JP2897471B2 - Oxide semiconductor oxygen concentration sensor - Google Patents

Oxide semiconductor oxygen concentration sensor

Info

Publication number
JP2897471B2
JP2897471B2 JP19049891A JP19049891A JP2897471B2 JP 2897471 B2 JP2897471 B2 JP 2897471B2 JP 19049891 A JP19049891 A JP 19049891A JP 19049891 A JP19049891 A JP 19049891A JP 2897471 B2 JP2897471 B2 JP 2897471B2
Authority
JP
Japan
Prior art keywords
oxygen concentration
oxide semiconductor
electrodes
electrode
insulating substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19049891A
Other languages
Japanese (ja)
Other versions
JPH0534301A (en
Inventor
津也子 深谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP19049891A priority Critical patent/JP2897471B2/en
Publication of JPH0534301A publication Critical patent/JPH0534301A/en
Application granted granted Critical
Publication of JP2897471B2 publication Critical patent/JP2897471B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、酸化物半導体を用いた
酸素濃度センサの構造に関する。
The present invention relates to a structure of an oxygen concentration sensor using an oxide semiconductor.

【0002】[0002]

【従来の技術】酸素濃度センサは、例えば内燃機関の排
気管に装着して該機関に供給される混合気の空燃比と密
接な関係にある排気中の酸素濃度を検出するもので、空
燃比フィ−ドバック制御におけるフィ−ドバック信号の
提供等に用いられている。この酸素センサの検出素子材
料としてジルコニアを使用したものが広く知られている
が、このジルコニア酸素センサは、被検出気体中の酸素
濃度と基準気体中の酸素濃度との差に応じた起電力を発
生させて酸素濃度を検出している。しかし、この検出方
法では、基準気体導入部が必要になるため、小型化、軽
量化に限度があり、又部品点数も多いこと等の不都合が
あった。そこで、例えば特開昭62−174644号公
報に開示されているように、酸素濃度に応じて電気抵抗
値が直接変化するチタニアを検出素子とした酸化物半導
体酸素濃度センサを用いている。この酸化物半導体酸素
センサ(チタニア酸素濃度センサ)は図6に示すように
絶縁基板1の上に一対の電極2a、2bがあり、その上
を電極間の間隙が導通するようにチタニアで覆われてい
る。この酸素センサでは酸素濃度に応じて電極間に存在
するチタニアの抵抗が変化するため、その抵抗変化を酸
素濃度変化として一対の電極を用いて検出するようにし
ている。このように酸化物半導体酸素センサでは基準気
体導入部が不必要であるので、上記のような不都合を解
消することができる。また、上記公報に示される酸化物
半導体酸素センサは、絶縁基板として用いるアルミナの
仮焼結体1に電極2a、2bを所定間隔をあけて塗布
し、次に電極を塗布した基板上に多孔性の酸化物半導体
層4を一定厚さ塗り込むことによって作られる。
2. Description of the Related Art An oxygen concentration sensor is mounted on, for example, an exhaust pipe of an internal combustion engine and detects an oxygen concentration in exhaust gas which is closely related to an air-fuel ratio of an air-fuel mixture supplied to the engine. It is used for providing a feedback signal in feedback control. It is widely known that zirconia is used as a detection element material of this oxygen sensor.This zirconia oxygen sensor generates an electromotive force corresponding to a difference between an oxygen concentration in a gas to be detected and an oxygen concentration in a reference gas. Oxygen concentration is detected. However, in this detection method, since a reference gas introduction part is required, there are limitations on miniaturization and weight reduction, and there are inconveniences such as a large number of parts. Therefore, as disclosed in, for example, Japanese Patent Application Laid-Open No. Sho 62-174644, an oxide semiconductor oxygen concentration sensor using titania whose electric resistance value directly changes in accordance with the oxygen concentration is used as a detection element. This oxide semiconductor oxygen sensor (titania oxygen concentration sensor) has a pair of electrodes 2a and 2b on an insulating substrate 1 as shown in FIG. 6, and is covered with titania so that a gap between the electrodes is conducted. ing. In this oxygen sensor, the resistance of titania present between the electrodes changes according to the oxygen concentration, and the change in resistance is detected as a change in oxygen concentration using a pair of electrodes. As described above, the oxide semiconductor oxygen sensor does not require the reference gas introduction section, and thus can solve the above-described inconvenience. In the oxide semiconductor oxygen sensor disclosed in the above publication, electrodes 2a and 2b are applied at a predetermined interval to a pre-sintered body 1 of alumina used as an insulating substrate, and then a porous substrate is applied to the substrate on which the electrodes are applied. Of the oxide semiconductor layer 4 of a predetermined thickness.

