリル
共重合樹脂エマルジョン、アクリル・スチレン共重合樹
脂エマルジョン、酢酸ビニル・エチレン・塩化ビニル共
重合樹脂の一種乃至それ以上を用い、これ(ら)と水硬
性セメントとを混練し、主としてセメント、モルタル、
混和剤、タイル用接着剤、セメント用下地調整剤などの
収縮性にあまり重点をおく必要のない場所で利用されて
いる。即ち、従来のポリマー系セメントは、その製造段
階で上記した配合からなる混練物を型詰めした寸法と、
乾燥固化して得られる固化材の寸法とが一致せず、固化
材は型詰め寸法に対して収縮が大きく、寸法安定性が良
くなかった。本発明では、ポリマーセメント固化材の寸
法安定性の向上を目指し、くり返し検討を重ねた結果、
前記した各種の水溶性合成樹脂エマルジョンの中でも、
アクリル・スチレン共重合樹脂エマルジョンと酢酸ビニ
ル・エチレン・塩化ビニル共重合樹脂エマルジョンとを
組合せた混合水溶性合成樹脂エマルジョンを用い、さら
に二極性結晶体を有する天然ケイ酸塩鉱物の微細粉粒と
併用することにより、寸法安定性に優れた高強度ポリマ
ーセメント固化材となることを見出した。さらに、多量
のガラス屑廃材を微細ガラス粉粒に加工して水硬性セメ
ントの強化骨材として用い得ることも併せて見出した。At present, water-soluble synthetic resin emulsions are widely used for civil engineering and construction, as well as for paints, adhesives and film processing. In the civil engineering and construction fields, water-soluble synthetic resin emulsions include vinyl acetate emulsions, vinyl acetate / acrylic copolymer resin emulsions, vinyl acetate / ethylene copolymer resin emulsions, acrylic copolymer resin emulsions, acrylic / styrene copolymer resin emulsions, Using one or more of vinyl acetate / ethylene / vinyl chloride copolymer resins, kneading them with hydraulic cement, mainly cement, mortar,
It is used in places where little emphasis is required on shrinkage, such as admixtures, adhesives for tiles, and surface conditioners for cement. That is, the conventional polymer-based cement, the dimensions of the kneaded product having the above-mentioned composition at the production stage, and
The dimensions of the solidified material obtained by drying and solidification did not match, and the solidified material shrunk significantly with respect to the dimensions of the mold and had poor dimensional stability. In the present invention, the aim of improving the dimensional stability of the polymer cement solidified material, as a result of repeated studies,
Among the various water-soluble synthetic resin emulsions described above,
A mixture of acrylic / styrene copolymer resin emulsion and vinyl acetate / ethylene / vinyl chloride copolymer resin emulsion combined with water-soluble synthetic resin emulsion, combined with fine particles of natural silicate mineral having bipolar crystals By doing so, it has been found that a high-strength polymer cement solidified material having excellent dimensional stability can be obtained. Furthermore, they have also found that a large amount of glass waste can be processed into fine glass particles and used as a reinforcing aggregate for hydraulic cement.
