JP2899047B2 - Eccentric bearings for internal planetary gear units - Google Patents

Eccentric bearings for internal planetary gear units

Info

Publication number
JP2899047B2
JP2899047B2 JP6189790A JP6189790A JP2899047B2 JP 2899047 B2 JP2899047 B2 JP 2899047B2 JP 6189790 A JP6189790 A JP 6189790A JP 6189790 A JP6189790 A JP 6189790A JP 2899047 B2 JP2899047 B2 JP 2899047B2
Authority
JP
Japan
Prior art keywords
rms
test
surface roughness
planetary gear
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6189790A
Other languages
Japanese (ja)
Other versions
JPH03223548A (en
Inventor
勝司 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ENU TEI ENU KK
Original Assignee
ENU TEI ENU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ENU TEI ENU KK filed Critical ENU TEI ENU KK
Priority to JP6189790A priority Critical patent/JP2899047B2/en
Publication of JPH03223548A publication Critical patent/JPH03223548A/en
Application granted granted Critical
Publication of JP2899047B2 publication Critical patent/JP2899047B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Rolling Contact Bearings (AREA)
  • Retarders (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、内接式遊星歯車減速機に組込使用する偏
心軸受に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an eccentric bearing which is used in an internal planetary gear reducer.

〔従来の技術〕[Conventional technology]

例えば、バックラッシュが小さく位置決め精度の高い
減速機として内接式遊星歯車減速機があり、各種産業用
ロボットに使用されている。
For example, there is an inscribed planetary gear reducer having a small backlash and high positioning accuracy, and is used for various industrial robots.

内接式遊星歯車減速機は、第15図に示すように、モー
タ1で直接駆動される入力軸2と出力軸3を同軸心状に
配置し、入力軸2に偏心軸受4を介して回動自在に取付
けた曲線板5に複数の透孔6を設け、出力軸3の内端に
設けた出力フランジ7に各透孔6へ遊嵌する内ピン8を
設け、曲線板5と出力フランジ7を回転方向に結合する
と共に、曲線板5の外周に一定間隔で形成した曲線凹部
の複数をケーシング9の内周に一定の間隔で配置した外
ピン10に係合させた構造になっている。
As shown in FIG. 15, the inscribed planetary gear reducer has an input shaft 2 and an output shaft 3 that are directly driven by a motor 1 arranged coaxially, and is rotated around the input shaft 2 via an eccentric bearing 4. A plurality of through holes 6 are provided on a curved plate 5 movably mounted, and an inner pin 8 is provided on an output flange 7 provided at the inner end of the output shaft 3 to loosely fit into each through hole 6. 7 are connected in the rotation direction, and a plurality of curved concave portions formed at regular intervals on the outer periphery of the curved plate 5 are engaged with outer pins 10 arranged at regular intervals on the inner periphery of the casing 9. .

この減速機は、入力軸2の回転により偏心軸受4を介
して曲線板5に偏心運動を与え、外ピン10の曲線凹部の
数の差により、曲線板5に自転を生じさせ、内ピン8を
介して出力軸3にこの減速回転を取り出すようになって
いる。
This reduction gear gives eccentric motion to the curved plate 5 via the eccentric bearing 4 by the rotation of the input shaft 2, and causes the curved plate 5 to rotate by the difference in the number of curved concave portions of the outer pin 10, thereby causing the inner pin 8 to rotate. The decelerated rotation is taken out to the output shaft 3 via the.

ところで、上記のような減速機においては、偏心して
いる偏心軸受4に衝撃荷重が作用するため、大きな負荷
容量が要求され、従って上記減速機の寿命は偏心軸受で
大きく左右される。
By the way, in the above-described speed reducer, since an impact load acts on the eccentric eccentric bearing 4, a large load capacity is required. Therefore, the life of the speed reducer largely depends on the eccentric bearing.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかし、内接式遊星歯車減速機はその構造上、高温希
薄な潤滑状態で偏心軸受が使用されるため、この軸受の
長寿命対策が要望されている。
However, due to the structure of the internal planetary gear reducer, the eccentric bearing is used in a lubricated state at a high temperature and in a dilute state.

