JP2899696B1 - Molding method of particle-dispersed composite material - Google Patents

Molding method of particle-dispersed composite material

Info

Publication number
JP2899696B1
JP2899696B1 JP10098618A JP9861898A JP2899696B1 JP 2899696 B1 JP2899696 B1 JP 2899696B1 JP 10098618 A JP10098618 A JP 10098618A JP 9861898 A JP9861898 A JP 9861898A JP 2899696 B1 JP2899696 B1 JP 2899696B1
Authority
JP
Japan
Prior art keywords
die opening
effective thickness
extrusion
pressure
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10098618A
Other languages
Japanese (ja)
Other versions
JPH11291219A (en
Inventor
明子 守
明生 馬場
Original Assignee
工業技術院長
建設省建築研究所長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長, 建設省建築研究所長 filed Critical 工業技術院長
Priority to JP10098618A priority Critical patent/JP2899696B1/en
Application granted granted Critical
Publication of JP2899696B1 publication Critical patent/JP2899696B1/en
Publication of JPH11291219A publication Critical patent/JPH11291219A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • B29C47/92

Landscapes

  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

【要約】 【課題】 ダイ開口形状ごとに特定される有効厚さとい
う新規なパラメータを用いることにより、押出成形の際
の成形圧力をあらかじめ予測し、円滑な成形を行いうる
方法を提供する。 【解決手段】 粒子分散系複合材料を押出成形するに当
り、任意の材料組成及び任意の押出成形機において、次
の式に従って求めた押出成形圧力を用いた成形方法であ
る。 【数1】 ただし、P:押出成形圧力(MPa) te:ダイ開口部の有効厚さ(cm) Pmax:ダイ開口部を閉じたときの押出成形圧力(MP
a) te0:バレル末端部におけるダイ開口部の有効厚さ(c
m)
An object of the present invention is to provide a method capable of predicting a molding pressure at the time of extrusion molding in advance by using a new parameter of an effective thickness specified for each die opening shape and performing smooth molding. SOLUTION: In extrusion molding a particle-dispersed composite material, there is provided a molding method using an extrusion molding pressure obtained by an arbitrary material composition and an arbitrary extruder according to the following formula. (Equation 1) However, P: extrusion pressure (MPa) t e: effective thickness of the die opening (cm) P max: extrusion pressure (MP when closing the die opening
a) t e0 : the effective thickness of the die opening at the end of the barrel (c)
m)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、特にセメントやプ
ラスチックをバインダーとし、砂や木屑等を粒子とする
粒子分散系複合材料を成形する際の押出条件をあらかじ
め予測して、最適な条件下で成形する方法を提供するも
のである。
BACKGROUND OF THE INVENTION The present invention relates to a method for forming a particle-dispersed composite material, in which cement or plastic is used as a binder and particles such as sand and wood chips are used, in particular. It provides a method of molding.

【0002】[0002]

【従来の技術】建築物に用いられるセメント系押出成形
部材については、使用時における乾湿温冷ムーブメント
を小さくするために、乾燥収縮性の低い骨材を混入した
粒子分散系複合材料とすることが求められる。しかしな
がら、その部材の反応硬化前のフレッシュな状態におけ
る混合物を押出成形するときに生じる圧力、すなわち押
出成形圧力の発生機構が複雑で不明確なために、セメン
ト系粒子分散複合材料の押出成形を実施する場合には、
試行錯誤を繰り返しながら部材を製造しているのが実状
である。
2. Description of the Related Art A cement-based extruded member used in a building is preferably made of a particle-dispersed composite material mixed with an aggregate having a low drying shrinkage in order to reduce a dry, wet, hot and cold movement during use. Desired. However, since the pressure generated when extruding the mixture in a fresh state before the reaction hardening of the member, that is, the mechanism of generating the extrusion pressure is complicated and unclear, extrusion molding of the cement-based particle-dispersed composite material was performed. If you do
The reality is that members are manufactured through trial and error.