【0008】すなわち、天然ケイ酸塩鉱物である鉄電気
石[NaFe3Al6B3Si6(OH)30 ]およびザクロ石[Fe3Al2(S
iO4)3 ]はそれぞれ二極性結晶体であるため、粉砕した
微細粉粒が独立した二極性結晶体を有し、これが水と接
触するとき天然ケイ酸塩鉱物のもつ電気特性により水を
電気分解し、水(H2O)が水素イオン(H+)と水酸イオン
(OH-)に分解する。その際、プラスイオン(H+)はイオン
移動度が大きいため、水素ガス(H2)として放出される
が、水酸イオン(OH-)は周囲の水分子(H2O)と結合し
[H2O +OH- =(H3O2)-]、ヒドロキシルイオン(H
3O2)-と呼ばれる界面活性物質に変化し、界面活性効果
を発生することがわかっている。That is, tourmaline [NaFe 3 Al 6 B 3 Si 6 (OH) 30 ] and garnet [Fe 3 Al 2 (S
Since iO 4 ) 3 ] is a bipolar crystal, each of the finely ground fine particles has an independent bipolar crystal, and when it comes into contact with water, the water has an electric property due to a natural silicate mineral. Water (H 2 O) is decomposed into hydrogen ions (H + ) and hydroxyl ions (OH − ). At that time, the positive ions (H + ) are released as hydrogen gas (H 2 ) because of their high ion mobility, but the hydroxide ions (OH − ) combine with the surrounding water molecules (H 2 O) [ H 2 O + OH − = (H 3 O 2 ) − ], hydroxyl ion (H
It has been found that it changes to a surfactant called 3 O 2 ) - , which produces a surfactant effect.
【0009】本発明ではこの特性を利用し、水硬性セメ
ントに骨材として天然ケイ酸塩鉱物の微細粉粒を入れ、
混合水溶性合成樹脂エマルジョンと混合すると、この混
合水溶性合成樹脂エマルジョンの界面活性効果が促進さ
れる。その結果、水硬性セメントと混合水溶性樹脂成分
との親和力が高まり、セメント結晶質組成と混合水溶性
合成樹脂とが緻密に絡み合った固化体を作り、寸法安定
性に優れ、高い曲げ特性と圧縮特性を示す。なお天然ケ
イ酸塩鉱物の微細粉粒の粒度を50μm以下にすると、
より一層界面活性効果が促進されることがわかった。さ
らに、微細ガラス粉粒を配合した場合には、混合水溶性
合成樹脂エマルジョンの界面活性効果により、セメント
結晶質組成とガラスとの間に樹脂膜が形成され、セメン
ト結晶質組成に直接ガラスが接触しない状態となり、セ
メントとガラスとの反応を防止するので、多量のガラス
粉粒を添加した場合でも極めて高い強度のガラスポリマ
ーセメント固化材が得られることがわかった。In the present invention, utilizing this property, fine particles of a natural silicate mineral are added as aggregate to hydraulic cement,
When mixed with the mixed water-soluble synthetic resin emulsion, the surfactant effect of the mixed water-soluble synthetic resin emulsion is promoted. As a result, the affinity between the hydraulic cement and the mixed water-soluble resin component is increased, and a solidified body in which the cement crystalline composition and the mixed water-soluble synthetic resin are densely entangled with each other has excellent dimensional stability, excellent bending characteristics and compression. Show characteristics. When the particle size of the fine particles of the natural silicate mineral is 50 μm or less,
It was found that the surfactant effect was further promoted. Furthermore, when fine glass particles are blended, a resin film is formed between the cement crystalline composition and the glass due to the surface active effect of the mixed water-soluble synthetic resin emulsion, and the glass directly contacts the cement crystalline composition. It was found that the reaction between cement and glass was prevented, so that a glass polymer cement solidified material having extremely high strength was obtained even when a large amount of glass powder was added.
【0010】[0010]
【発明の実施の形態】本発明に用いる水硬性セメントと
しては、普通ポルトランドセメント、早強セメント、ホ
ワイトセメント、アルミナセメントのいずれでもよい
が、後述する実施例ではホワイトセメントを用いた。BEST MODE FOR CARRYING OUT THE INVENTION The hydraulic cement used in the present invention may be any of ordinary portland cement, early-strength cement, white cement, and alumina cement. In the examples described later, white cement was used.