従来、偏心軸受の長寿命対策として、転動体を浸炭窒
化処理することが行なわれているが、長寿命化が得られ
る反面、これらの処理に特殊熱処理炉が必要であり、非
常に処理コストが高くつくという問題がある。
Conventionally, carbonitriding of rolling elements has been carried out as a measure to prolong the life of eccentric bearings.However, long life can be obtained, but special heat treatment furnaces are required for these treatments, which greatly reduces the processing cost. There is a problem of being expensive.

そこでこの発明の課題は、偏心軸受の転動体における
転動面の面粗さの評価を軸方向だけでなく転がり方向に
も着目し、軸方向と円周方向の表面粗さを一定範囲に抑
えることで油膜形成が有利に行なえ、過酷な潤滑条件に
おいても潤滑油保持能力が優れ、軸受の長寿命化を図る
ことができると共に、転動体の処理コストも低減できる
内接式遊星歯車減速機用偏心軸受を提供することにあ
る。
Therefore, an object of the present invention is to evaluate the surface roughness of the rolling surface of the rolling element of the eccentric bearing not only in the axial direction but also in the rolling direction, and to suppress the surface roughness in the axial direction and the circumferential direction to a certain range. For an internal planetary gear reducer that can form an oil film advantageously, has excellent lubricating oil holding capacity even under severe lubrication conditions, can prolong the life of the bearing, and can reduce the processing cost of rolling elements An eccentric bearing is provided.

〔課題を解決するための手段〕[Means for solving the problem]

上記のような課題を解決するため、この発明は、偏心
軸受の転動体の表面に微小な凹形状のくぼみを無数にラ
ンダムに形成し、転動体表面の面粗さを、軸方向と円周
方向のそれぞれを求めてパラメータRMSで表示したと
き、軸方向面粗さRMS(L)と円周方向面粗さRMS(C)
との比RMS(L)/RMS(C)が1.0以下となり、かつ表面
粗さのパラメータSK値が−1.6以下で、該RMS(L)、RM
S(C)の値は0.10μm以上である構成を採用したもの
である。
In order to solve the above-described problems, the present invention forms countless small concave recesses at random on the surface of a rolling element of an eccentric bearing to reduce the surface roughness of the rolling element surface in the axial direction and the circumferential direction. When each of the directions is obtained and displayed as a parameter RMS, the axial surface roughness RMS (L) and the circumferential surface roughness RMS (C)
RMS (L) / RMS (C) is 1.0 or less, and the parameter SK value of surface roughness is -1.6 or less.
The configuration in which the value of S (C) is 0.10 μm or more is adopted.

〔作用〕[Action]

転動体の表面をランダムな微小粗面に形成し、この微
小粗面の仕上げ面粗さパラメータRMSを軸方向(L)、
円周方向(C)で求め、その比RMS(L)/RMS(C)を
1.0以下とし、合わせてパラメータSK値を軸方向、円周
方向とも−1.6以下で、該RMS(L)、RMS(C)の値は
0.10μm以上としたので、転動面の油膜形成率が向上
し、相手面の面粗さのいかんにかかわらず相手面にピー
リング損傷や摩耗の発生がなく、温度上昇を防止して焼
付きを防ぎ、長寿命を得ることができる。
The surface of the rolling element is formed into a random micro-rough surface, and the finished surface roughness parameter RMS of the micro-rough surface is set in the axial direction (L),
In the circumferential direction (C), calculate the ratio RMS (L) / RMS (C)
The value of RMS (L) and RMS (C) is 1.0 or less, and the parameter SK value is -1.6 or less in both the axial and circumferential directions.
0.10μm or more, improves the oil film formation rate on the rolling contact surface, prevents peeling damage and wear on the mating surface regardless of the surface roughness of the mating surface, prevents temperature rise and prevents seizure Prevention and long life can be obtained.