【0003】[0003]

【発明が解決しようとする課題】ところが、従来技術で
は図6の詳細図である図7に示すように、基板1と電極
2a、2bの間には段差が存在するため、電極2a、2
bを包覆するように酸化物半導体を塗布した時に、この
酸化物半導体4と電極2a、2bと基板1との間に隙間
7ができる。この隙間7は酸素検知部である電極間の酸
化物半導体部に存在し、この隙間7付近の接触抵抗があ
るため正確に測定できず、出力値の低下や応答性に悪影
響を及ぼすという問題がある。さらに、この隙間7によ
って機関運転中に振動等により酸化物半導体層の剥がれ
10又は亀裂8が生じやすくなる。この剥がれ10や亀
裂8が生ずるとさらに抵抗値出力の低下と応答性の悪化
を招き、酸素濃度を測定することはできなくなるおそれ
がある。そこで、本発明は酸化物半導体で覆われている
電極面と所定間隙に位置する基板面との段差をなくすこ
とによって、酸化物半導体と電極と基板との間の隙間を
なくし、上記の問題を解決することを目的とする。
However, in the prior art, as shown in FIG. 7 which is a detailed view of FIG. 6, since there is a step between the substrate 1 and the electrodes 2a and 2b, the electrodes 2a and 2b
When the oxide semiconductor is applied so as to cover b, a gap 7 is formed between the oxide semiconductor 4 and the electrodes 2a and 2b and the substrate 1. This gap 7 is present in the oxide semiconductor portion between the electrodes, which is the oxygen detecting portion, and cannot be measured accurately due to the contact resistance near this gap 7, resulting in a problem that the output value decreases and the response is adversely affected. is there. Furthermore, the gap 7 makes it easy for the oxide semiconductor layer to peel off 10 or crack 8 due to vibration or the like during operation of the engine. If the peeling 10 or the crack 8 occurs, the resistance value output further decreases and the responsiveness deteriorates, and the oxygen concentration may not be able to be measured. Therefore, the present invention eliminates the gap between the oxide semiconductor, the electrode, and the substrate by eliminating the step between the electrode surface covered with the oxide semiconductor and the substrate surface located at the predetermined gap, and solves the above problem. The purpose is to solve.

【0004】[0004]

【課題を解決するための手段】本発明に係わる内燃機関
の電子制御装置は図1に示されるように絶縁基板と、該
絶縁基板上に所定間隔を保って配置されている一対の第
1、第2の電極と、該第1、第2の電極の電極面及び該
第1、第2の電極で挟まれた前記絶縁基板上の半導体支
持面とを覆うように形成されている酸化物半導体とから
なる酸化物半導体酸素濃度センサにおいて、前記第1、
第2の電極の電極面と前記絶縁基板上の半導体支持面と
を同一平面上に配置したことを特徴とする。
As shown in FIG. 1, an electronic control unit for an internal combustion engine according to the present invention comprises an insulating substrate and a pair of first and second substrates arranged on the insulating substrate at predetermined intervals. An oxide semiconductor formed so as to cover a second electrode and an electrode surface of the first and second electrodes and a semiconductor support surface on the insulating substrate sandwiched between the first and second electrodes; An oxide semiconductor oxygen concentration sensor comprising:
The electrode surface of the second electrode and the semiconductor support surface on the insulating substrate are arranged on the same plane.