【0011】本発明に用いる二極性結晶体を有する天然
ケイ酸塩鉱物とは、電気石、ザクロ石、その他天然の岩
石類を指す。この天然ケイ酸塩鉱物の電気特性による作
用は、既に説明したとおりであり、後述する実施例で
は、ザクロ石の微細粉粒を用いた。この天然ケイ酸塩鉱
物の粉砕とガラス屑の粉砕には回転叩解式粉砕機を使用
した。天然ケイ酸塩鉱物の微細粉粒の粒度は特に限定す
るものではないが、高い界面活性効果を得る上では50
μm以下(5〜50μm)とすることが好ましい。また
微細ガラス粉粒の粒度は150μm〜10mm程度であ
ればよい。着色顔料としては、無機顔料、有機着色剤何
れを用いても差し支えない。The natural silicate mineral having a bipolar crystal used in the present invention refers to tourmaline, garnet and other natural rocks. The effect of the electrical properties of the natural silicate mineral is as described above, and in the examples described later, fine garnet particles were used. A rotary beating pulverizer was used for pulverizing the natural silicate mineral and pulverizing the glass dust. Although the particle size of the fine particles of the natural silicate mineral is not particularly limited, it is 50 to obtain a high surface active effect.
It is preferably set to be not more than μm (5 to 50 μm). The particle size of the fine glass particles may be about 150 μm to 10 mm. As the coloring pigment, any of an inorganic pigment and an organic coloring agent may be used.
【0012】本発明に用いる混合水溶性合成樹脂エマル
ジョンとしては、アクリル・スチレン共重合樹脂エマル
ジョン(不揮発分50%以下省略)と酢酸ビニル・エチ
レン・塩化ビニル共重合樹脂エマルジョン(不揮発分5
0%以下省略)と組み合わせた混合水溶性合成樹脂エマ
ルジョン20〜50重量%濃度(不揮発分10〜25
%)を用いる。この混合水溶性合成樹脂エマルジョンに
おける各共重合樹脂エマルジョンの組み合わせ割合は、
アクリル・スチレン共重合樹脂エマルジョン10〜90
重量部と酢酸ビニル・エチレン・塩化ビニル共重合樹脂
エマルジョン90〜10重量部を組み合わせ混合し、そ
れぞれ100重量部となるように調整する。寸法安定性
の点でより好適な組み合わせ割合は、アクリル・スチレ
ン共重合樹脂エマルジョン40〜60重量部、酢酸ビニ
ル・エチレン・塩化ビニル共重合樹脂エマルジョン60
〜40重量部である。As the mixed water-soluble synthetic resin emulsion used in the present invention, an acrylic / styrene copolymer resin emulsion (nonvolatile content of 50% or less is omitted) and a vinyl acetate / ethylene / vinyl chloride copolymer resin emulsion (nonvolatile content of 5% or less).
0 to 50% by weight (non-volatile content: 10 to 25%)
%). The combination ratio of each copolymer resin emulsion in this mixed water-soluble synthetic resin emulsion is
Acrylic / styrene copolymer resin emulsion 10-90
Parts by weight and 90 to 10 parts by weight of a vinyl acetate / ethylene / vinyl chloride copolymer resin emulsion are combined and mixed, and each is adjusted to be 100 parts by weight. A more preferable combination ratio in terms of dimensional stability is 40 to 60 parts by weight of an acrylic / styrene copolymer resin emulsion, and 60 or less of a vinyl acetate / ethylene / vinyl chloride copolymer resin emulsion.
4040 parts by weight.
【0013】本発明の高強度ポリマーセメント固化材
は、これら各成分を混練、固化してなるが、各成分の配
合割合は、天然ケイ酸塩鉱物の微細粉粒100重量部、
水硬性セメント100重量部に対し、混合水溶性合成樹
脂エマルジョン20〜50重量部であることが望まし
い。また、微細ガラス粉粒入り高強度ポリマーセメント
固化材では、天然ケイ酸塩鉱物の微細粉粒10〜90重
量部、微細ガラス粉粒20〜180重量部、水硬性セメ
ント10〜90重量部に対し、混合水溶性合成樹脂エマ
ルジョン4〜36重量部であることが望ましい。The solidified high-strength polymer cement of the present invention is obtained by kneading and solidifying each of these components. The mixing ratio of each component is 100 parts by weight of fine particles of natural silicate mineral,
It is desirable that the mixed water-soluble synthetic resin emulsion is 20 to 50 parts by weight based on 100 parts by weight of the hydraulic cement. In addition, in the high-strength polymer cement solidified material containing fine glass particles, 10 to 90 parts by weight of fine particles of natural silicate mineral, 20 to 180 parts by weight of fine glass particles, 10 to 90 parts by weight of hydraulic cement It is preferable that the amount of the mixed water-soluble synthetic resin emulsion is 4 to 36 parts by weight.