〔実施例〕〔Example〕

以下、この発明の実施例を添付図面に基づいて説明す
る。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

この発明の偏心軸受4は第1図に示すように、内輪21
と保持器22で一定間隔に保持した多数の円筒ころ転動対
23及びこの転動体23で回動自在に支持した外輪とで構成
され、偏心軸受4は第15図で示した内接式遊星歯車減速
機の内部で入力軸2に取付けられて使用される。
The eccentric bearing 4 of the present invention has an inner race 21 as shown in FIG.
And a number of cylindrical roller pairs held at regular intervals by the cage 22
An eccentric bearing 4 is used by being attached to the input shaft 2 inside the inscribed planetary gear reducer shown in FIG.

従って、外輪は曲線板5であり、この曲線板5の転動
体23によって支持される内径面は研削加工によって表面
粗さが3〜5sの仕上面になっている。
Accordingly, the outer race is the curved plate 5, and the inner diameter surface of the curved plate 5 supported by the rolling elements 23 has a finished surface with a surface roughness of 3 to 5 s by grinding.

前記転動体23は、表面がランダムな方向の微小粗面23
aに形成され、この微小粗面23aは、面粗さを転動体23の
軸方向と円周方向のそれぞれを求めてパラメータRMSで
表示したとき、軸方向面粗さRMS(L)と円周方向面粗
さRMS(C)の比RMS(L)/RMS(C)を1.0以下、例え
ば、0.7〜1.0にすると共に、表面粗さのパラメータSK値
が軸方向、円周方向とも−1.6以下になっている。
The rolling element 23 has a fine rough surface 23 whose surface is in a random direction.
This micro-rough surface 23a is formed on the surface roughness RMS (L) and the circumferential surface roughness RMS (L) when the surface roughness is obtained in each of the axial direction and the circumferential direction of the rolling element 23 and displayed by a parameter RMS. The ratio RMS (L) / RMS (C) of the direction surface roughness RMS (C) is set to 1.0 or less, for example, 0.7 to 1.0, and the parameter SK value of the surface roughness is -1.6 or less in both the axial direction and the circumferential direction. It has become.

上記のような転動面の粗面条件を得るための表面加工
処理は、特殊なバレル研磨によって、所望する仕上面を
得ることができる。
In the surface processing for obtaining the rough surface condition of the rolling surface as described above, a desired finished surface can be obtained by special barrel polishing.

第2図Cは微小粗面23aの断面粗さ形状を示してお
り、同図の如く、平面に凹部を形成し、平面から凸部が
生じないような特殊な表面になっている。
FIG. 2C shows a sectional roughness shape of the micro-rough surface 23a. As shown in FIG. 2, a special surface is formed such that a concave portion is formed on a flat surface and a convex portion does not occur from the flat surface.

前記パラメータSK値とは、表面粗さの分布曲線の歪度
(SKEWNESS)、即ち、表面粗さの中心線に対する凹凸の
分布の非対称性を定量化したもので、SK値が負の場合
は、粗さの中心線に対して凹部(谷)が多く存在し、正
の場合には、粗さの中心線に対して凸部(突起)が多く
なる。表面粗さのパラメータSK値は、以下の定義式で表
される。
The parameter SK value is the skewness of the surface roughness distribution curve (SKEWNESS), that is, the quantification of the asymmetry of the unevenness distribution with respect to the center line of the surface roughness. If the SK value is negative, There are many concave portions (valleys) with respect to the center line of the roughness, and in the case of a positive value, there are many convex portions (projections) with respect to the center line of the roughness. The parameter SK value of the surface roughness is represented by the following definition formula.