【0005】[0005]

【作用】酸化物半導体で覆われている電極面と所定間隙
に位置する基板面とが合致しているため基板と電極との
段差がなくなる。従って、基板及び電極と酸化物半導体
の間の隙間はなくなる。その結果、電極間隙に位置する
酸化物半導体の剥がれや亀裂を防ぎ、出力値の低下や応
答性に悪影響を及ぼすことがなくなり、酸素濃度を正確
に測定することができる。
Since the surface of the electrode covered with the oxide semiconductor and the surface of the substrate located at a predetermined gap coincide with each other, there is no step between the substrate and the electrode. Therefore, there is no gap between the substrate and the electrode and the oxide semiconductor. As a result, peeling or cracking of the oxide semiconductor located in the electrode gap is prevented, the output value is not reduced, and the response is not adversely affected, so that the oxygen concentration can be accurately measured.

【0006】[0006]

【実施例】本発明の一実施例である酸化物半導体酸素セ
ンサについて説明する。図1に示すように1は絶縁基
板、2aは外筒面の電極(白金メッキ)、2bは内筒面
の電極(白金メッキ)、4は酸化物半導体(チタニ
ア)、5はコ−ティング層、6はヒ−タをそれぞれ示し
ている。この円筒状の絶縁基板1の先端断面部分(切り
口部分)には電極(白金メッキ)が形成されていないた
め内筒面の電極2bと外筒面の電極2aは電気的につな
がっていない。又、基板の端部13と電極の端部14
a、14bとは同一平面となっている。すなわち、酸化
物半導体で覆われる電極面と所定間隙に位置する基板面
は段差をなくし平面としている。この平面となっている
面に酸化物半導体4を形成させ内筒面と外筒面の電極2
a、2bを酸化物半導体4で導通させる。この酸化物半
導体4を形成するにあたって、上記の構造では段差がな
いため絶縁基板1と電極(白金メッキ)2a、2bと酸
化物半導体4との間に隙間7が発生することはない。次
に、上記のような円筒型の酸素センサを製造する方法を
説明する。まず図2のようなコップ型にアルミナ等の絶
縁性セラミックから成る絶縁基板1を形成し、この外筒
面と内筒面の全体に白金をメッキして電極2a、2bを
形成する。その後、コップ型の底に相当する部分9を切
断機で切断し、筒状素子にする。このようにすると、切
断面は白金メッキされていないため、外筒面と内筒面の
電極2a、2bの間は導通されていなく、又外筒面と内
筒面の電極2a、2bと絶縁基板1は切断面で同一面と
なり、2つの電極で挟まれた絶縁基板1上の半導体支持
面と電極2a、2bの境とで段差が生ずることはない。
その後、触媒を含む溶液又はスラリに上記円筒素子を浸
漬(ディッピング)し、図1に示すように酸化物半導体
4を所定高さ以下の先端部に形成させる。この浸漬する
面積は用いる酸化物半導体の種類、多孔度、厚さ等によ
り変化するので実験的に決めるとよい。これによって、
外筒と内筒の電極2a、2bを酸化物半導体4で導通さ
せることができ、この酸化物半導体4は酸素濃度によっ
て抵抗値の値が変化するので、酸素濃度を測定すること
ができる。ここで、酸化物半導体層、電極の保護として
その表面にアルミナ等のディップ層(コ−ティング)を
設けてもよい。また、酸素濃度センサで酸素濃度を検出
する測定時の温度を一定に保つために、ヒ−タ6を絶縁
基板1の内部又は円筒の中空に備えてもよい。又、図3
に示すように測定時排気ガスに露呈させつつ機械的な破
損から保護するための多数の小孔を穿ったカバ−11を
取り付け、このカバ−11をフランジ12に固着する。
そして、このフランジ12を図示しないエンジンの排気
管にボルト締めすることにより、酸素濃度検出器として
上記酸素濃度センサが取り付けられる。最後に、上記で
製造された酸素濃度センサによる酸素濃度測定時にもす
ぐに安定させるために、測定時の温度700℃程度でな
らし運転(エ−ジング)を所定時間行う。本実施例のポ
イントについて述べると、電極2a、2bと絶縁基板1
の境は筒状素子の切断面で同一面であるので段差がな
い。そのため、触媒を含む溶液又はスラリに上記円筒素
子を所定量浸漬(ディッピング)する時、絶縁基板1と
電極2a、2bとの境に段差がないので酸化物半導体4
と電極2a、2bと絶縁基板1との間の隙間7が発生す
ることはない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An oxide semiconductor oxygen sensor according to one embodiment of the present invention will be described. As shown in FIG. 1, 1 is an insulating substrate, 2a is an electrode on the outer cylinder surface (platinum plating), 2b is an electrode on the inner cylinder surface (platinum plating), 4 is an oxide semiconductor (titania), and 5 is a coating layer. , 6 indicate heaters, respectively. Since the electrode (platinum plating) is not formed on the cross section (cut portion) of the distal end of the cylindrical insulating substrate 1, the electrode 2b on the inner cylindrical surface and the electrode 2a on the outer cylindrical surface are not electrically connected. Also, the end 13 of the substrate and the end 14 of the electrode
a and 14b are on the same plane. That is, the surface of the electrode located at a predetermined gap from the electrode surface covered with the oxide semiconductor is flat without any step. The oxide semiconductor 4 is formed on this flat surface, and the electrodes 2 on the inner and outer cylindrical surfaces are formed.