【0014】本発明の製造方法は、天然ケイ酸塩鉱物の
微細粉粒及び水硬性セメントを(微細ガラス粉粒を用い
る場合にはこれも)予め混合し、この混合物と前記混合
水溶性合成樹脂エマルジョンとを混練機により均一分散
した(第1工程)後、板状型枠等に型詰めするなどして
所望の形状に成型(第2工程)し、脱気、養生、固化
(第3工程)し、必要に応じて切断して(第4工程)、
高強度ポリマーセメント固化材を得る。第2工程は、型
詰めに限定するものではなく、押出、圧延等の公知の成
形方法又はそれらの組み合わせ等でも良い。第3工程
は、常温・常圧下の養生固化でも良いし、蒸気養生等の
公知の方法でも良い。第4工程は、ダイヤモンドカッタ
ー、ウォータージェット等による公知の方法でよく、例
えば板状の固化材を長さ方向もしくは幅方向或いは両方
向に切断しても、ブロック状もしくは塊状の固化材を厚
さ方向に切断しても良い。即ち、予め所要の形状に成型
するようにしても良いし、切断によって所要の形状を得
るものでも良い。こうして高強度ポリマーセメント固化
材は、建築土木資材としては、大、小のタイル、レン
ガ、板材等に製造される。According to the production method of the present invention, the fine particles of the natural silicate mineral and the hydraulic cement are mixed in advance (when fine glass particles are used), the mixture is mixed with the mixed water-soluble synthetic resin. After uniformly dispersing the emulsion with a kneader (first step), the emulsion is molded into a desired shape by filling in a plate-shaped mold or the like (second step), and deaerated, cured, and solidified (third step). ) And cut if necessary (fourth step)
Obtain high-strength polymer cement solidified material. The second step is not limited to mold packing, and may be a known molding method such as extrusion or rolling, or a combination thereof. The third step may be curing and solidification at normal temperature and normal pressure, or may be a known method such as steam curing. The fourth step may be a known method using a diamond cutter, a water jet, or the like. For example, even if a plate-shaped solidified material is cut in the length direction or the width direction or both directions, the block-shaped or massive solidified material is cut in the thickness direction. May be cut. That is, a predetermined shape may be formed in advance, or a desired shape may be obtained by cutting. Thus, the high-strength polymer cement solidified material is manufactured into large and small tiles, bricks, plates, and the like as building civil engineering materials.
【0015】本発明の高強度ポリマーセメント固化材の
製造方法は、高い温度で焼き固めることがないためエネ
ルギー消費を抑制し、常温・常圧のもとでの製造を可能
とし、環境保全が第一であるという観点に立つ地球に優
しい製造方法である。以下、実施例によりさらに詳しく
説明する。The method for producing a solidified high-strength polymer cement according to the present invention suppresses energy consumption because it does not harden at a high temperature, enables production under normal temperature and normal pressure, and is environmentally friendly. It is an earth-friendly manufacturing method from the viewpoint of being one. Hereinafter, the present invention will be described in more detail with reference to examples.
