JP2895894B2 - Method for manufacturing solid-state imaging device - Google Patents

Method for manufacturing solid-state imaging device

Info

Publication number
JP2895894B2
JP2895894B2 JP1341202A JP34120289A JP2895894B2 JP 2895894 B2 JP2895894 B2 JP 2895894B2 JP 1341202 A JP1341202 A JP 1341202A JP 34120289 A JP34120289 A JP 34120289A JP 2895894 B2 JP2895894 B2 JP 2895894B2
Authority
JP
Japan
Prior art keywords
imaging device
state imaging
solid
layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1341202A
Other languages
Japanese (ja)
Other versions
JPH03200367A (en
Inventor
宗生 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Denki Co Ltd
Original Assignee
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Denki Co Ltd filed Critical Sanyo Denki Co Ltd
Priority to JP1341202A priority Critical patent/JP2895894B2/en
Publication of JPH03200367A publication Critical patent/JPH03200367A/en
Application granted granted Critical
Publication of JP2895894B2 publication Critical patent/JP2895894B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Formation Of Insulating Films (AREA)

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、固体撮像素子の製造方法に関し、詳細に
は、固体撮像素子の表面を保護する表面保護膜の積層方
法に関する。
The present invention relates to a method for manufacturing a solid-state imaging device, and more particularly, to a method for laminating a surface protection film for protecting the surface of a solid-state imaging device.

(ロ)従来の技術 第3図および第4図を参照して、インターライン方式
の固体撮像素子を説明する。なお、第4図は第3図のA
−A線断面図である。
(B) Conventional technology An interline solid-state imaging device will be described with reference to FIGS. 3 and 4. FIG. FIG. 4 shows A in FIG.
FIG. 4 is a cross-sectional view taken along a line A.

第3図はインターライン方式の固体撮像素子(以下、
CCDと称する)の平面構造を概念的に説明するものであ
り、CCD(11)はマトリクス配列されて光学像の光電変
換を行う受光部(12l1)〜(12mn)、各列の受光部(12
lj)〜(12mj)の光電荷が並列入力され、それを図面縦
方向に転送する垂直転送レジスタ(13l)〜(13n)、こ
の垂直転送レジスタ(13l)〜(13n)の出力が並列入力
され、それを図面右方向に転送する水平転送レジスタ
(14)から構成されている。
FIG. 3 shows an interline solid-state imaging device (hereinafter, referred to as an “inline type”).
The CCD (11) is a light receiving unit (12 11 ) to (12 mn ) that performs a photoelectric conversion of an optical image in a matrix arrangement, and a light receiving unit in each column. (12
photocharge lj) ~ (12 mj) are parallel input, a vertical transfer register for transferring it to the drawing the vertical direction (13 l) ~ (13 n ) , of the vertical transfer register (13 l) ~ (13 n ) The output comprises a horizontal transfer register (14) for inputting in parallel and transferring it in the right direction in the drawing.

受光部(12lj)〜(12mj)は、例えば400×500画素程
度の規模にマトリクス配列され、その受光部(12lj)〜
(12mj)により光電変換された二次元画像情報は先ず、
垂直転送レジスタ(13l)〜(13n)の転送動作によりn
ビットシリアル画像情報に変換される。次いで、これら
垂直転送レジスタ(13l)〜(13n)の出力を並列入力す
る水平転送レジスタ(14)の転送動作によりシリアル画
像情報に変換され、図示しない出力回路を介してシリア
ル出力される。
The light receiving sections (12 lj ) to (12 mj ) are arranged in a matrix of, for example, about 400 × 500 pixels, and the light receiving sections (12 lj ) to (12 lj ) are arranged.
First, the two-dimensional image information photoelectrically converted by (12 mj )
By the transfer operation of the vertical transfer registers ( 13l ) to ( 13n ), n
It is converted into bit serial image information. Next, the outputs of the vertical transfer registers (13 l ) to (13 n ) are converted into serial image information by a transfer operation of a horizontal transfer register (14) which receives the outputs in parallel, and are serially output via an output circuit (not shown).