SK=∫(X−X03P(X)dX/σ X:粗さの高さ X0 :粗さの平均高さ P(X):粗さの振幅の確率密度関数 σ:自乗平均粗さ SK値を求める定義式中の粗さの平均高さとは、個々の
場合の中心線である基準からとった絶対値を意味する。
SK = ∫ (X−X 0 ) 3 P (X) dX / σ 3 X: Roughness height X 0 : Average height of roughness P (X): Probability density function of roughness amplitude σ: Square Average roughness The average height of the roughness in the definition formula for obtaining the SK value means an absolute value taken from a reference which is a center line in each case.

パラメータSK値を周方向、軸方向とも−1.6以下とす
る設定にすることにより、微小な凹部が中心線に対して
多く存在しており、RMS(L)/RMS(C)が1.0以下とい
う表面粗さの方向性の数値限定とによって、表面凹部の
形状、分布ともが油膜形成に有利な範囲となる。
By setting the parameter SK value to be less than or equal to -1.6 in both the circumferential direction and the axial direction, there are many minute concave portions with respect to the center line, and the surface having RMS (L) / RMS (C) of less than or equal to 1.0. By limiting the numerical value of the directionality of the roughness, the shape and distribution of the surface concave portions are in a range advantageous for forming an oil film.

上記パラメータSK値は、凹凸分布の非対称性を知る目
安の早慶量であるので、一般的な研磨仕上げ面における
粗さ曲線を例にあげると、凹部と凸部が対称な分布では
SK値は0に近くなり、表面の凹凸の凹凸分布が凹側に片
寄った非対称な分布になる場合では負の値、逆の場合は
正の値をとることになる。
Since the above parameter SK value is a guideline for knowing the asymmetry of the unevenness distribution, taking a roughness curve on a general polished surface as an example, in a distribution where the concave and convex portions are symmetrical,
The SK value is close to 0, and takes a negative value when the unevenness distribution of the surface unevenness is an asymmetric distribution that is biased toward the concave side, and takes a positive value when the unevenness distribution is opposite.

前記した転動体23の外表面は相手面の仕上面粗さの悪
い条件においても、油膜の形成能力に優れ、十分な油膜
厚さを確保し、転がり接触部の金属接触を極力抑える。
The outer surface of the rolling element 23 is excellent in the ability to form an oil film, secures a sufficient oil film thickness, and suppresses metal contact of the rolling contact portion as much as possible, even under conditions where the finished surface roughness of the mating surface is poor.

転がり接触部の金属接触率を下げることによって、転
動体の外径の表面損傷、ピーリングやピーリングからの
異常摩擦、剥離を防止し耐久性の向上がはかられる。
By reducing the metal contact ratio of the rolling contact portion, surface damage of the outer diameter of the rolling element, peeling, abnormal friction from peeling and peeling are prevented, and durability is improved.

次に、転動体表面に、仕上げ面の異なる表面処理を施
した複数種類のニードル軸受を制作し、相手軸の面粗さ
を変えて寿命試験を行なった結果について説明する。
Next, a description will be given of the results of producing a plurality of types of needle bearings in which the surface of a rolling element is subjected to a surface treatment having a different finished surface, and performing a life test while changing the surface roughness of a mating shaft.

寿命試験に用いたニードル軸受は、第3図に示すよう
に、外径Dr=38mm、内径dr=28mm、転動体23の直径D=
5mm、長さL=13mmで、14本の転動体を用いた保持器22
付の軸受である。
As shown in FIG. 3, the needle bearing used in the life test has an outer diameter Dr = 38 mm, an inner diameter dr = 28 mm, and a diameter D of the rolling element 23 =
5 mm, length L = 13 mm, cage 14 using 14 rolling elements
It is a bearing with.

