JP2895498B2 - Thermoformed polyester container - Google Patents

Thermoformed polyester container

Info

Publication number
JP2895498B2
JP2895498B2 JP5081089A JP5081089A JP2895498B2 JP 2895498 B2 JP2895498 B2 JP 2895498B2 JP 5081089 A JP5081089 A JP 5081089A JP 5081089 A JP5081089 A JP 5081089A JP 2895498 B2 JP2895498 B2 JP 2895498B2
Authority
JP
Japan
Prior art keywords
layer
polyethylene terephthalate
crystallinity
polyolefin
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5081089A
Other languages
Japanese (ja)
Other versions
JPH02229025A (en
Inventor
昭秀 藤田
寛 内藤
鉄太郎 橋村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP5081089A priority Critical patent/JP2895498B2/en
Publication of JPH02229025A publication Critical patent/JPH02229025A/en
Application granted granted Critical
Publication of JP2895498B2 publication Critical patent/JP2895498B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/02Bottles or similar containers with necks or like restricted apertures, designed for pouring contents
    • B65D1/0207Bottles or similar containers with necks or like restricted apertures, designed for pouring contents characterised by material, e.g. composition, physical features
    • B65D1/0215Bottles or similar containers with necks or like restricted apertures, designed for pouring contents characterised by material, e.g. composition, physical features multilayered

Landscapes

  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)
  • Laminated Bodies (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は改善されたオーブナブル食品容器、更に詳し
くは、成形性及び耐衝撃性の優れた熱成形部分結晶化ポ
リエステル容器に関する。
The present invention relates to an improved orbable food container, and more particularly to a thermoformed partially crystallized polyester container having excellent moldability and impact resistance.

〈従来の技術及び発明が解決しようとする問題点〉 ポリエチレンテレフタレート(PET)に代表される結
晶性ポリエステル樹脂は繊維を初めとしてシート,フィ
ルム用ポリマーとして広く使用されているが、その優れ
た耐薬品性及び低ガス透過性を生かして炭酸飲料、ジュ
ース、ビール等飲料用ボトル、化粧品容器、食品用トレ
ー等にも応用される様になって来た。中でも電子レンジ
/オーブンの急速な普及により、冷蔵庫や冷凍庫で保存
した食品をそのまま電子レンジ/オーブンで調理する機
会が増え、それに対応する熱安定性を有する容器の要求
が高まってきた。即ち、通常の電子レンジ/オーブンで
使用される200℃を超える温度に耐え、且つ、−20℃以
下の低温の保存中や搬送及び調理迄の取扱い中に於ても
破損しない容器が必要となって来た。
<Problems to be solved by the prior art and the invention> A crystalline polyester resin represented by polyethylene terephthalate (PET) is widely used as a polymer for sheets and films, including fibers, but has excellent chemical resistance. It has been applied to bottles for beverages such as carbonated beverages, juices and beers, cosmetic containers, trays for foods and the like by utilizing its properties and low gas permeability. Above all, due to the rapid spread of microwave ovens / oven, foods stored in refrigerators or freezers are more often cooked in microwave ovens / oven as they are, and the demand for correspondingly heat-stable containers has been increased. That is, a container is required that can withstand the temperature exceeding 200 ° C. used in a usual microwave oven / oven, and that is not damaged during storage at a low temperature of −20 ° C. or less, and handling during transportation and cooking. I came.