上記した受光部(12lj)〜(12mj)と垂直転送レジス
タ(13l)〜(13n)の断面構造は第4図に示されるよう
なものであり、そのような断面構造はn型Si基板(21)
の表面層にp型不純物を注入、拡散して1段pウェル
(22)および2段pウェル(23)を形成し、その1段p
ウェル(22)内にn型不純物を注入してホトダイオード
を構成するn層(24)を形成し、2段pウェル(23)内
にn型不純物を注入して垂直転送レジスタ(13l)〜(1
3n)の埋め込みチャネルを構成するn-層(25)を形成
し、さらに2段pウェル(23)内にp型不純物を注入し
てチャネルストッパとなるp+(26)等を形成すると共に
Si基板(21)の表面にSiO2膜を介してポリシリコンを使
用して転送電極(27)を形成する等して得られる。な
お、同図において参照番号28で示す構造は純粋Alが使用
される光シールドである。
The sectional structure of the above-mentioned light receiving sections (12 lj ) to (12 mj ) and the vertical transfer registers (13 l ) to (13 n ) is as shown in FIG. 4, and such a sectional structure is n-type. Si substrate (21)
A p-type impurity is implanted and diffused into the surface layer of the first step to form a first-stage p-well (22) and a second-stage p-well (23).
An n-type impurity is implanted into the well (22) to form an n-layer (24) constituting a photodiode, and an n-type impurity is implanted into the two-stage p-well (23) to form a vertical transfer register (13 l ) to (1
An n layer (25) constituting a buried channel of 3 n ) is formed, and a p-type impurity is further implanted into a two-step p well (23) to form p + (26) serving as a channel stopper and the like.
The Si surface of the substrate (21) is obtained by, for example to form a transfer electrode (27) by using the polysilicon through the S i O 2 film. The structure indicated by reference numeral 28 in the figure is a light shield using pure Al.

上記構造を備えるCCD(11)では、入射光量に応じて
受光部(12lj)〜(12mj)に電荷が励起され、それが垂
直転送レジスタの埋め込みチャネルが形成されるn-
(25)に転送され、さらに周知の転送手段により第3図
に参照番号4で示す水平転送レジスタの所定のビット迄
転送されるような動作が行われる。従って、ホトダイオ
ードを構成するn層(24)の上面は可能な限り光線(3
0)が入射されるよう構成されるに対し、垂直転送レジ
スタの埋め込みチャネルが形成されるn-層(25)上は純
粋Alにより完全に光遮蔽されている。
In the CCD (11) having the above-described structure, electric charges are excited in the light receiving sections (12 lj ) to (12 mj ) in accordance with the amount of incident light, and this is the n layer (25) where the buried channel of the vertical transfer register is formed. Then, an operation of transferring the data up to a predetermined bit of the horizontal transfer register indicated by reference numeral 4 in FIG. 3 is performed by well-known transfer means. Therefore, the upper surface of the n-layer (24) constituting the photodiode should be as light rays (3
0) is incident, while the n layer (25) where the buried channel of the vertical transfer register is formed is completely light-shielded by pure Al.

窒化シリコン膜(29)はプラズマCVDにおいて、3SiH
4+4NH3→Si3N4+12H2の反応により形成され、CCD(1
1)の最上層を保護すると共に上記反応でのNH3励起によ
る水素ラジカルがSi-SiO2界面のダングリングボンドを
終端することによって、暗電流を低減するよう作用す
る。
Silicon nitride film (29) is 3SiH in plasma CVD.
4 + 4NH 3 → Si 3 N 4 + 12H 2 formed by the reaction, CCD (1
In addition to protecting the uppermost layer of 1), hydrogen radicals generated by NH 3 excitation in the above reaction terminate dangling bonds at the Si—SiO 2 interface, thereby reducing dark current.