【0003】[0003]

【発明が解決しようとする課題】本発明は、ダイ開口形
状ごとに特定される有効厚さという新規なパラメータを
用いることにより、押出成形の際の成形圧力をあらかじ
め予測し、円滑な成形を行いうる方法を提供することを
目的としてなされたものである。
SUMMARY OF THE INVENTION According to the present invention, a molding pressure at the time of extrusion molding is predicted in advance by using a new parameter of an effective thickness specified for each die opening shape, and smooth molding is performed. The purpose of the present invention is to provide a new method.

【0004】[0004]

【課題を解決するための手段】本発明者らは、例えばセ
メント系粒子分散複合材料の押出成形に際して、ダイ開
口形状を変化させた場合、使用する材料の組成並びに使
用する押出成形機ごとに、ある一定の関係式が成立する
ことを見出し、この関係式に基づいて所望の押出成形圧
力を得る材料組成及び使用する押出成形機を設定するこ
とによって、円滑な押出成形が行われることを見出し、
この知見に基づいて本発明をなすに至った。
SUMMARY OF THE INVENTION The present inventors have found that, for example, in the extrusion molding of a cement-based particle-dispersed composite material, when the shape of the die opening is changed, the composition of the material used and the extruder used are Finding that a certain relational expression is established, finding that a smooth extrusion is performed by setting a material composition and an extruder to be used to obtain a desired extrusion molding pressure based on this relational expression,
The present invention has been accomplished based on this finding.

【0005】すなわち、本発明は、粒子分散系複合材料
を押出成形するに当り、任意の材料組成及び任意の押出
成形機において、次の式に従って求めた押出成形圧力を
用いることを特徴とする成形方法を提供するものであ
る。
That is, the present invention is characterized in that, when extruding a particle-dispersed composite material, an extrusion molding pressure determined according to the following equation is used in an arbitrary material composition and an arbitrary extruder. It provides a method.

【数2】 ただし、P:押出成形圧力(MPa) te:ダイ開口部の有効厚さ(cm) Pmax:ダイ開口部を閉じたときの押出成形圧力(MP
a) te0:バレル末端部におけるダイ開口部の有効厚さ(c
m)
(Equation 2) However, P: extrusion pressure (MPa) t e: effective thickness of the die opening (cm) P max: extrusion pressure (MP when closing the die opening
a) t e0 : the effective thickness of the die opening at the end of the barrel (c)
m)

【0006】ここで、ダイ開口部の有効厚さ(te)と
は、使用するダイ開口部の全周長に対するダイ開口部面
積の比を2倍したものとして定義され、これは同一比で
得られる幅無限大の板を想定したときの換算厚さに相当
する。このダイ開口部の有効厚さは、バレルすなわち原
料の通過路において、円形状又は円環形状断面部を通過
しているフレッシュな材料を、厚さのみで同定しうる無
限大幅の板状断面へと変形させる塑性変形の程度を示す
パラメータであり、例えばダイ開口部が幅W、高さtの
長方形状で構成されている場合は、te=W・t/(W
+t)として求めることができるし、また、この長方形
状断面に、幅W′、高さt′の空洞n個が設けられてい
る形状で構成されている場合は、te=[W・t−n・
W′・t′]/[W+t+n(W′+t′)]として求
めることができる。上記の数2において、Pmaxは、同
一の押出成形機を用いた場合に、試料の組成ごとに一定
の数値を示す。すなわち、材料の組成ごとに決定できる
材料定数である。te0は材料が圧密された状態となるバ
レル末端部すなわちテーパードバレルとの境界付近の断
面の有効厚さであって、押出成形機本体によって決まる
機械定数である。
[0006] Here, the effective thickness of the die opening and the (t e), is defined as the twice the ratio of the die opening area to the entire perimeter of the die opening to be used, which is the same ratio This corresponds to the converted thickness when assuming an infinite width plate to be obtained. The effective thickness of the die opening is such that in the barrel, that is, in the passage of the raw material, a fresh material passing through a circular or toroidal cross-section is converted into an infinitely large plate-shaped cross-section that can be identified only by the thickness. And a parameter indicating the degree of plastic deformation to be deformed. For example, when the die opening is formed in a rectangular shape having a width W and a height t, t e = W · t / (W
+ T), and when the rectangular cross section has a shape in which n cavities having a width W ′ and a height t ′ are provided, t e = [W · t −n ・
W ′ · t ′] / [W + t + n (W ′ + t ′)]. In the above formula 2, Pmax shows a constant value for each composition of the sample when the same extruder is used. That is, it is a material constant that can be determined for each material composition. t e0 is the effective thickness of the cross section near the end of the barrel at which the material is compacted, that is, the boundary with the tapered barrel, and is a mechanical constant determined by the extruder body.