ポリエチレンテレフタレートの2軸延伸フィルムは、
耐熱性や機械的強度に優れるけれども真空成形の様な熱
成形が出来ず、ブリスターパック容器等の分野には採用
できない。従って、射出成形或いは、一旦シート状に押
出成形した後、該シートを変形させるのに充分な温度ま
で予熱して賦形する真空成形等の熱成形方が採用されて
いる。しかし、トレーの様な薄肉の成形品を得るにはフ
ローマークやウエルド層の発生しない後者の方法が有利
であり、一般的な方法として用いられている。賦形され
た成形品はそのままでは結晶化度が低く、200℃以上の
高温には全く耐えられるものではない。その為、賦形工
程と同じ、又は引続いて熱処理を行い結晶化度を上げ、
ポリエチレンテレフタレートの融点近く、即ち200℃以
上の耐熱性を付与している。
The biaxially stretched film of polyethylene terephthalate is
Although it is excellent in heat resistance and mechanical strength, it cannot be thermoformed such as vacuum forming and cannot be used in the field of blister pack containers and the like. Therefore, a thermoforming method such as injection molding or vacuum molding in which the sheet is once extruded and then preheated to a temperature sufficient to deform the sheet and shaped is employed. However, in order to obtain a thin molded product such as a tray, the latter method that does not generate a flow mark or a weld layer is advantageous, and is used as a general method. The molded article as formed has low crystallinity as it is, and cannot withstand high temperatures of 200 ° C. or more at all. Therefore, the same as the shaping process, or subsequent heat treatment to increase the crystallinity,
It has heat resistance close to the melting point of polyethylene terephthalate, that is, 200 ° C. or higher.

他成分を含まない未変性ポリエステルであっても前記
方法により、結晶化度を上げることは出来るが、加熱結
晶化温度を高くするかもしくは処理時間を長くする必要
があり、極めて生産性が悪い。又、金型表面に粘着し易
い傾向があり、成形品の変形を誘起し、製品の品位を低
下させる。加えて、該最終製品の衝撃強度が多くの用途
に対して不充分である。
Even with unmodified polyester containing no other components, the crystallinity can be increased by the above method, but it is necessary to increase the heating crystallization temperature or to increase the treatment time, and the productivity is extremely poor. In addition, it tends to stick to the surface of the mold, which induces deformation of the molded product and lowers the quality of the product. In addition, the impact strength of the final product is insufficient for many applications.

従って、結晶化度を速やかに上げる為の結晶成長の核
となる物質(核剤)と、衝撃改善効果を有するクラック
防止剤(好ましくはポリオレフィン)を配合するのが常
法である。これらの方法により製品の結晶化速度、耐衝
撃性が改善されているが、結晶化速度を速める為の核剤
により、該最終製品の結晶化度が上がり過ぎる為に衝撃
強度、特に低温時の衝撃強度が充分とはいえなかった。
Therefore, it is a common method to mix a substance (nucleating agent) which serves as a nucleus of crystal growth for rapidly increasing the degree of crystallinity and a crack preventing agent (preferably polyolefin) having an impact improving effect. Although the crystallization speed and impact resistance of the product are improved by these methods, the nucleating agent for increasing the crystallization speed causes the crystallinity of the final product to be too high, so that the impact strength, especially at low temperatures, The impact strength was not sufficient.

その為、結晶化促進効果とクラック防止効果を共有す
る高分子系核剤(好ましくはポリオレフィン)を配合す
る方法が考えられ、低温衝撃強度は大巾に改善された。
Therefore, a method of blending a high molecular nucleating agent (preferably polyolefin) that shares the crystallization promoting effect and the crack preventing effect has been considered, and the low-temperature impact strength has been greatly improved.

しかしながら、この様な方法では、高速で熱成形容器
を生産する場合、結晶化速度が充分でなく、製品を金型
から取りはずす場合に離型不良となり、型くずれを起こ
し製品の品位を著しく低下させるという問題点があっ
た。
However, in such a method, when producing a thermoformed container at a high speed, the crystallization speed is not sufficient, and when the product is removed from the mold, mold release failure occurs, the mold collapses, and the quality of the product is significantly reduced. There was a problem.

本発明者等は、このような従来の問題点を解決するた
めに鋭意検討した結果、組成の異なる2層構造を有する
シートから熱成形ポリエステル容器を製造することによ
り、優れた成形性、衝撃強度を達成できることを見出し
本発明に至った。
The present inventors have conducted intensive studies to solve such conventional problems, and as a result, by producing a thermoformed polyester container from a sheet having a two-layer structure having a different composition, excellent moldability and impact strength have been obtained. Have been achieved, and the present invention has been achieved.