(ハ)発明が解決しようとする課題 最上層が窒化シリコン膜(29)で保護されるCCDで
は、窒化シリコン膜(29)の屈折率が略2.0程度と高い
ために、窒化シリコン膜(29)表面での光の反射あるい
は干渉が大きく、入射光量の損失が大きくなる問題があ
る。このため、窒化シリコン膜(29)の暗電流低減作用
が減殺され、S/Nが向上されない問題を有している。ま
た、受光部のサイズを小さくすることができないため、
高画素化の障害となっている。
(C) Problems to be solved by the invention In a CCD in which the uppermost layer is protected by a silicon nitride film (29), the silicon nitride film (29) has a high refractive index of about 2.0, so that the silicon nitride film (29) There is a problem that the reflection or interference of light on the surface is large and the loss of the incident light amount is large. For this reason, there is a problem that the dark current reducing effect of the silicon nitride film (29) is reduced and the S / N is not improved. Also, since the size of the light receiving unit cannot be reduced,
This is an obstacle to increasing the number of pixels.

本発明は従来の固体撮像素子に存する斯る課題を解決
することを目的とし、光感度の向上および暗電流の低減
が達成され、もってS/Nが良好な固体撮像素子を提供す
ることを目的とする。
An object of the present invention is to provide a solid-state imaging device in which an improvement in light sensitivity and a reduction in dark current are achieved, thereby achieving a good S / N ratio. And

(ニ)課題を解決するための手段 前記した課題は、半導体基板上に、二次元光学像を撮
像して光電変換を行い光電荷を得る撮像部と、この撮像
部の光電荷を転送する転送部と、この転送部の出力電荷
を電圧値に変換する出力部と、を形成した後、上記撮像
部、上記転送部及び出力部を覆って表面保護層を形成す
る固体撮像素子の製造方法において、上記表面保護層
は、積層開始時点では、SiH4及びNH3を供給し、時間経
過と共に流量を増加させつつN2Oを供給するプラズマCVD
法により形成することを特徴とする固体撮像素子の製造
方法により解決される。
(D) Means for Solving the Problems The above-mentioned problems are achieved by an image pickup unit that picks up a two-dimensional optical image and performs photoelectric conversion on the semiconductor substrate to obtain photocharges, and a transfer that transfers the photocharges of the image pickup unit. And an output unit for converting an output charge of the transfer unit to a voltage value, and then forming the surface protection layer covering the imaging unit, the transfer unit, and the output unit. At the start of lamination, the surface protective layer supplies SiH 4 and NH 3, and supplies N 2 O while increasing the flow rate over time.
The problem is solved by a method for manufacturing a solid-state imaging device characterized by being formed by a method.

(ホ)作用 固体撮像素子の最上層がプラズマCVDにおいて、SiH4
及びNH3、N2Oのガス流量制御下で形成され、SixOyNz
(y≠0)により保護されるため、入射光の反射、干渉
が減少し、光感度が向上される。また、固体撮像素子基
板の界面準位密度が減少し、暗電流が減少する。そし
て、それら作用によりS/Nが向上される。
(E) in the top layer is a plasma CVD action solid-state imaging device, SiH 4
And is formed under the control of the gas flow rate of NH 3 and N 2 O, and is protected by the Si x O y N z film (y ≠ 0), so that reflection and interference of incident light are reduced and light sensitivity is improved. . Further, the interface state density of the solid-state imaging device substrate decreases, and the dark current decreases. And S / N is improved by those effects.

(ヘ)実施例 以下、第1図および第2図を参照して本発明の実施例
を説明する。なお、本発明はCCD最上層に形成される保
護層の積層方法に関するものであり、CCDの平面構造は
従来例と差がないため説明を省略する。
(F) Embodiment An embodiment of the present invention will be described below with reference to FIGS. 1 and 2. Note that the present invention relates to a method for laminating a protective layer formed on the uppermost layer of a CCD, and the description of the planar structure of the CCD is omitted since it is not different from the conventional example.