【0007】[0007]

【発明の実施の形態】本発明方法によれば、以下の手順
に従って最適押出成形圧力を求めることができる。 (1) まず、ある原料組成の材料(材料I)を、ある
押出成形機によって有効厚さがte1のダイを用いて押し
出し、そのときの成形圧力P1を、横軸を有効厚さ
(te)、縦軸を成形圧力(P)とした図1にプロット
する。 (2) この図1の横軸上に押出成形機のバレル末端部
における有効厚さ(te0)を置く。 (3) 点(te1,P1)と点(te0,0)とを直線で
結ぶ。この直線の縦軸切片が材料Iにおけるダイ開口部
を閉じたときの押出成形圧力(Pmax1)となる。 (4) 次に、同一押出成形機を用いて、別の原料組成
の材料(材料II)を有効厚さがte1のダイを用いて押
し出し、そのときの成形圧力P2を求める。 (5) 点(te1,P2)と(te0,0)とを直線で結
ぶ。この直線の縦軸切片が材料IIにおけるダイ開口部
を閉じたときの押出成形圧力(Pmax2)となる。 (6) 別の有効厚さ(te′)のダイを用いたときの
押出成形圧力は、点(0,te′)を横軸にとり、その
点を通る縦軸に平行な直線と(3)及び(5)で求めた
材料I及び材料IIに対応する2つの直線との交点を求
める。その交点の縦軸座標値P1′,P2′が、それぞれ
材料I及び材料IIを用いたときの最適押出成形圧力に
なる。このようにして、ある押出成形機における最適押
出成形圧力が求められるが、押出成形機が変わった場合
には、その押出成形機に関するバレル末端部の開口形状
の有効厚さ(te0)によって求められる点(0,te
と、縦軸上の点(0,Pmax)(実際にはPmax1又はP
max2)とを直線で結ぶ。次に、上記(6)の手順を同様
に行うと最適押出成形圧力が求められる。
According to the method of the present invention, the optimum extrusion pressure can be determined according to the following procedure. (1) First, there raw material composition of the material (material I), extruded effective thickness by one extruder is a die with a t e1, the molding pressure P 1 at that time, the horizontal axis effective thickness ( t e), is plotted on the vertical axis in FIG. 1 which is a molding pressure (P). (2) The effective thickness ( te0 ) at the end of the barrel of the extruder is placed on the horizontal axis of FIG. (3) point (t e1, P 1) and the point (t e0, 0) and a line connecting a straight line. The vertical axis intercept of this straight line is the extrusion molding pressure (P max1 ) when the die opening of the material I is closed. (4) Next, using the same extruder, a different material composition material (material II) the effective thickness of extruded using a die t e1, obtaining a molding pressure P 2 at that time. (5) point (t e1, P 2) and (t e0, 0) and connected by a straight line. The vertical axis intercept of this straight line is the extrusion molding pressure (P max2 ) when closing the die opening in the material II. (6) Another effective thickness (t e ') extrusion pressure when using a die of the point (0, t e' a) horizontal axis, and the straight line parallel to the longitudinal axis passing through the point ( The intersection between the two straight lines corresponding to the materials I and II determined in 3) and (5) is determined. The vertical axis coordinate values P 1 ′ and P 2 ′ at the intersection are the optimum extrusion molding pressures when the material I and the material II are used, respectively. In this way, the optimum extrusion pressure in a certain extruder is obtained, but when the extruder is changed, it is obtained from the effective thickness ( te0 ) of the opening shape of the barrel end with respect to the extruder. Point (0, t e )
And a point (0, Pmax ) on the vertical axis (actually, Pmax1 or Pmax1 ).
max2 ) with a straight line. Next, when the above procedure (6) is performed in the same manner, an optimum extrusion molding pressure is obtained.