〈問題を解決する為の手段〉 即ち、本発明は、平均粒子径0.1〜20μの無機粒子0.1
〜10重量%を含む固有粘度0.6〜0.95のポリエチレンテ
レフタレート(A層)及び、炭素原子2〜6個を含有す
るモノマーより誘導された繰り返し単位を有するポリオ
レフィンを1〜10重量%と結晶核剤を0〜3重量%含む
固有粘度0.7〜1.1のポリエチレンテレフタレート(B
層)を積層してシートとした後、A層側を金型に接触さ
せて熱成形したポリエステル容器である。
<Means for solving the problem> That is, the present invention provides an inorganic particle 0.1 having an average particle diameter of 0.1 to 20μ.
Polyethylene terephthalate (layer A) having an intrinsic viscosity of 0.6 to 0.95 containing 10 to 10% by weight, 1 to 10% by weight of a polyolefin having a repeating unit derived from a monomer having 2 to 6 carbon atoms, and a crystal nucleating agent. Polyethylene terephthalate having an intrinsic viscosity of 0.7 to 1.1 containing 0 to 3% by weight (B
Layer A) is laminated to form a sheet, and then the layer A is brought into contact with a mold to form a thermoformed polyester container.

本発明の構成要件について、以下説明する。 The constituent features of the present invention will be described below.

A層に用いる、ポリエチレンテレフタレートは、20℃
に於て重量比60/40のフェノール/テトラクロロエタン
混合溶媒中で測定した固有粘度が、0.6〜0.95が好まし
く、0.80〜0.9が特に好ましい。固有粘度の低いポリエ
チレンテレフタレートの方が結晶化速度の点からでは有
利ではあるが、低温衝撃が低くなる為、少なくとも0.6
が必要である。逆に固有粘度が0.95を超えるものは低温
時の衝撃に対して有利であるが、熱成形の際の結晶化速
度が遅くなり成形サイクルを上げる場合には不利であ
る。
Polyethylene terephthalate used for layer A is 20 ° C
The intrinsic viscosity measured in a phenol / tetrachloroethane mixed solvent having a weight ratio of 60/40 is preferably from 0.6 to 0.95, particularly preferably from 0.80 to 0.9. Polyethylene terephthalate having a low intrinsic viscosity is more advantageous in terms of the crystallization rate, but has a lower low-temperature impact.
is necessary. Conversely, those having an intrinsic viscosity of more than 0.95 are advantageous against impact at low temperatures, but are disadvantageous when the crystallization rate during thermoforming becomes slow and the molding cycle is increased.

また無機粒子としては、通常、タルク、マイカ、炭酸
カルシウム、炭酸マグネシウム、酸化チタン、酸化アル
ミニウム、シリカ、珪酸塩、硫酸バリウム、ワラストナ
イト、カオリン、カーボンブラック等があげられるが、
タルク、カーボンブラック、酸化亜鉛が好ましい。これ
らの中で特に優れた結晶化促進効果を有するものはタル
ク(主として3MgO・4SiO2・nH2O)である。また無機粒
子の平均粒子径は0.1〜20μのが好ましく特に0.5〜10μ
のものが好ましい。粒子径の小さいもの即ち、0.5μ未
満、特に0.1μ未満のものはマトリックスとなるポリエ
チレンテレフタレートに配合する時2次凝集が発生し易
く、核剤としての効果を損うばかりでなく凝集物による
成形品の外観、品位を低下させるという欠点を有する。
Examples of the inorganic particles include talc, mica, calcium carbonate, magnesium carbonate, titanium oxide, aluminum oxide, silica, silicate, barium sulfate, wollastonite, kaolin, and carbon black.
Talc, carbon black and zinc oxide are preferred. Of these, talc (mainly 3MgO.4SiO 2 .nH 2 O) having a particularly excellent crystallization promoting effect is provided. The average particle diameter of the inorganic particles is preferably 0.1 ~ 20μ, especially 0.5 ~ 10μ
Are preferred. Particles having a small particle diameter, that is, particles having a particle diameter of less than 0.5 μm, and particularly those having a particle diameter of less than 0.1 μm, are liable to cause secondary agglomeration when blended with polyethylene terephthalate as a matrix, and not only impair the effect as a nucleating agent, but also form with aggregates It has the drawback of deteriorating the appearance and quality of the product.