試験軸受は転動体の表面粗さ仕上げの異なる5種類を
製作した。各試験軸受の表面仕上げ面粗さパラメータRM
Sでの特性値を表1に、各試験軸受の加工種類を表2に
示すと共に、各試験軸受の転動体における仕上げ面状況
を第2図A、B、Cに比較して示した。
As the test bearings, five types of rolling elements having different surface roughness finishes were manufactured. Surface roughness parameter RM for each test bearing
The characteristic values in S are shown in Table 1, the machining types of each test bearing are shown in Table 2, and the finished surface condition of the rolling element of each test bearing is shown in comparison with FIGS. 2A, 2B, and 2C.

また、使用した試験装置は、第4図に概略図で示した
ようなラジアル荷重試験機11を使用し、回転軸12の両側
に試験軸受Xを取付け、回転と荷重を与えて位置の試験
を行なうものである。
The test apparatus used was a radial load tester 11 as schematically shown in FIG. 4 and test bearings X were mounted on both sides of a rotating shaft 12 to apply rotation and load to perform a position test. It is what you do.

試験に用いたインナーレース(相手軸)の仕上は研削
仕上のRmax0.4〜4μmである。アウターレース(外
輪)はRmax1.6μmで何れの場合も共通である。
The finish of the inner race (partner shaft) used in the test is Rmax 0.4 to 4 μm in the grinding finish. The outer race (outer ring) is Rmax 1.6 μm and is common to both cases.

また、試験条件は以下の通りである。 The test conditions are as follows.

軸受ラジアル荷重 1465kg f 回転数 3050rpm 潤滑剤 タービン油(試験条件で10cst) 上記の条件で各試験軸受に対して行なった転動体寿命
試験の各相手面毎の結果を第5図乃至第9図に示す。
Bearing radial load 1465kg f Number of revolutions 3050rpm Lubricant Turbine oil (10cst under test conditions) The results of each rolling element life test performed on each test bearing under the above conditions are shown in Figs. 5 to 9 Show.

第5図乃至第7図は、この発明の試験軸受Cを主体に
行なった試験結果を、第8図と第9図はこの発明の試験
軸受DとEの試験結果を示している。
FIGS. 5 to 7 show test results obtained mainly with the test bearing C of the present invention, and FIGS. 8 and 9 show test results of the test bearings D and E of the present invention.

上記のような試験結果から明らかなように、この発明
の試験軸受C、D、Eは、相手軸面粗さののいかんにか
かわらず全て長寿命を示した。
As is clear from the above test results, all of the test bearings C, D, and E of the present invention exhibited a long service life regardless of the mating shaft surface roughness.

また、上仕上面と粗面の転動のとき上仕上面側にピー
リング損傷が見られることが多いが、この発明の試験軸
受C、D、Eには認められなかった。
In addition, peeling damage was often observed on the finished surface side when rolling the finished surface and the rough surface, but was not observed in the test bearings C, D, and E of the present invention.

第10図と第11図は、各試験軸受A乃至EのSK値、RMS
のL/Cと寿命(L10)を求めた結果を示している。
FIG. 10 and FIG. 11 show the SK values, RMS of the test bearings A to E, respectively.
2 shows the results obtained by determining the L / C and the life (L 10 ).

第10図の如く、SK値−1.6以下の試験軸受C、D、E
では長寿命を示している。
As shown in Fig. 10, test bearings C, D, E with SK value -1.6 or less
Shows a long life.

また、軸方向粗さRMS(L/C)は、第11図の如くバレル
研磨特殊加工の1.0でも長寿命であることが判明した。
It was also found that the axial roughness RMS (L / C) was long even with a special barrel polishing of 1.0 as shown in FIG.

なお、RMS(L/C)値のみで長寿命軸受の転動体を評価
するには不充分であることも判明した。
It was also found that the RMS (L / C) value alone was not sufficient to evaluate the rolling elements of a long-life bearing.

次に、上記試験条件下において、試験軸受A乃至Cの
相手軸との組合せによるGrubinの式に基づく油膜パラメ
ータAの計算値を表3に示す。
Next, Table 3 shows the calculated values of the oil film parameters A based on Grubin's equation based on the combination of the test bearings A to C with the mating shaft under the above test conditions.