【0008】押出成形機及びダイ開口形状を一定とした
ときのテーパードバレル中での塑性加工されつつある状
態におけるフレッシュな材料に生じる垂直応力と剪断応
力との関係は、使用する成分及び含有割合という材料条
件が変化しても一義的な関係となることが明らかになっ
ているので、この知見と前記の押出成形圧力と有効厚さ
との関係から、結果として部材性能上要求される断面形
状の部材を製造するときの押出成形圧力を、材料の剪断
特性という材料条件と有効厚さという機械条件とから予
測することができるのである。すなわち、各種断面形状
の押出成形部材を製造するに際し、製造の可否や難易度
を決定する最も基本的な製造特性である押出成形圧力
は、以下の3つの条件の組合せ下で求めることができる
ことになる。
[0008] The relationship between the normal stress and the shear stress generated in a fresh material in the state of being subjected to plastic working in a tapered barrel when the shape of an extruder and a die opening is fixed is defined as a component used and a content ratio. It has been clarified that even if the material conditions change, the relationship is unambiguous, and from this finding and the relationship between the extrusion molding pressure and the effective thickness, as a result, a member having a sectional shape required for member performance is obtained. Can be predicted from the material conditions of shearing properties of the material and the mechanical conditions of effective thickness. In other words, when manufacturing extrusion molded members of various cross-sectional shapes, the extrusion molding pressure, which is the most basic manufacturing characteristic that determines the feasibility or difficulty of manufacturing, can be obtained under a combination of the following three conditions. Become.

【0009】(1) 原料組成という材料条件 (2) 使用する押出成形機のバレル末端部の形状 (3) ダイ開口形状 以上のことは、押出成形機及びダイ開口形状がどのよう
に変化しても成立するので、各種材料の成分や含有割合
からなる材料を用いて各種断面形状の部材を押出成形に
よって円滑かつ効率的に製造するための不可欠な基本的
条件となる。
(1) Material condition of raw material composition (2) Shape of barrel end of extruder used (3) Die opening shape The above is how the extruder and the die opening shape change. Therefore, this is an essential basic condition for smoothly and efficiently producing members having various cross-sectional shapes by extrusion molding using materials composed of components and content ratios of various materials.

【0010】[0010]

【発明の効果】本発明によると、有効厚さという新らし
いパラメータを導入することにより、粒子分散系複合材
料、例えばセメント系材料や廃プラスチックス混合材料
などの押出成形において、任意の押出成形機と任意のダ
イとを用いたときの最適押出成形圧力を簡単に設定する
ことができる。
According to the present invention, by introducing a new parameter called effective thickness, any extruder can be used for extruding a particle-dispersed composite material such as a cement-based material or a waste plastics mixed material. The optimal extrusion molding pressure when using a die and an arbitrary die can be easily set.

【0011】[0011]

【実施例】次に、実施例により、本発明をさらに詳細に
説明する。
Next, the present invention will be described in more detail by way of examples.