a, 2b are conducted by the oxide semiconductor 4. In forming the oxide semiconductor 4, no gap is generated between the insulating substrate 1, the electrodes (platinum plating) 2 a and 2 b, and the oxide semiconductor 4 because there is no step in the above structure. Next, a method of manufacturing the above-described cylindrical oxygen sensor will be described. First, an insulating substrate 1 made of an insulating ceramic such as alumina is formed in a cup shape as shown in FIG. 2, and platinum is plated on the entire outer cylindrical surface and inner cylindrical surface to form electrodes 2a and 2b. Thereafter, the portion 9 corresponding to the bottom of the cup mold is cut by a cutting machine to form a tubular element. In this case, since the cut surface is not plated with platinum, there is no conduction between the electrodes 2a and 2b on the outer cylinder surface and the inner cylinder surface, and the electrodes 2a and 2b on the outer cylinder surface and the inner cylinder surface are insulated. The substrate 1 has the same cut surface, and there is no step between the semiconductor support surface on the insulating substrate 1 sandwiched between the two electrodes and the boundary between the electrodes 2a and 2b.
Thereafter, the cylindrical element is immersed (dipped) in a solution or a slurry containing a catalyst, and an oxide semiconductor 4 is formed at a tip portion having a predetermined height or less as shown in FIG. The immersion area varies depending on the type, porosity, thickness, and the like of the oxide semiconductor to be used, and thus may be experimentally determined. by this,
The electrodes 2a and 2b of the outer cylinder and the inner cylinder can be electrically connected by the oxide semiconductor 4. Since the resistance value of the oxide semiconductor 4 changes depending on the oxygen concentration, the oxygen concentration can be measured. Here, a dip layer (coating) of alumina or the like may be provided on the surface of the oxide semiconductor layer or the electrode to protect the electrode. Further, the heater 6 may be provided inside the insulating substrate 1 or in a hollow cylinder in order to keep the temperature at the time of measurement for detecting the oxygen concentration by the oxygen concentration sensor constant. FIG.
As shown in (1), a cover 11 having a large number of small holes for protecting it from mechanical damage while being exposed to exhaust gas at the time of measurement is attached, and this cover 11 is fixed to a flange 12.
Then, the flange 12 is bolted to an exhaust pipe (not shown) of an engine, whereby the oxygen concentration sensor is attached as an oxygen concentration detector. Finally, in order to immediately stabilize even when measuring the oxygen concentration by the oxygen concentration sensor manufactured as described above, a running-in operation (aging) is performed at a temperature of about 700 ° C. for a predetermined time. The point of this embodiment is as follows. The electrodes 2a and 2b and the insulating substrate 1
There is no step since the boundary is the same plane as the cut surface of the tubular element. Therefore, when the cylindrical element is immersed (dipped) by a predetermined amount in a solution or a slurry containing a catalyst, there is no step at the boundary between the insulating substrate 1 and the electrodes 2a and 2b.
The gap 7 between the electrode 2a, 2b and the insulating substrate 1 does not occur.