計算の結果、油膜パラメータAは相手軸面粗さにより
大きく左右され、2μmでは0.91〜1.30の範囲である。
As a result of the calculation, the oil film parameter A largely depends on the roughness of the mating shaft surface, and is in the range of 0.91 to 1.30 at 2 μm.

一般に油膜パラメータと油膜形成率には第12図に示す
関係があり、寿命の観点からも油膜パラメータは大きい
方が良いと言われているが、寿命試験結果からも明らか
な通り、一概にAだけでは説明できない。
Generally, there is a relationship between the oil film parameter and the oil film formation rate as shown in FIG. 12, and it is said that a larger oil film parameter is better from the viewpoint of life. However, as is clear from the life test results, only A is generally used. Can not explain.

転動体仕上面の油膜形成状況の確認及び耐ピーリング
性について、2円筒の試験機を用いて、自由転がり条件
下で、本発明試験軸受C及び試験軸受Aと同一の表面状
態の試験片を用いて加速ピーリング試験を行なった。油
膜形成状況の確認は、直流通電方式により行なった。
Regarding the confirmation of the oil film formation state on the finished surface of the rolling element and the peeling resistance, a test piece having the same surface condition as the test bearings C and A of the present invention was used under free rolling conditions using a two-cylinder testing machine. Accelerated peeling test. The state of formation of the oil film was confirmed by a direct current method.

試験条件 最大接触面圧 227kg f/mm2 周速 4.2m/sec(2000rpm) 潤滑剤 タービン油(試験条件で10cst) 繰り返し負荷回数 4.8×105(4hr) この試験による油膜の形成率は、第13図と第14図に示
す通りであり、本発明試験軸受Cの仕上面の油膜形成率
は、試験軸受Aに比較して運転開始時で20%程度油膜形
成率が向上した。
Test conditions Maximum contact surface pressure 227 kg f / mm 2 peripheral speed 4.2 m / sec (2000 rpm) Lubricant Turbine oil (10 cst under test conditions) Repeated load frequency 4.8 × 10 5 (4 hr) As shown in FIG. 13 and FIG. 14, the oil film formation rate on the finished surface of the test bearing C of the present invention was improved by about 20% at the start of operation as compared with the test bearing A.

また、繰り返し負荷回数1.2×105でほぼ完全に油膜を
形成することが確認された。
In addition, it was confirmed that an oil film was formed almost completely when the number of repetitive loads was 1.2 × 10 5 .

更に、試験軸受Aの仕上面では、長さ0.1mm程度のピ
ーリングの発生、進展が多数認められるのに対し、本発
明試験軸受Cの仕上面では、損傷は認められなかった。
Further, on the finished surface of the test bearing A, many occurrences and developments of peeling having a length of about 0.1 mm were observed, whereas no damage was found on the finished surface of the test bearing C of the present invention.

〔効果〕〔effect〕

以上のように、この発明によると、転動体の表面をラ
ンダムな微小粗面に形成し、この微小粗面の軸方向及び
円周方向の粗さを一定範囲に抑えるようにしたので、転
動面の油膜形成に有利となり、しかも微小なくぼみが油
溜りとなるため、相手面が粗面でも仕上面の良い相手に
対しても長寿命を得ることができ、偏心軸受の内輪や外
輪の摩耗やピーリング損傷がないという効果がある。
As described above, according to the present invention, the surface of the rolling element is formed into a random micro-rough surface, and the axial and circumferential roughness of the micro-rough surface is suppressed to a certain range. It is advantageous for forming an oil film on the surface, and the minute dents become oil pools, so long life can be obtained even for mating surfaces with rough surfaces and good finishing surfaces, and wear of the inner and outer rings of eccentric bearings. Or peeling damage.