【0016】[0016]
【実施例】〔実施例1〕水硬性セメントとしてホワイト
セメント100重量部、ザクロ石の微細粉粒100重量
部、混合水溶性樹脂エマルジョン40重量部(アクリル
・スチレン共重合樹脂エマルジョン不揮発分25%、2
0重量部、酢酸ビニル・エチレン・塩化ビニル樹脂エマ
ルジョン、不揮発分25%、20重量部)を混練し、金
属製型枠に詰め込んだ。固化脱型し、4週間後の固化体
の寸法計測と、強度試験を行なった。平均収縮率は0.
02%となり、曲げ強度205kgf/cm2 、圧縮強度94
3kgf/cm2 となる結果を得た。EXAMPLES Example 1 100 parts by weight of white cement, 100 parts by weight of garnet fine powder, and 40 parts by weight of a mixed water-soluble resin emulsion (25% non-volatile content of acrylic / styrene copolymer resin emulsion, 2
0 parts by weight, a vinyl acetate / ethylene / vinyl chloride resin emulsion, nonvolatile content 25%, 20 parts by weight) were kneaded and packed in a metal mold. After solidification and demolding, the dimensions of the solidified body after 4 weeks were measured and a strength test was performed. The average shrinkage is 0.
02%, bending strength 205 kgf / cm 2 , compressive strength 94
A result of 3 kgf / cm 2 was obtained.
【0017】〔比較例1,2〕比較として前記混合水溶
性合成樹脂エマルジョンの代りに、アクリル・スチレン
共重合樹脂エマルジョン・不揮発分25%、単独で実施
した場合と、また、酢酸ビニル・エチレン・塩化ビニル
樹脂エマルジョン、不揮発分25%、単独で実施した場
合、それぞれ固化脱型、4週後の固化体の寸法計測と強
度試験を併せて行なった。前者は、平均収縮率0.14
%、曲げ強度138kgf/cm2 、圧縮強度793kgf/c
m2 、後者は平均収縮率0.08%、曲げ強度122kgf
/cm2 、圧縮強度787kgf/cm2 であった。[Comparative Examples 1 and 2] As a comparison, an acrylic / styrene copolymer resin emulsion / nonvolatile content of 25% was used alone in place of the mixed water-soluble synthetic resin emulsion. When a vinyl chloride resin emulsion and a nonvolatile content of 25% were used alone, solidification and demolding were performed, and dimensional measurement and a strength test of the solidified body after 4 weeks were performed. The former is an average shrinkage of 0.14
%, Bending strength 138 kgf / cm 2 , compressive strength 793 kgf / c
m 2 , the latter having an average shrinkage of 0.08% and a bending strength of 122 kgf
/ cm 2 , and the compression strength was 787 kgf / cm 2 .
【0018】〔実施例2〕実施例1に準じ、水硬性セメ
ント80重量部、ザクロ石微細粉粒80重量部、微細ガ
ラス粉40重量部、混合水溶性合成樹脂エマルジョン3
2重量部(アクリル・スチレン共重合樹脂エマルジョ
ン、不揮発分25%、16重量部、酢酸ビニル・エチレ
ン・塩化ビニル樹脂エマルジョン、不揮発分25%、1
6重量部)を混練し、金属製型枠に詰め込んだ。固化脱
型し、4週間後の固化体の寸法計測と強度試験を行なっ
た。平均収縮率は0.01%となり、曲げ強度191kg
f/cm2、圧縮強度730kgf/cm2 であった。Example 2 According to Example 1, 80 parts by weight of hydraulic cement, 80 parts by weight of garnet fine particles, 40 parts by weight of fine glass powder, mixed water-soluble synthetic resin emulsion 3
2 parts by weight (acrylic / styrene copolymer resin emulsion, nonvolatile content 25%, 16 parts by weight, vinyl acetate / ethylene / vinyl chloride resin emulsion, nonvolatile content 25%, 1
6 parts by weight) and kneaded into a metal mold. After solidification and demolding, the size measurement and strength test of the solidified body after 4 weeks were performed. The average shrinkage is 0.01% and the bending strength is 191kg
f / cm 2 and compressive strength 730 kgf / cm 2 .