従来例の説明の項で使用した第4図とはCCD最上層に
形成される保護層の組成のみが異なり、他は同一である
第1図を参照すると、本発明のCCDの受光部と垂直転送
レジスタの断面構造は同図に示されるようなものであ
り、そのような断面構造はn型Si基板(1)の表面層に
p型不純物を注入、拡散して1段pウェル(2)および
2段pウェル(3)を形成し、その1段pウェル(2)
内にn型不純物を注入してホトダイオードを構成するn
層(4)を形成し、2段pウェル(3)内にn型不純物
を注入して垂直転送レジスタの埋め込みチャネルを構成
するn-層(5)を形成し、さらに2段pウェル(3)内
にp型不純物を注入してチャネルストッパとなるp+
(6)等を形成すると共にSi基板(1)の表面にSiO2
を介してポリシリコンを使用して転送電極(7)を形成
する等して得られる。なお、同図において参照番号8で
示す構造は純粋Alが使用される光シールドである。
FIG. 4 differs from FIG. 4 used in the description of the conventional example only in the composition of the protective layer formed on the top layer of the CCD. The cross-sectional structure of the transfer register is as shown in the figure, and such a cross-sectional structure is obtained by injecting and diffusing a p-type impurity into the surface layer of the n-type Si substrate (1) and diffusing it into a one-step p-well (2). And a two-stage p-well (3) are formed, and the one-stage p-well (2) is formed.
N to form a photodiode by injecting n-type impurities into
A layer (4) is formed, an n-type impurity is implanted into the two-stage p-well (3) to form an n layer (5) that forms a buried channel of the vertical transfer register, and further a two-stage p-well (3) is formed. ) transferred using the polysilicon through the S i O 2 film on the Si surface of the substrate (1) to form a p-type impurity serving as a channel stopper are implanted p + layer (6) or the like in the electrode ( 7) is obtained. The structure indicated by reference numeral 8 in the figure is a light shield using pure Al.

従来のCCDには、その最上層にプラズマCVDによって3
SiH4+4NH3→Si3N4+12H2なる反応によりSi3N4層が形
成されるのであるが、本発明のCCDではプラズマCVDにお
いて、SiH4+NH3+N2O→SixOyNzの反応により窒化酸化
物(9)(SixOyNz)が形成される。なお、x、y、z
は定数であって、プラズマCVDにおける反応時に各ガス
の流量を制御することにより変化させることが可能であ
る。従って、本発明では上記反応による窒化酸化膜
(9)の形成の初期にN2Oガスの供給を遮断することに
より、従前の窒化膜を形成し、順次N2Oガスの供給を増
やして窒化酸化膜(9)が形成される。このように形成
された窒化酸化膜(9)は窒化膜が有するSi-SiO2界面
準位密度の低減特性と後記する窒化酸化膜の高光透過特
性の双方を備える。
Conventional CCDs have a plasma CVD
SiH 4 + 4NH 3 → Si 3 N 4 + 12H but by 2 becomes the reaction is the Si 3 N 4 layer is formed, the CCD in the plasma CVD of the present invention, SiH 4 + NH 3 + N 2 O → Si x O y N z nitride oxide (9) (S ix O y N z) is formed by the reaction. Note that x, y, z
Is a constant and can be changed by controlling the flow rate of each gas during the reaction in plasma CVD. Therefore, in the present invention, the supply of the N 2 O gas is interrupted at the beginning of the formation of the nitrided oxide film (9) by the above reaction, so that the conventional nitride film is formed, and the supply of the N 2 O gas is sequentially increased to increase the nitridation. An oxide film (9) is formed. The nitrided oxide film (9) thus formed has both the characteristics of reducing the Si—SiO 2 interface state density of the nitride film and the high light transmission characteristics of the nitrided oxide film described later.