また、偏心軸受の長寿命化によって内接式遊星歯車減
速機の耐久性を大幅に向上させることができると共に、
転動体の加工が特殊バレル研磨加工によって行なえるた
め、熱処理加工に比べて処理コストの低減が可能にな
る。
In addition, the durability of the internal planetary gear reducer can be greatly improved by extending the life of the eccentric bearing,
Since the rolling element can be processed by special barrel polishing, the processing cost can be reduced as compared with the heat treatment.

【図面の簡単な説明】[Brief description of the drawings]

第1図はころ軸受の第1の例を示す円筒ころ軸受を用い
た偏心軸受の断面図、第2図は試験軸受における転動体
の仕上げ面状況を示す概略図、第3図は寿命試験に用い
たニードル軸受の断面図、第4図は試験装置の概略図、
第5図乃至第9図の各々は転動体寿命試験の結果を示す
グラフ、第10図はSK値と寿命の関係を示すグラフ、第11
図はRMS/(L/C)値と寿命の関係を示すグラフ、第12図
は油膜パラメータと油膜形成率を示す関係図、第13図と
第14図は油膜形成率を示すグラフ、第15図は内接式遊星
歯車減速機の要部切欠正面図である。 2……入力軸、3……出力軸、 4……偏心軸受、5……曲線板、 21……内輪、22……保持器、 23……転動体、23a……微小粗面。
FIG. 1 is a sectional view of an eccentric bearing using a cylindrical roller bearing showing a first example of a roller bearing, FIG. 2 is a schematic view showing a finished surface condition of a rolling element in a test bearing, and FIG. FIG. 4 is a cross-sectional view of the used needle bearing, FIG.
5 to 9 are graphs showing the results of the rolling element life test, FIG. 10 is a graph showing the relationship between the SK value and the life, and FIG.
Fig. 12 is a graph showing the relationship between the RMS / (L / C) value and the service life. Fig. 12 is a graph showing the relationship between the oil film parameters and the oil film formation rate. Figs. 13 and 14 are graphs showing the oil film formation rate. The figure is a partially cutaway front view of the internal planetary gear reducer. 2 ... input shaft, 3 ... output shaft, 4 ... eccentric bearing, 5 ... curved plate, 21 ... inner ring, 22 ... cage, 23 ... rolling element, 23a ... fine rough surface.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】入力軸と出力軸を同軸芯状に配置し、入力
軸に偏心軸受を介して回動自在に取付けた曲線板と出力
軸に設けた出力フランジをピンで結合し、入力軸の回転
によって曲線板に生じた差動回転を出力軸に取出すよう
にした内接式遊星歯車減速機において、偏心軸受の転動
体の表面に微小な凹形状のくぼみを無数にランダムに形
成し、転動体表面の面粗さを、軸方向と円周方向のそれ
ぞれを求めてパラメータRMSで表示したとき、軸方向面
粗さRMS(L)と円周方向面粗さRMS(C)との比RMS
(L)/RMS(C)が1.0以下となり、かつ表面粗さのパ
ラメータSK値が−1.6以下で、該RMS(L)、RMS(C)
の値は0.10μm以上であることを特徴とする内接式遊星
歯車減速機用偏心軸受。
An input shaft and an output shaft are coaxially arranged, and a curved plate rotatably mounted on the input shaft via an eccentric bearing and an output flange provided on the output shaft are connected by pins. In the inscribed planetary gear reducer that takes out the differential rotation generated on the curved plate by the rotation of the curved plate to the output shaft, countless random concaves are formed randomly on the surface of the rolling element of the eccentric bearing, When the surface roughness of the rolling element surface is determined in each of the axial direction and the circumferential direction and is represented by a parameter RMS, a ratio of the axial surface roughness RMS (L) to the circumferential surface roughness RMS (C) is obtained. RMS
(L) / RMS (C) is 1.0 or less and the surface roughness parameter SK value is -1.6 or less, and the RMS (L) and RMS (C)
The eccentric bearing for an inscribed planetary gear reducer characterized by having a value of 0.10 μm or more.
JP6189790A 1989-12-20 1990-03-13 Eccentric bearings for internal planetary gear units Expired - Fee Related JP2899047B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6189790A JP2899047B2 (en) 1989-12-20 1990-03-13 Eccentric bearings for internal planetary gear units