【0007】次に、本実施例の酸素濃度センサと従来技
術における酸素濃度センサ(図1)を上記のようにして
エンジンの排気管に備えつけ、あるエンジン運転状態で
酸素濃度がリ−ンの時には出力を0、酸素濃度がリッチ
の時には出力を1として酸素濃度を測定した結果につい
て説明する。このエンジン運転状態では、燃料がリ−ン
かリッチかが図4(a)に示すように絶えず変化してい
たとする。この時、ならし運転(エ−ジング)を所定時
間行った後の2つの酸素濃度センサの出力値を図4
(b)に示す。図4(b)をみると矩形波を出力しよう
としても従来技術である隙間7が存在する酸素濃度セン
サの出力値(点線)は隙間7やひび割れ8や剥がれ10
によって応答性が悪くなっているのに対して、本発明で
ある隙間7がない酸素濃度センサの出力値(実線)は応
答性が良く正確に矩形波をだすことができる。さらに、
本実施例においては電極をメッキにて設けているため、
電極を塗布、印刷する場合に比べてアルミナ素子との密
着性がよく、電極の白金量を少なくすることが可能でコ
ストが下がる。また、酸素濃度センサが筒状素子である
ため、平板に比べて強度、組付け性がよく、円形である
ため方向性による特性のバラツキをなくすことができ
る。第2の実施例として、図5に示すように平板上にお
いても隙間ができないような構造にすることができる。
すなわち、アルミナのグリ−ンシ−トからなる短冊型の
絶縁基板1の両面に電極2a、2bを印刷手法により塗
布する。この時、図5のF面(酸化物によって導通させ
る面)では、電極2a、2bと絶縁基板1を段差ができ
ないように同一面とし、その後、酸化物半導体4をこの
面で導通するように覆う。このようにして、2つの酸素
濃度センサ検知部である電極2a、2b間側の端面と絶
縁基板1の端面を同一にした面を作ることによって、電
極2a、2bと絶縁基板1の境の段差をなくす。その結
果、本発明のポイントである電極2a、2bと絶縁基板
1と酸化物半導体4との隙間をなくすことができる。以
上のように、上記の第1実施例、第2実施例のような構
造によって2つの電極2a、2b間の隙間7をなくし、
隙間7による応答性や出力の低下をなくすことができ、
また、隙間7がありながら測定を続けると隙間7からひ
び割れ8、剥がれ10が起こり上記の応答性や出力の低
下はさらに悪化するという問題を解決することができ
る。
Next, the oxygen concentration sensor of this embodiment and the oxygen concentration sensor of the prior art (FIG. 1) are mounted on the exhaust pipe of the engine as described above, and when the oxygen concentration is lean in a certain engine operating state. The result of measuring the oxygen concentration with the output being 0 and the output being 1 when the oxygen concentration is rich will be described. In this engine operation state, it is assumed that whether the fuel is lean or rich is constantly changing as shown in FIG. At this time, the output values of the two oxygen concentration sensors after performing the aging operation for a predetermined time are shown in FIG.
(B). Referring to FIG. 4B, even if an attempt is made to output a rectangular wave, the output value (dotted line) of the oxygen concentration sensor having the gap 7 according to the prior art is the gap 7, the crack 8 and the peeling 10.
However, the output value (solid line) of the oxygen concentration sensor having no gap 7 according to the present invention has good responsiveness and can output a square wave accurately. further,
In this embodiment, since the electrodes are provided by plating,
Compared to the case of applying and printing an electrode, the adhesiveness to the alumina element is better, the amount of platinum in the electrode can be reduced, and the cost is reduced. Further, since the oxygen concentration sensor is a cylindrical element, the strength and the assembling property are better than a flat plate, and the circular shape can eliminate variations in characteristics due to directionality. As a second embodiment, as shown in FIG. 5, a structure in which no gap is formed even on a flat plate can be provided.
That is, the electrodes 2a and 2b are applied to both sides of the strip-shaped insulating substrate 1 made of alumina green sheet by a printing method. At this time, the electrodes 2a and 2b and the insulating substrate 1 are made to be on the same surface on the F-plane (the surface made to conduct by the oxide) so that no step is formed, and then the oxide semiconductor 4 is made to conduct on this surface. cover. In this way, by making the end surface between the electrodes 2a and 2b, which are the two oxygen concentration sensor detecting portions, the end surface of the insulating substrate 1 the same as the end surface, the step at the boundary between the electrodes 2a and 2b and the insulating substrate 1 is formed. To eliminate As a result, the gap between the electrodes 2a and 2b, the insulating substrate 1, and the oxide semiconductor 4, which is a point of the present invention, can be eliminated. As described above, the gap 7 between the two electrodes 2a and 2b is eliminated by the structure as in the first and second embodiments,
It is possible to eliminate a decrease in responsiveness and output due to the gap 7,
Further, if the measurement is continued while the gap 7 is present, the problem that the crack 8 and the peeling 10 occur from the gap 7 to further reduce the above-described responsiveness and output deterioration can be solved.