【0012】実施例1 普通ポルトランドセメント100重量部と豊浦標準砂1
00重量部とメチルセルロース(増粘剤)1重量部とク
リソタイル(繊維質添加材)5重量部とを混合してセメ
ント原料を調製した。次に、押出成形機として、本田
「DE−50」[モータ0.75kW、運搬容量12〜
25リットル/h、真空ポンプ能力60リットル/mi
n、バレル内径5.0cm(te0=2.5cm)]を用
い、水量比を0.13〜0.25の範囲で変えたものに
ついて押出成形を行った。この際に使用したダイの開口
形状は幅6.0cmで高さが1.2〜2.5cm、幅1
0.0cmで高さが1.2cmの長方形、並びに幅6.
0cmで高さが2.5cmの長方形のなかに正方形の空
洞部をもち、空洞率が33.85%及び45.0%であ
った。水量比0.15及び0.20のものについて、ダ
イ開口部の有効厚さte(cm)と押出成形圧力P(M
Pa)との関係を求めた結果を、グラフとして図2に示
す。この図において、実線は水量比0.15の場合で、
破線は水量比0.20の場合である。この図より、同一
の押出成形機を用い、各種開口形状のダイを用いた場合
に、材料の組成ごとの最適押出成形圧力はダイ開口部の
有効厚さに基づいて設定しうることが分る。
Example 1 100 parts by weight of ordinary Portland cement and Toyoura standard sand 1
A cement raw material was prepared by mixing 00 parts by weight, 1 part by weight of methylcellulose (thickener), and 5 parts by weight of chrysotile (fiber additive). Next, as an extrusion molding machine, Honda "DE-50" [motor 0.75 kW, transport capacity 12 ~
25 liter / h, vacuum pump capacity 60 liter / mi
n, using a barrel inner diameter 5.0cm (t e0 = 2.5cm)] , the water volume ratio was extruded about what has changed in the range of 0.13 to 0.25. The opening shape of the die used at this time was 6.0 cm in width, 1.2 to 2.5 cm in height, and 1 in width.
5. a rectangle of 0.0 cm and height of 1.2 cm, and a width of 6.
It had a square cavity in a rectangle of 0 cm and a height of 2.5 cm, and the porosity was 33.85% and 45.0%. For water ratios of 0.15 and 0.20, the effective thickness t e (cm) of the die opening and the extrusion pressure P (M
Pa) is shown in FIG. 2 as a graph. In this figure, the solid line indicates the case where the water amount ratio is 0.15.
The broken line shows the case where the water amount ratio is 0.20. From this figure, it can be seen that when using the same extruder and using dies of various opening shapes, the optimum extrusion pressure for each material composition can be set based on the effective thickness of the die opening. .

【0013】実施例2 スラグ100重量部に対し、微細シリカ1重量部及び特
殊混和剤1重量部を配合した高強度非焼成セラミックス
用成形材料を、押出成形機として本田「HDE−3」
[モータ2.2kW、運搬容量20〜50リットル/
h、真空ポンプ能力150リットル/min、バレル内
径7.5cm(te0=1.63cm)]を用い、水量比
0.12及び0.14で押出成形した。この場合の有効
厚さte(cm)に対する押出成形圧力P(MPa)を
求めた結果をグラフとして図3に示す。この図において
実線は水量比0.12の場合で、破線は水量比0.14
の場合である。この図より、同一の押出成形機を用い、
各種開口形状のダイを用いた場合に、材料の組成ごとの
最適押出成形圧力はダイ開口部の有効厚さに基づいて設
定しうることが分る。
EXAMPLE 2 A molding material for high-strength non-fired ceramics, in which 1 part by weight of fine silica and 1 part by weight of a special admixture were blended with 100 parts by weight of slag, was used as an extruder for Honda "HDE-3".
[Motor 2.2kW, transport capacity 20-50 liters /
h, using a vacuum pump capacity 150 l / min, a barrel inner diameter 7.5cm (t e0 = 1.63cm)] , was extruded at a water volume ratio 0.12 and 0.14. FIG. 3 is a graph showing the result of obtaining the extrusion molding pressure P (MPa) with respect to the effective thickness t e (cm) in this case. In this figure, the solid line shows the case of the water ratio of 0.12, and the broken line shows the case of the water ratio of 0.14.
Is the case. From this figure, using the same extruder,
It can be seen that when dies having various opening shapes are used, the optimum extrusion pressure for each material composition can be set based on the effective thickness of the die opening.