一方、粒子径が10μを超えるもの、特に20μを超える
ものは、結晶化促進効果が低い為、適当でない。またそ
の配合量は、0.1〜10重量%が必要であり、0.3〜7重量
%が好ましく、特に0.5〜5重量%が好ましい。配合量
が0.1%未満では未変形ポリエチレンテレフタレートの
結晶化速度と変わらず結晶化させる為の熱処理温度を高
くしたり、処理時間を長くしなければならず、金型から
の取外しが困難となったり生産性が低下し不適である。
一方配合量を多くしてゆくと熱成形時の到達結晶化度が
高くなり耐衝撃性が低下する傾向がある上、一定量以上
では大きな結晶化速度の向上はみられない。更に熱成形
時の賦型性が悪くなって、成形条件巾が狭くなる為、配
合量は、10重量%未満に抑えることが好ましい。
On the other hand, particles having a particle diameter of more than 10 μm, especially those having a particle diameter of more than 20 μm are not suitable because of a low crystallization promoting effect. The compounding amount is required to be 0.1 to 10% by weight, preferably 0.3 to 7% by weight, particularly preferably 0.5 to 5% by weight. If the compounding amount is less than 0.1%, the heat treatment temperature for crystallization must be increased or the treatment time must be increased without changing the crystallization rate of the undeformed polyethylene terephthalate, making it difficult to remove from the mold. Productivity decreases and is unsuitable.
On the other hand, when the blending amount is increased, the ultimate crystallinity during thermoforming tends to increase and the impact resistance tends to decrease. In addition, when the amount exceeds a certain amount, a large improvement in the crystallization rate is not observed. Further, the moldability at the time of thermoforming deteriorates and the range of molding conditions becomes narrow, so that the compounding amount is preferably suppressed to less than 10% by weight.

B層に用いるポリエチレンテレフタレートは20℃に於
て、重量比60/40のフェノール/テトラクロロエタン混
合溶媒中で測定した固有粘度が0.7〜1.1好ましくは0.85
〜1.05が必要である。固有粘度の低いポリエチレンテレ
フタレートは、低温衝撃が低くなる為に少なくとも0.7
好ましくは0.85以上が必要である。逆に固有粘度が1.1
を超えるものは、低温時の衝撃強度に対して有利である
が、シートとする時の溶融温度が極めて高くなり、その
為の粘度低下が大きくなって、実用上の利点はなくな
る。
The polyethylene terephthalate used in the layer B has an intrinsic viscosity of 0.7 to 1.1, preferably 0.85, measured at 20 ° C. in a phenol / tetrachloroethane mixed solvent having a weight ratio of 60/40.
~ 1.05 is required. Polyethylene terephthalate with a low intrinsic viscosity should be at least 0.7
Preferably, 0.85 or more is required. Conversely, the intrinsic viscosity is 1.1
If it exceeds 100, it is advantageous for the impact strength at low temperatures, but the melting temperature when forming a sheet becomes extremely high, and the viscosity is greatly reduced due to this, so that there is no practical advantage.

またポリオレフィンは炭素数2〜6個を含有するモノ
マーより誘導された繰り返し単位を有するものが適当で
あり、低密度ポリエチレン,線状低密度ポリエチレン,
高密度ポリエチレン,ポリプロピレン,ポリブテン,ポ
リペンテン,ポリメチルペンテンが例として挙げられ
る。中でもポリエチレン及びポリプロピレンが好まし
い。一般にポリオレフィンは、ポリエチレンテレフタレ
ートに比べガラス転移点が低く、衝撃に対して抗力を有
する。従って、ポリオレフィンを配合することにより、
結晶化度を上げたポリエチレンテレフタレートの耐衝撃
性を向上させることが出来る。該ポリオレフィンの配合
量は、1〜10重量%が必要であり、特に2〜8重量%が
好ましい。
The polyolefin preferably has a repeating unit derived from a monomer having 2 to 6 carbon atoms, and is preferably a low-density polyethylene, a linear low-density polyethylene,
Examples include high density polyethylene, polypropylene, polybutene, polypentene, polymethylpentene. Among them, polyethylene and polypropylene are preferred. In general, polyolefin has a lower glass transition point than polyethylene terephthalate and has resistance to impact. Therefore, by blending polyolefin,
The impact resistance of polyethylene terephthalate with increased crystallinity can be improved. The compounding amount of the polyolefin is required to be 1 to 10% by weight, and particularly preferably 2 to 8% by weight.