【0019】〔実施例3〕実施例1に準じ、混合水溶性
合成樹脂エマルジョンのアクリル・エチレン共重合樹脂
エマルジョン、不揮発分25%と酢酸ビニル・エチレン
・塩化ビニル共重合樹脂エマルジョン、不揮発分25%
との混合の組み合せ割合を変化させた場合の試験結果を
表1に示す。Example 3 According to Example 1, an acrylic / ethylene copolymer resin emulsion of a mixed water-soluble synthetic resin emulsion, a nonvolatile content of 25%, and a vinyl acetate / ethylene / vinyl chloride copolymer resin emulsion, a nonvolatile content of 25%
Table 1 shows the test results in the case where the combination ratio of the mixture was changed.
【表1】 [Table 1]
【0020】[0020]
【発明の効果】以上説明したように本発明の高強度ポリ
マーセメント固化材は、水硬性セメントに二極性結晶体
を有する天然ケイ酸塩鉱物の混合物と、特定の共重合樹
脂エマルジョン二種を組み合わせた混合水溶性合成樹脂
エマルジョンを混練、固化してなり、寸法安定性に優れ
たものであり、建設基礎資材としての信頼性が確保され
る。また本発明では、骨材として多量のガラス粉粒を添
加することができるので、近年問題化しているガラス屑
を資源として有効活用することができる。As described above, the high-strength polymer cement solidifying material of the present invention is obtained by combining a mixture of a natural silicate mineral having bipolar crystals with a hydraulic cement and two specific copolymer resin emulsions. The resulting mixed water-soluble synthetic resin emulsion is kneaded and solidified, and has excellent dimensional stability, and its reliability as a foundation material for construction is ensured. Further, in the present invention, a large amount of glass particles can be added as an aggregate, so that glass waste, which has recently become a problem, can be effectively used as a resource.
フロントページの続き (51)Int.Cl.6 識別記号 FI C04B 24:26) (56)参考文献 特開 平3−131667(JP,A) (58)調査した分野(Int.Cl.6,DB名) C04B 28/02 Continuation of the front page (51) Int.Cl. 6 identification code FI C04B 24:26) (56) References JP-A-3-131667 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB (Name) C04B 28/02
Claims (10)
天然ケイ酸塩鉱物の微細粉粒の混合物と、アクリル・ス
チレン共重合樹脂エマルジョンと酢酸ビニル・エチレン
・塩化ビニル共重合樹脂エマルジョンとを組み合せた混
合水溶性合成樹脂エマルジョンを、混練、固化してなる
ことを特徴とする高強度ポリマーセメント固化材。1. A combination of a hydraulic cement and a mixture of fine particles of a natural silicate mineral having bipolar crystals, an acrylic / styrene copolymer resin emulsion and a vinyl acetate / ethylene / vinyl chloride copolymer resin emulsion. A high-strength polymer cement solidified material obtained by kneading and solidifying a mixed water-soluble synthetic resin emulsion.
天然ケイ酸塩鉱物の微細粉粒と微細ガラス粉粒の混合物
と、アクリル・スチレン共重合樹脂エマルジョンと酢酸
ビニル・エチレン・塩化ビニル共重合樹脂エマルジョン
とを組み合せた混合水溶性合成樹脂エマルジョンを、混
練、固化してなることを特徴とする高強度ポリマーセメ
ント固化材。2. A mixture of a hydraulic cement and a mixture of fine particles of a natural silicate mineral having bipolar crystals and fine glass particles, an acrylic / styrene copolymer resin emulsion, and vinyl acetate / ethylene / vinyl chloride copolymer. A high-strength polymer cement solidified material obtained by kneading and solidifying a mixed water-soluble synthetic resin emulsion in which a resin emulsion is combined.
下を用いることを特徴とする請求項1又は2に記載の高
強度ポリマーセメント固化材。3. The high-strength polymer cement solidified material according to claim 1, wherein fine particles of a natural silicate mineral having a particle size of 50 μm or less are used.