【0014】実施例3 フライアッシュと生石灰とを水熱反応させたゲル化物に
同量の豊浦標準砂を混合することによりセメントモルタ
ル材料を調製した。まず、押出成形機として、宮崎「M
V−FM」[モータ5.5kw、運搬容量120リット
ル/h、真空ポンプ能力50リットル/min、バレル
径10.0cm(te0=5.0cm)]を用い、水量比
を0.30と0.35としたものについて押出成形を行
った。このときのダイの有効厚さteと押出成形圧力P
との関係を求め図4に示す。この図において、実線は水
量比0.35で、破線は水量比0.30の場合である。
この図より、同一の押出機を用い、各種開口形状のダイ
を用いた場合に、材料の組成ごとの最適押出成形圧力が
ダイ開口部の有効厚さに基づいて設定しうることが分
る。次に、押出成形機として実施例1で用いたものと同
じ成形機(te0=2.5cm)を用い、水量比を0.3
5と0.30にしたものを用いて押出成形を行った。こ
のときのダイ開口部の有効厚さ(te)と押出成形圧力
(P)との関係は、それぞれ図4の実線と破線とで示さ
れるようになった。この図から分かるように、点(0,
max)、図4においては(0,Pmax1)又は(0,P
max2)と、用いる押出成形機の有効厚さ(te0)の横軸
上の点、すなわち(te0,0)、図4においては(t
e01,0)又は(te02,0)とを結んだ線上に各種開口
形状のダイを用いたときの最適押出成形圧力があるの
で、ある材料を用いて他種の押出成形機(te0′)で押
出成形するときの最適成形圧力は、その材料に関するダ
イ開口部を閉じたときの押出成形圧力(P′max)さえ
求めておけば、点(0,P′max)と(te0′,0)と
を結んだ直線と、用いるダイ開口部の有効厚さ(te
を横軸に置いた縦軸に平行な直線との交点として求める
ことができる。
Example 3 A cement mortar material was prepared by mixing an equal amount of Toyoura standard sand with a gel obtained by hydrothermally reacting fly ash and quicklime. First, Miyazaki "M
V-FM "with [motor 5.5kw, carrying capacity 120 l / h, the vacuum pump capacity 50 l / min, a barrel diameter 10.0cm (t e0 = 5.0cm)] , the water volume ratio 0.30 and 0 Extrusion molding was performed for the material having a diameter of 0.35. At this time, the effective thickness t e of the die and the extrusion pressure P
Is shown in FIG. In this figure, the solid line shows a case where the water ratio is 0.35, and the broken line shows a case where the water ratio is 0.30.
From this figure, it can be seen that when the same extruder is used and dies having various opening shapes are used, the optimum extrusion molding pressure for each material composition can be set based on the effective thickness of the die opening. Next, the same molding machine ( te0 = 2.5 cm) as that used in Example 1 was used as the extrusion molding machine, and the water ratio was set to 0.3.
Extrusion molding was carried out using the ratios of 5 and 0.30. Relationship of the effective thickness of the die opening and the (t e) and extrusion pressure (P) at this time, now indicated by the solid line in FIG. 4, respectively and the broken line. As can be seen from this figure, the point (0,
P max ), (0, P max1 ) or (0, P max
and max2), a point on the horizontal axis of the effective thickness of the extruder (t e0) used, i.e. (t e0, 0), in FIG. 4 (t
Since there is an optimum extrusion molding pressure when using dies having various opening shapes on a line connecting ( e01 , 0) or ( te02 , 0), another type of extruder ( te0 ') is used by using a certain material. )), The point (0, P ′ max ) and ( te 0 ′) can be obtained as long as the extrusion pressure (P ′ max ) when the die opening of the material is closed is obtained. , 0) the effective thickness of and the straight line connecting the used die opening (t e)
Can be obtained as an intersection with a straight line parallel to the vertical axis on the horizontal axis.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明方法における関係式を説明するための
グラフ。
FIG. 1 is a graph for explaining a relational expression in the method of the present invention.

【図2】 実施例1におけるダイ開口部の有効厚さと押
出成形圧力との関係を示すグラフ。
FIG. 2 is a graph showing a relationship between an effective thickness of a die opening and an extrusion molding pressure in Example 1.

【図3】 実施例2におけるダイ開口部の有効厚さと押
出成形圧力との関係を示すグラフ。
FIG. 3 is a graph showing a relationship between an effective thickness of a die opening and an extrusion pressure in Example 2.