1重量%未満では、結晶化度が高くなったポリエチレ
ンテレフタレートの衝撃強度を上げることは難しい。一
方10重量%を超えると耐熱性の低下が大きくなり200℃
を超える使用に充分耐える事が出来なくなる。又、本発
明に於いて、B層は、衝撃強度を大巾に下げない程度の
無機粒子例えばTiOS2シリカ、マイカ等を少量含有して
もさしつかえない。通常熱成形後のスクラップは、多層
にかかわらず、粉砕乾燥してリサイクルされるが、A層
に含まれる無機粒子が少量B層に混入しても、衝撃強度
の低下はほとんど見られない。
If the content is less than 1% by weight, it is difficult to increase the impact strength of polyethylene terephthalate having increased crystallinity. On the other hand, if the content exceeds 10% by weight, the heat resistance is greatly reduced, and the
Cannot be used sufficiently. Further, in the present invention, the layer B may contain a small amount of inorganic particles such as TiOS 2 silica, mica, etc., which do not greatly reduce the impact strength. Normally, the scrap after thermoforming, regardless of the number of layers, is pulverized and dried for recycling. Even if a small amount of the inorganic particles contained in the A layer is mixed into the B layer, the impact strength is hardly reduced.

ところで、熱成形された製品の結晶化度は冷凍保存、
搬送時等の耐衝撃強度を低下させない為に不必要に高く
することは好ましくない。一般に、製品の結晶化度は15
〜30%程度が適当とされている。製品の結晶化度が、15
%未満では熱成形の際成形品取出し作業中の充分な寸法
安定性ができず、一方製品の結晶化度が30%を超えると
衝撃強度、特に低温時の衝撃強度が低下する。
By the way, the crystallinity of thermoformed products is kept frozen,
It is not preferable to increase the impact resistance unnecessarily so as not to reduce the impact resistance during transportation. Generally, the crystallinity of the product is 15
About 30% is considered appropriate. The crystallinity of the product is 15
If it is less than 30%, sufficient dimensional stability cannot be obtained during removal of the molded product during thermoforming, while if the crystallinity of the product exceeds 30%, the impact strength, particularly the impact strength at low temperatures, decreases.

通常の単層のシートにより熱成形ポリエステル容器を
製造する場合、タルク等の無機系核剤を含むものは製品
の結晶化度が高くなり、耐衝撃性が低下する傾向があ
る。一方、ポリオレフィン系核剤のみを含むものは、結
晶化速度が充分と言えず、高速熱成形に不適である。
When a thermoformed polyester container is produced from a normal single-layer sheet, those containing an inorganic nucleating agent such as talc tend to have a high degree of crystallinity of the product and have a reduced impact resistance. On the other hand, those containing only a polyolefin-based nucleating agent cannot be said to have a sufficient crystallization rate and are not suitable for high-speed thermoforming.