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1-330023 1989-12-20
JP33002389 1989-12-20
JP6189790A JP2899047B2 (en) 1989-12-20 1990-03-13 Eccentric bearings for internal planetary gear units

Publications (2)

Publication Number Publication Date
JPH03223548A JPH03223548A (en) 1991-10-02
JP2899047B2 true JP2899047B2 (en) 1999-06-02

Family

ID=26402987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6189790A Expired - Fee Related JP2899047B2 (en) 1989-12-20 1990-03-13 Eccentric bearings for internal planetary gear units

Country Status (1)

Country Link
JP (1) JP2899047B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0712658U (en) * 1991-12-27 1995-03-03 エヌティエヌ株式会社 Piston pin for connecting rod in internal combustion engine
JP4878430B2 (en) * 2002-08-05 2012-02-15 住友重機械工業株式会社 Sliding structure of rotating body and rocking body
DE602005027842D1 (en) 2004-06-25 2011-06-16 Ntn Toyo Bearing Co Ltd ROLLER BEARING
JP5202985B2 (en) * 2008-02-19 2013-06-05 住友重機械工業株式会社 Decelerator
JP5797131B2 (en) * 2012-03-06 2015-10-21 住友重機械工業株式会社 Planetary gear reducer
JP6891674B2 (en) * 2017-07-05 2021-06-18 日本精工株式会社 Test equipment for eccentric rotating parts
JP7122883B2 (en) * 2018-06-18 2022-08-22 住友重機械工業株式会社 robot
JP7433769B2 (en) * 2019-02-13 2024-02-20 住友重機械工業株式会社 Eccentric swing type reduction gear
JP2022028440A (en) * 2020-08-03 2022-02-16 住友重機械工業株式会社 Speed reduction device

Also Published As

Publication number Publication date
JPH03223548A (en) 1991-10-02

Similar Documents

Publication Publication Date Title
KR910006195B1 (en) Roller elements for roller bearing
JP2997074B2 (en) Bearings for compressors for air conditioners
JP2899047B2 (en) Eccentric bearings for internal planetary gear units
JPH03117725A (en) Rolling bearing
JP2634495B2 (en) Bearings for automatic transmission
JP2017150597A (en) Rolling bearing, rolling device and manufacturing method of rolling device
JP2758518B2 (en) Rolling roller
JP3030100B2 (en) Roller Roller Bearing
JPH03117724A (en) Roller bearing
JPH04321816A (en) Gear box bearing of helicopter
JP2769206B2 (en) Roller bearing
JP2760626B2 (en) Constant velocity universal joint
JP2006105323A (en) Ball bearing
JPH0791452A (en) Rolling bearing
JP2003176826A (en) Rolling bearing
JPH05240254A (en) Rolling bearing
JPH076524U (en) Roller bearing cage
JPH04175511A (en) Needle shaped roller bearing for starter
JP2957737B2 (en) Thrust rolling bearing
JPH03189415A (en) Ball bearing for tension pulley or the like
JP2006009963A (en) Rolling bearing
JP4333063B2 (en) Grinding method for bearing parts
JP2534793Y2 (en) Needle roller bearings for connecting rods in internal combustion engines
JP2007016965A (en) Raceway for thrust needle bearing, thrust needle bearing, and rotating support part having thrust needle bearing
JP3770502B2 (en) Bearing rings for compressors using refrigeration oil as lubricant

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080312

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100312

LAPS Cancellation because of no payment of annual fees