天然ケイ酸塩鉱物の微細粉粒の混合物と、アクリル・ス
チレン共重合樹脂エマルジョンと酢酸ビニル・エチレン
・塩化ビニル共重合樹脂エマルジョンとを組み合せた混
合水溶性合成樹脂エマルジョンを、混練する第1工程、
成型する第2工程、養生固化する第3工程からなること
を特徴とする高強度ポリマーセメント固化材の製造方
法。4. A combination of a hydraulic cement and a mixture of fine particles of a natural silicate mineral having bipolar crystals, an acrylic / styrene copolymer resin emulsion and a vinyl acetate / ethylene / vinyl chloride copolymer resin emulsion. A first step of kneading the mixed water-soluble synthetic resin emulsion,
A method for producing a high-strength polymer cement solidified material, comprising a second step of molding and a third step of curing and solidifying.
天然ケイ酸塩鉱物の微細粉粒と微細ガラス粉粒の混合物
と、アクリル・スチレン共重合樹脂エマルジョンと酢酸
ビニル・エチレン・塩化ビニル共重合樹脂エマルジョン
とを組み合せた混合水溶性合成樹脂エマルジョンを、混
練する第1工程、成型する第2工程、養生固化する第3
工程からなることを特徴とする高強度ポリマーセメント
固化材の製造方法。5. A mixture of a hydraulic cement and a mixture of fine particles and fine glass particles of a natural silicate mineral having bipolar crystals, an acrylic / styrene copolymer resin emulsion, and vinyl acetate / ethylene / vinyl chloride copolymer. A first step of kneading, a second step of molding, and a third step of curing and solidifying a mixed water-soluble synthetic resin emulsion in which a resin emulsion is combined.
A method for producing a high-strength polymer cement solidified material, comprising the steps of:
徴とする請求項4又は5に記載の高強度ポリマーセメン
ト固化材の製造方法。6. The method according to claim 4, wherein a coloring pigment is added in the first step.
か1つもしくは2つの組み合わせによることを特徴とす
る請求項4乃至6の何れか一項に記載の高強度ポリマー
セメント固化材の製造方法。7. The high-strength polymer cement solidified material according to claim 4, wherein the second step is performed by one or a combination of extruding, molding, and rolling. Manufacturing method.
よって行うことを特徴とする請求項4乃至7の何れか一
項に記載の高強度ポリマーセメント固化材の製造方法。8. The method for producing a high-strength polymer cement solidified material according to claim 4, wherein the third step is performed by room temperature solidification or steam curing.
天然ケイ酸塩鉱物の微細粉粒の混合物と、アクリル・ス
チレン共重合樹脂エマルジョンと酢酸ビニル・エチレン
・塩化ビニル共重合樹脂エマルジョンとを組み合せた混
合水溶性合成樹脂エマルジョンを、混練する第1工程、
成型する第2工程、養生固化する第3工程、切断する第
4工程からなることを特徴とする高強度ポリマーセメン
ト固化材の製造方法。9. A combination of a hydraulic cement and a mixture of fine particles of a natural silicate mineral having bipolar crystals, an acrylic / styrene copolymer resin emulsion and a vinyl acetate / ethylene / vinyl chloride copolymer resin emulsion. A first step of kneading the mixed water-soluble synthetic resin emulsion,
A method for producing a high-strength polymer cement solidified material, comprising a second step of molding, a third step of curing and solidifying, and a fourth step of cutting.