【0008】[0008]

【効果】このように、酸化物半導体で覆われている一対
の電極面と電極面間の所定間隙に位置する基板面とを合
致させることによって基板と電極との段差をなくし、基
板と電極と酸化物半導体の間の隙間をなくすことができ
る。その結果、酸化物半導体の剥がれや亀裂を防ぎ、出
力値の低下や応答性に悪影響を及ぼすことがなくなり、
酸素濃度を正確に測定することができる。
As described above, the step between the substrate and the electrode is eliminated by matching the pair of electrode surfaces covered with the oxide semiconductor with the substrate surface located at a predetermined gap between the electrode surfaces, and the substrate and the electrode are connected to each other. A gap between oxide semiconductors can be eliminated. As a result, peeling and cracking of the oxide semiconductor are prevented, and a decrease in output value and an adverse effect on responsiveness are prevented,
The oxygen concentration can be measured accurately.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の酸素濃度センサにおける実施例の図FIG. 1 is a diagram of an embodiment of an oxygen concentration sensor of the present invention.

【図2】本発明の酸素濃度センサの製造途中の図FIG. 2 is a diagram illustrating a process of manufacturing an oxygen concentration sensor according to the present invention.

【図3】酸素濃度センサの取付け図FIG. 3 is an installation diagram of an oxygen concentration sensor.

【図4】従来技術と本発明によって出力された酸素濃度
センサの出力値
FIG. 4 is an output value of an oxygen concentration sensor output according to the related art and the present invention.

【図5】第2実施例の図FIG. 5 is a view of a second embodiment.

【図6】従来技術の酸素濃度センサの詳細図FIG. 6 is a detailed view of a conventional oxygen concentration sensor.

【図7】図1のS部の詳細図FIG. 7 is a detailed view of a part S in FIG. 1;

【符号の説明】[Explanation of symbols]

1 ・・・絶縁基板 2a・・・電極 2b・・・電極 3a・・・リ−ド
線 3b・・・リ−ド線 4 ・・・チタニ
ア 5 ・・・コ−ティング層 6 ・・・ヒ−タ 7 ・・・隙間 8 ・・・ひび割
れ 9 ・・・コップ型の底の部分 10・・・剥がれ 11・・・カバ− 12・・・フラン
ジ 13・・・基板の端部 14a・・電極の
端部 14b・・電極の端部
DESCRIPTION OF SYMBOLS 1 ... Insulating substrate 2a ... Electrode 2b ... Electrode 3a ... Lead wire 3b ... Lead wire 4 ... Titania 5 ... Coating layer 6 ... H -Ta 7… Gap 8… Crack 9… Bottom part of cup type 10… Peel off 11… Cover 12… Flange 13… End of substrate 14a End of the electrode 14b