第2図は屈折率が2.0の窒化膜(SixNy)と同1.6の窒
化酸化膜(SixOyNz)の各波長に対する光透過特性を示
す。同図に示されるように、窒化酸化膜(SixOyNz)の
光透過率は図に示される全波長域で窒化膜(SixNy)の
それを上回っているばかりか、波長変化に対する透過率
の変動が微小である。従って、このようなSixOyNz
(9)が最終保護層のさらに最上部に形成されるCCDは
光学的特性に優れると共に光感度の増加によりS/Nが向
上される。
FIG. 2 shows the light transmission characteristics of the nitride film (Si x N y ) having a refractive index of 2.0 and the nitrided oxide film (Si x O y N z ) having a refractive index of 1.6 with respect to each wavelength. As shown in the figure, the light transmittance of the nitrided oxide film (Si x O y N z ) is higher than that of the nitride film (Si x N y ) in the entire wavelength range shown in the figure, as well as the wavelength. The change of the transmittance with respect to the change is minute. Therefore, the CCD in which the Si x O y N z film (9) is formed on the uppermost part of the final protective layer has excellent optical characteristics and S / N is improved due to an increase in light sensitivity.

(ト)発明の効果 以上述べたように本発明によれば、固体撮像素子の最
上層の保護層として下層部でSi‐SiO2界面準位密度の低
減特性に優れる窒化膜であり、上層部で光透過特性に優
れる窒化酸化膜となる窒化酸化膜を使用するため、光感
度が増加すると共に暗電流が低減されて、S/Nが向上さ
れる。
(G) According to the present invention as mentioned effects or more inventions, be a nitride film having excellent reduction properties of S i -S i O 2 interface state density at the lower part as the protective layer of the uppermost layer of the solid-state imaging device In addition, since the nitrided oxide film which becomes the nitrided oxide film having excellent light transmission characteristics is used in the upper layer, the light sensitivity is increased, the dark current is reduced, and the S / N is improved.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例を説明する固体撮像素子の部分
断面図、第2図はSixNy膜とSixOyNz膜の光透過特性を説
明する図、第3図は固体撮像素子の平面構造を説明する
概念図、第4図は第3図のA−A線断面図であり、固体
撮像素子の受光部および垂直転送レジスタの断面図であ
る。 1……n型Si基板、2……1段Pウェル、3……2段P
ウェル、4……n層、5……n-層、6……P+層、7……
転送電極、8……光シールド、9……窒化酸化膜(SixO
yNz)。
FIG. 1 is a partial cross-sectional view of a solid-state imaging device illustrating an embodiment of the present invention, FIG. 2 is a diagram illustrating light transmission characteristics of a Si x N y film and a Si x O y N z film, and FIG. FIG. 4 is a conceptual diagram illustrating a planar structure of the solid-state imaging device. FIG. 4 is a cross-sectional view taken along the line AA of FIG. 1... N-type Si substrate, 2... 1-step P well, 3.
Well, 4 ... n layer, 5 ... n - layer, 6 ... P + layer, 7 ...
Transfer electrode, 8 ... Light shield, 9 ... Nitride oxide film (Si x O
y N z ).