ところが、易結晶性の固有粘度の低いポリエチレンテ
レフタレートに結晶核剤である無機粒子(タルク)等を
配合した層Aと耐衝撃性に有利である固有粘度の高いポ
リエチレンテレフタレートに衝撃改善剤であるポリオレ
フィンを配合した層Bを積層させたシートを、A層側を
金型に接触させて熱成形した場合、優れたハイサイクル
性と低温衝撃性を同時に達成できることがわかった。つ
まり、結晶化速度の異なる2層のシートを熱成形するこ
とにより、成形品の結晶化度を自由にコントロールする
ことが可能となったわけである。A層は極めて速い結晶
化速度をもち、短時間の熱成形により結晶化度が高まる
為、ハイサイクル成形においても結晶化度不足による離
型性不良を起こすことはない。一方B層は、A層に比べ
てやや結晶化速度が遅い為に、熱成形時の到達結晶化度
が低く抑えられ、更に衝撃改善剤としてのポリオレフィ
ンを含有する為、低温時の衝撃強度に非常に優れる。こ
の様な特徴を有する2層を積層したシートより熱成形を
行なう場合A層の結晶化度は25〜35%,B層の結晶化度は
15〜25%にすることが好ましい。A層、B層の各結晶化
度は、各層の組成、熱成形時の金型温度、成形時間によ
り自由にコントロール可能である。一般に、ポリオレフ
ィン特に好ましくはポリエチレン及び/又はポリプロピ
レンを配合する事により、到達結晶化度を低くコントロ
ールする事が可能である。
However, layer A in which inorganic particles (talc) or the like as a crystal nucleating agent is blended with easily crystallizable polyethylene terephthalate having a low intrinsic viscosity and polyethylene terephthalate having a high intrinsic viscosity which is advantageous in impact resistance and polyolefin which is an impact modifier It was found that when the sheet in which the layer B containing the compound was laminated was thermoformed while the layer A was in contact with a mold, excellent high cycle properties and low-temperature impact resistance could be simultaneously achieved. That is, by thermoforming two layers of sheets having different crystallization rates, the degree of crystallinity of the molded article can be freely controlled. The A layer has an extremely high crystallization rate, and the degree of crystallinity is increased by short-time thermoforming. Therefore, poor releasability due to insufficient degree of crystallinity does not occur even in high cycle molding. On the other hand, the B layer has a slightly lower crystallization rate than the A layer, so that the reached crystallinity during thermoforming is suppressed to a low level, and further contains a polyolefin as an impact modifier, so that the impact strength at a low temperature is reduced. Very good. When performing thermoforming from a sheet in which two layers having such characteristics are laminated, the crystallinity of the layer A is 25 to 35% and the crystallinity of the layer B is
Preferably it is 15 to 25%. The crystallinity of each of the A layer and the B layer can be freely controlled by the composition of each layer, the mold temperature during thermoforming, and the molding time. In general, it is possible to control the ultimate crystallinity to be low by blending a polyolefin, particularly preferably polyethylene and / or polypropylene.

本発明において積層シートのA層の占める厚さの割合
は30%以下が好ましく特に10%以下が好ましい。A層の
割合が30%よりも大きくなった場合、B層による衝撃改
善効果は小さくなる。
In the present invention, the ratio of the thickness occupied by the layer A of the laminated sheet is preferably 30% or less, particularly preferably 10% or less. When the ratio of the layer A is larger than 30%, the effect of improving the impact by the layer B is reduced.

本発明は、優れたハイサイクル性、衝撃強度を有する
が、約140〜170℃で熱成形された製品が実際に電子レン
ジ/オーブンで200℃以上で加熱調理される時には、結
晶化度が更に上昇し40〜55%程度になるので充分な耐熱
性を有していることは言うまでもない。
The present invention has an excellent high cycle property and impact strength, but when a product thermoformed at about 140 to 170 ° C. is actually cooked at 200 ° C. or more in a microwave oven / oven, the crystallinity is further increased. Needless to say, it has sufficient heat resistance since it rises to about 40 to 55%.

〈発明の効果〉 本発明容器は、高い結晶化速度による短い熱成形サイ
クルと適度に抑制された結晶化度による改善された低温
衝撃強度及び高温使用時に高められた結晶化度による優
れた耐熱性が得られるという極めて秀でた特性を備えて
おり、TVディナーと称される調理済冷凍食品容器等に最
適である。
<Effects of the Invention> The container of the present invention has an improved low-temperature impact strength due to a short thermoforming cycle due to a high crystallization rate and a moderately suppressed crystallinity and excellent heat resistance due to an increased crystallinity when used at a high temperature. It is very suitable for cooking frozen food containers called TV dinners.