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】絶縁基板と、該絶縁基板上に所定間隔を保
って配置されている一対の第1、第2の電極と、該第
1、第2の電極の電極面及び該第1、第2の電極で挟ま
れた前記絶縁基板上の半導体支持面とを覆うように形成
されている酸化物半導体とからなる酸化物半導体酸素濃
度センサにおいて、 前記第1、第2の電極の電極面と前記絶縁基板上の半導
体支持面とを同一平面上に配置したことを特徴とする酸
化物半導体酸素濃度センサ。
An insulating substrate; a pair of first and second electrodes disposed on the insulating substrate at a predetermined interval; an electrode surface of the first and second electrodes; An oxide semiconductor oxygen concentration sensor comprising: an oxide semiconductor formed so as to cover a semiconductor support surface on the insulating substrate sandwiched between second electrodes; and an electrode surface of the first and second electrodes. And an oxide semiconductor oxygen concentration sensor, wherein a semiconductor support surface on the insulating substrate is arranged on the same plane.
JP19049891A 1991-07-31 1991-07-31 Oxide semiconductor oxygen concentration sensor Expired - Lifetime JP2897471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19049891A JP2897471B2 (en) 1991-07-31 1991-07-31 Oxide semiconductor oxygen concentration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19049891A JP2897471B2 (en) 1991-07-31 1991-07-31 Oxide semiconductor oxygen concentration sensor

Publications (2)

Publication Number Publication Date
JPH0534301A JPH0534301A (en) 1993-02-09
JP2897471B2 true JP2897471B2 (en) 1999-05-31

Family

ID=16259096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19049891A Expired - Lifetime JP2897471B2 (en) 1991-07-31 1991-07-31 Oxide semiconductor oxygen concentration sensor

Country Status (1)

Country Link
JP (1) JP2897471B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3703627B2 (en) 1998-06-18 2005-10-05 日本特殊陶業株式会社 Gas sensor
JP4169040B2 (en) 2006-04-17 2008-10-22 船井電機株式会社 Wall-mounted display device

Also Published As

Publication number Publication date
JPH0534301A (en) 1993-02-09

Similar Documents

Publication Publication Date Title
EP1262767B1 (en) Humidity sensor
US4453397A (en) Gas detecting sensor
US5935399A (en) Air-fuel ratio sensor
JPS6336461B2 (en)
JPS6329219B2 (en)
EP0125069B1 (en) Electrochemical element and device including the element
GB2052758A (en) Device for Detection of Air/Fuel Ratio From Oxygen Partial Pressure in Exhaust Gas
US4450428A (en) Gas detecting sensor
US4419213A (en) Oxygen sensing element formed as laminate of thin layers on substrate provided with heater and lead wires
JP2000206080A (en) Oxygen sensor fitted with heater and its production
JPH11153571A (en) Oxygen sensor element
US4478067A (en) Gas composition sensor
JPH1151899A (en) Oxygen sensor element
EP0059933A1 (en) Solid electrolyte oxygen sensing element of laminated structure with gas diffusion layer on outer electrode
US5652443A (en) Sensor having a micro-bridge heater
JP2897471B2 (en) Oxide semiconductor oxygen concentration sensor
JP7339896B2 (en) gas sensor
JPS62222159A (en) Oxygen sensor
US4652849A (en) Gas sensor
JP3677920B2 (en) Oxygen concentration detector
JP2514664B2 (en) Oxygen sensor
JP2851632B2 (en) Electrochemical element
JP3106971B2 (en) Oxygen sensor
JPH0622211Y2 (en) Oxygen sensor
JP3677921B2 (en) Oxygen concentration detection element