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Si基板上に、二次元光学像を撮像して光電
変換を行い光電荷を得る撮像部と、この撮像部の光電荷
を転送する転送部と、この転送部の出力電荷を電圧値に
変換する出力部と、を形成した後、上記撮像部、上記転
送部及び上記出力部を覆って窒化酸化膜を形成する固体
撮像素子の製造方法において、 上記撮像部、上記転送部及び上記出力部は、上記Si基板
に接するSiO2膜を含み、上記窒化酸化膜は、積層開始時
点では、SiH4及びNH3を供給し、時間経過と共に流量を
増加させつつN2Oを供給するプラズマCVD法により、基板
側から表面側に向かって酸素成分が連続的に増加するよ
うに形成することを特徴とする固体撮像素子の製造方
法。
1. An imaging section for capturing a two-dimensional optical image on a Si substrate and performing photoelectric conversion to obtain photocharges, a transfer section for transferring the photocharges of the imaging section, and an output charge of the transfer section. A method of manufacturing a solid-state image sensor that forms an output unit that converts a voltage value into a voltage value, and then forms the nitrided oxide film covering the imaging unit, the transfer unit, and the output unit. The output unit includes a SiO 2 film in contact with the Si substrate, and the nitrided oxide film supplies SiH 4 and NH 3 at the start of lamination, and supplies N 2 O while increasing the flow rate with time. A method for manufacturing a solid-state imaging device, wherein an oxygen component is continuously increased from a substrate side to a surface side by a plasma CVD method.
JP1341202A 1989-12-27 1989-12-27 Method for manufacturing solid-state imaging device Expired - Lifetime JP2895894B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1341202A JP2895894B2 (en) 1989-12-27 1989-12-27 Method for manufacturing solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1341202A JP2895894B2 (en) 1989-12-27 1989-12-27 Method for manufacturing solid-state imaging device

Publications (2)

Publication Number Publication Date
JPH03200367A JPH03200367A (en) 1991-09-02
JP2895894B2 true JP2895894B2 (en) 1999-05-24

Family

ID=18344163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1341202A Expired - Lifetime JP2895894B2 (en) 1989-12-27 1989-12-27 Method for manufacturing solid-state imaging device

Country Status (1)

Country Link
JP (1) JP2895894B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW349185B (en) * 1992-08-20 1999-01-01 Sony Corp A semiconductor device
JP2006332124A (en) * 2005-05-23 2006-12-07 Matsushita Electric Ind Co Ltd Solid-state image pickup element and manufacturing method thereof
US20110298005A1 (en) * 2007-10-12 2011-12-08 Lattice Power (Jiangxi) Corporation Method for fabricating an n-type semiconductor material using silane as a precursor

Also Published As

Publication number Publication date
JPH03200367A (en) 1991-09-02

Similar Documents

Publication Publication Date Title
JP3840214B2 (en) Photoelectric conversion device, method for manufacturing photoelectric conversion device, and camera using the same
US8183603B2 (en) Solid-state imaging device for inhibiting dark current
TWI419312B (en) Solid state imaging device, method for producing the same, and electronic apparatus
JP2621767B2 (en) Solid-state imaging device
CN100530666C (en) Image sensor and method for manufacturing the same
JP4006320B2 (en) Manufacturing method of image sensor with reduced dark current
US20080217723A1 (en) Backside illuminated cmos image sensor with pinned photodiode
TWI390722B (en) Solid-state imaging devices and electronic devices
KR20030040865A (en) Method of image sensor for reducing dark current
TW201535697A (en) Solid-state image sensing device and method for manufacturing the same
US20200035740A1 (en) Method of manufacturing solid-state image sensor, solid-state image sensor, and camera
US6127668A (en) Solid state image pickup device and method for manufacturing the same
JP2006332124A (en) Solid-state image pickup element and manufacturing method thereof
JP2005268643A (en) Solid-state image pickup element, camera module, and electronic equipment module
JP2895894B2 (en) Method for manufacturing solid-state imaging device
JP2009290089A (en) Solid state imaging device and method for manufacturing therefor
JPH01274468A (en) Manufacture of solid-state image sensing device
JPH0758772B2 (en) Method of manufacturing solid-state imaging device
JPH05291549A (en) Lamination type solid-state image sensing device
JP4569169B2 (en) Solid-state imaging device and manufacturing method thereof
JP3276906B2 (en) Solid-state imaging device and method of manufacturing solid-state imaging device
JP2008294242A (en) Solid imaging apparatus, and manufacturing method thereof
JP6945665B2 (en) Solid-state image sensor, electronic equipment and manufacturing method
JP2013179224A (en) Solid state image pickup element manufacturing method
JP4751846B2 (en) CCD solid-state imaging device