〈実施例〉 実施例1〜5及び比較例1〜8 20℃の重量比60/40のフェノール/テトラクロロエタ
ン混合溶媒中で測定した固有粘度が0.6〜1.2のポリエチ
レンテレフタレートを水分率0.01%以下に乾燥した後、
下記第1表に示した割合で無機粒子(タルク)を配合さ
せたA層及びポリオレフィン(線状低密度ポリエチレ
ン)を配合させたB層を共押出機によりシートの厚みを
全体に占めるA層の割合が10%であるシートを作製し、
該シートを直接チルドキャスティングロール上に押出し
急冷させる。次いで該シートを予熱し柔らかい状態に
し、雌型を取り付けた熱成形機によって第1表に示した
成形サイクル及び金型温度165℃で熱成形を行って、縦1
57mm×横110mm×深さ34mmの容器を作製し、下記の事項
について、評価を行った。
<Examples> Examples 1 to 5 and Comparative Examples 1 to 8 A polyethylene terephthalate having an intrinsic viscosity of 0.6 to 1.2 measured in a phenol / tetrachloroethane mixed solvent having a weight ratio of 60/40 at 20 ° C to a water content of 0.01% or less. After drying,
The layer A containing the inorganic particles (talc) and the layer B containing the polyolefin (linear low-density polyethylene) at the ratios shown in Table 1 below were mixed with a layer A occupying the entire thickness of the sheet by a co-extruder. Produce a sheet with a ratio of 10%,
The sheet is extruded directly onto a chilled casting roll and quenched. Next, the sheet was preheated to a soft state, and subjected to thermoforming at a molding cycle shown in Table 1 and a mold temperature of 165 ° C. by a thermoforming machine equipped with a female mold.
A container having a size of 57 mm × width 110 mm × depth 34 mm was prepared, and the following items were evaluated.

1.耐衝撃性:容器に水200gを入れシールし、−30℃中で
24時間放置した後、コンクリートの床面に容器の底部を
下にして落下させ、50%破壊時の高さを測定し、60cm未
満を×,60〜80cmを△,80cm以上を○とした。
1. Impact resistance: Put 200g of water in a container and seal, at -30 ℃
After standing for 24 hours, the container was dropped on a concrete floor surface with the bottom of the container facing down, and the height at the time of 50% destruction was measured. X: less than 60 cm, Δ: 60 to 80 cm, and ○: 80 cm or more.

2.離型性:成形体を金型より離型させる時の形状のくず
れ状態にて評価する。金型通りの形状で円滑に成形体が
取り出せた場合○,寸法が0〜2mm延びた形状で取り出
された場合を△,2mm以上延びた形状で取り出された場合
を×とした。
2. Releasability: Evaluate the shape of the molded product when it is released from the mold. The case where the molded body could be taken out smoothly in the shape according to the mold was evaluated as ○, the case where the molded body was taken out in a shape extending from 0 to 2 mm was rated as Δ, and the case where the molded body was taken out in a shape extending 2 mm or more was considered as ×.

3.耐熱性:成形品を220℃のオーブンに60分間放置し
て、全く変形のないものを○,容器側部のふくれや底部
のへこみが2mm以内の場合を△,2mm以上の場合を×とし
た。但し、良好な外観を有する成形品が得られたものの
み評価を行った。
3. Heat resistance: Leave the molded product in a 220 ° C oven for 60 minutes. ○: No deformation at all, ○: Bubble on the side of the container or dent on the bottom within 2 mm, ×: 2 mm or more And However, only a molded article having a good appearance was evaluated.

得られた結果を第1表に示す。 Table 1 shows the obtained results.