る天然ケイ酸塩鉱物の微細粉粒と微細ガラス粉粒の混合
物と、アクリル・スチレン共重合樹脂エマルジョンと酢
酸ビニル・エチレン・塩化ビニル共重合樹脂エマルジョ
ンとを組み合せた混合水溶性合成樹脂エマルジョンを、
混練する第1工程、成型する第2工程、養生固化する第
3工程、切断する第4工程からなることを特徴とする高
強度ポリマーセメント固化材の製造方法。10. A mixture of a hydraulic cement and a mixture of fine particles and fine glass particles of a natural silicate mineral having bipolar crystals, an acrylic / styrene copolymer resin emulsion, and vinyl acetate / ethylene / vinyl chloride copolymer. A mixed water-soluble synthetic resin emulsion in combination with a resin emulsion,
A method for producing a high-strength polymer cement solidified material, comprising a first step of kneading, a second step of molding, a third step of curing and solidifying, and a fourth step of cutting.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17115798A JP2900320B1 (en) | 1998-06-18 | 1998-06-18 | High-strength polymer cement solidifying material and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17115798A JP2900320B1 (en) | 1998-06-18 | 1998-06-18 | High-strength polymer cement solidifying material and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2900320B1 true JP2900320B1 (en) | 1999-06-02 |
JP2000007408A JP2000007408A (en) | 2000-01-11 |
Family
ID=15918054
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17115798A Expired - Fee Related JP2900320B1 (en) | 1998-06-18 | 1998-06-18 | High-strength polymer cement solidifying material and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2900320B1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4926387B2 (en) * | 2004-07-29 | 2012-05-09 | 太平洋セメント株式会社 | Cured polymer cement mortar |
JP6717689B2 (en) * | 2016-06-30 | 2020-07-01 | 宇部興産建材株式会社 | Polymer cement composition and polymer cement cured product |
JP6677592B2 (en) * | 2016-06-30 | 2020-04-08 | 宇部興産建材株式会社 | Concrete structure surface coating method |
-
1998
- 1998-06-18 JP JP17115798A patent/JP2900320B1/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2000007408A (en) | 2000-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2655279B1 (en) | Method for producing aggregates from cement compositions | |
JP2858003B1 (en) | High-strength glass polymer cement solidifying material and method for producing the same | |
CN111574135B (en) | High-performance concrete prepared from recycled grout | |
JP2900320B1 (en) | High-strength polymer cement solidifying material and method for producing the same | |
JP3108431B2 (en) | Molding | |
JP3215516B2 (en) | Hydraulic composition and method for producing concrete pile using the composition | |
JPH01244808A (en) | Manufacture of cement molded matter having high strength and precise structure | |
JPH0231026B2 (en) | ||
JP2858004B1 (en) | High strength polymer cement composition | |
JP4364972B2 (en) | Method for producing immediate demolding concrete block | |
JPH05238787A (en) | High-strength cement composition | |
CN112390562A (en) | Composite concrete anti-mud agent and use method thereof | |
JP3242623B2 (en) | Wall structure | |
KR100624364B1 (en) | manufacturing method of readymix concrete | |
KR100466285B1 (en) | Water-permeable construction materials using waste fiber reinforced plastics | |
JP2002326851A (en) | Plastic artificial light-weight aggregate and method for producing the same | |
JPH0826853A (en) | Production of high-strength and lightweight concrete molding | |
JP2010083698A (en) | Method for producing hardened cement body, and hardened cement body | |
JP2000129610A (en) | Interlocking block for pavement | |
JP2004175650A (en) | Method of manufacturing concrete secondary product using silica rock powder as main material | |
JP3280636B2 (en) | Manufacturing method of molded product | |
JP3310944B2 (en) | Floor structure | |
JPH11322401A (en) | Solidification and formation of ash | |
JPH11199346A (en) | Floating block | |
JP2004131342A (en) | Extruded part and method of producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090319 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090319 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100319 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100319 Year of fee payment: 11 |
|
S802 | Written request for registration of partial abandonment of right |
Free format text: JAPANESE INTERMEDIATE CODE: R311802 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100319 Year of fee payment: 11 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110319 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110319 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120319 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130319 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140319 Year of fee payment: 15 |
|
LAPS | Cancellation because of no payment of annual fees |