【図4】 実施例3におけるダイ開口部の有効厚さと押
出成形圧力との関係を示すグラフ。
FIG. 4 is a graph showing the relationship between the effective thickness of the die opening and the extrusion pressure in Example 3.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C04B 24:38 20:00) (58)調査した分野(Int.Cl.6,DB名) B28B 3/20 B28B 3/26 ──────────────────────────────────────────────────の Continuation of the front page (51) Int.Cl. 6 identification code FI C04B 24:38 20:00) (58) Field surveyed (Int.Cl. 6 , DB name) B28B 3/20 B28B 3/26

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 粒子分散系複合材料を押出成形するに当
り、任意の材料組成及び任意の押出成形機において、次
の式に従って求めた押出成形圧力を用いることを特徴と
する成形方法。 【数1】 ただし、P:押出成形圧力(MPa) te:ダイ開口部の有効厚さ(cm) Pmax:ダイ開口部を閉じたときの押出成形圧力(MP
a) te0:バレル末端部におけるダイ開口部の有効厚さ(c
m)
1. A molding method wherein an extrusion molding pressure determined according to the following formula is used in an arbitrary material composition and an arbitrary extruder when extruding a particle-dispersed composite material. (Equation 1) However, P: extrusion pressure (MPa) t e: effective thickness of the die opening (cm) P max: extrusion pressure (MP when closing the die opening
a) t e0 : the effective thickness of the die opening at the end of the barrel (c)
m)
JP10098618A 1998-04-10 1998-04-10 Molding method of particle-dispersed composite material Expired - Lifetime JP2899696B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10098618A JP2899696B1 (en) 1998-04-10 1998-04-10 Molding method of particle-dispersed composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10098618A JP2899696B1 (en) 1998-04-10 1998-04-10 Molding method of particle-dispersed composite material

Publications (2)

Publication Number Publication Date
JP2899696B1 true JP2899696B1 (en) 1999-06-02
JPH11291219A JPH11291219A (en) 1999-10-26

Family

ID=14224558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10098618A Expired - Lifetime JP2899696B1 (en) 1998-04-10 1998-04-10 Molding method of particle-dispersed composite material

Country Status (1)

Country Link
JP (1) JP2899696B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008522873A (en) * 2004-12-09 2008-07-03 コーニング インコーポレイテッド Manufacture of honeycomb extrusion dies

Also Published As

Publication number Publication date
JPH11291219A (en) 1999-10-26

Similar Documents

Publication Publication Date Title
US5658624A (en) Articles formed by extruding hydraulically settable compositions
JP3040144B2 (en) Fiber reinforced lightweight cement composition
JP2899696B1 (en) Molding method of particle-dispersed composite material
JP4658362B2 (en) Manufacturing method for lightweight mortar
JPS62260745A (en) Manufacture of hydraulic material, concrete material and concrete
JP2755505B2 (en) Extrusion molding method for cement products
JPS60264375A (en) Cement composition
JPH01176258A (en) Low-pressure extrusion of hollow board containing reinforcing fiber
JPH02229752A (en) Cement composition
JP2702900B2 (en) Extrusion building material cement composition
JP2748796B2 (en) Lightweight cement building materials
JP4097495B2 (en) Cement-based lightweight extruded body
JPH1171157A (en) Hydraulic composition
JP2003211427A (en) Extrusion-molded short fiber composite cement material and its production method
JPH03257083A (en) Cement mortar composition for extrusion molding
JP2004131342A (en) Extruded part and method of producing the same
JP2709757B2 (en) Building board manufacturing method
KR960012713B1 (en) Method for preparing carbon fiber reinforced cement composites
JPH09136315A (en) Fabrication of inorganic plate
JP3279047B2 (en) Cement composition and method for producing cement board using the cement composition
JP2001089261A (en) High strength lightweight hydraulic mix and production process of lightweight concrete using the same
JPH0781990A (en) Cement composition and cement hardened body
JPH05279099A (en) Production of fiber reinforced cement forming
JPH06278122A (en) Production of hydraulic inorganic molded object
JPH08290518A (en) Preparation of molded item in which soil, cement and linen are main raw material

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term