ポリエチレンテレフタレートの固有粘度が0.65以下の
場合、結晶化は素速く進行し、離型性に優れるけれど
も、衝撃改善剤としてのポリオレフィンを配合しても衝
撃強度に著しく劣り好ましくない。一方固有粘度が、1.
1以上の場合には、結晶化の進行が遅い為に、金型から
の離型性が悪くなる。本発明においてポリエチレンテレ
フタレートの固有粘度は0.7〜1.0のものが好ましいこの
が判る。一般にポリエチレンテレフタレート結晶化速度
が遅いが、ポリオレフィンあるいは無機粒子等の核剤を
配合したものは、結晶化が促進され、10秒以内のサイク
ルで熱成形を行うことが出来る。しかし、核剤として無
機粒子を配合せずポリオレフィンを配合したものは、耐
衝撃性に優れるが、結晶化速度が不充分であり、成形サ
イクルを6秒以下にした場合に金型からの離型不良を起
こす。
When the intrinsic viscosity of polyethylene terephthalate is 0.65 or less, crystallization proceeds rapidly and the releasability is excellent. However, even if a polyolefin as an impact modifier is blended, the impact strength is remarkably inferior, which is not preferable. On the other hand, the intrinsic viscosity is 1.
In the case of 1 or more, since the progress of crystallization is slow, the releasability from the mold is deteriorated. In the present invention, it is understood that the intrinsic viscosity of polyethylene terephthalate is preferably 0.7 to 1.0. In general, polyethylene terephthalate has a low crystallization rate, but the one containing a nucleating agent such as polyolefin or inorganic particles promotes crystallization and can be thermoformed in a cycle of 10 seconds or less. However, those containing a polyolefin without inorganic particles as a nucleating agent are excellent in impact resistance, but have insufficient crystallization speed, and are released from the mold when the molding cycle is set to 6 seconds or less. Cause a defect.

一般にポリオレフィンの配合量を増やす事により、熱
成形時の金型離型は改良されるが、反面、耐熱性が低下
する傾向がありポリオレフィンを10%以上含むものは、
220℃以上の使用には不適である。又、比較的低粘度のP
ETにポリオレフィンを配合する事により結晶化速度が改
善され、金型離型性は向上するが、反面ポリオレフィン
の衝撃改善効果は著しく低下する。
Generally, by increasing the amount of the polyolefin, the mold release during thermoforming can be improved, but on the other hand, the heat resistance tends to decrease and those containing 10% or more of the polyolefin are:
Not suitable for use above 220 ° C. Also, relatively low viscosity P
By blending polyolefin with ET, the crystallization rate is improved and mold releasability is improved, but the impact improvement effect of polyolefin is significantly reduced.

一方核剤として、タルク等の無機粒子を配合した場合
結晶化が素速く進行し、離型性に優れるけれども耐衝撃
性に劣り、衝撃改善剤としてのポリオレフィンを併用し
た場合においても、その傾向は変わらない。
On the other hand, when inorganic particles such as talc are blended as a nucleating agent, crystallization progresses rapidly, and although excellent in releasability, impact resistance is poor, and even when polyolefin as an impact modifier is used in combination, the tendency is does not change.

無機粒子の平均粒子径は、小さい方が好ましいが、マ
トリックスとなるPET中で二次凝集が起こる0.1ミクロン
以下に好ましくない事が判る。
It is understood that the average particle diameter of the inorganic particles is preferably small, but is not preferable to be 0.1 μm or less, at which secondary aggregation occurs in PET as a matrix.

実施例6,7及び比較例9,10 固有粘度0.85のポリエチレンテレフタレートにタルク
(平均粒子径3〜5μ)を0.3%配合したA層及び固有
粘度0.95のポリエチレンテレフタレートに低密度ポリエ
チレン(メルトインデックス1.0)を3%配合したB層
を共押出機によりA層とB層の割合が表−2に示す通り
のシートを作製し、前記実施例と同様な方法で熱成形を
行った。評価も前記実施例と同様の方法で実施し、得ら
れた結果を、下記第2表に示す。
Examples 6 and 7 and Comparative Examples 9 and 10 A layer containing 0.3% of talc (average particle diameter of 3 to 5 μm) in polyethylene terephthalate having an intrinsic viscosity of 0.85 and low density polyethylene (melt index of 1.0) in polyethylene terephthalate having an intrinsic viscosity of 0.95 Was prepared by using a co-extruder to form a sheet having the ratio of the A layer and the B layer as shown in Table 2, and thermoforming was performed in the same manner as in the above example. Evaluation was carried out in the same manner as in the above-mentioned Example, and the obtained results are shown in Table 2 below.

実施例6及び7のA層の占める厚さの割合が30%以下
の共押出しシートにより、作製したトレーは、A層の有
する速い結晶化速度による優れた成形及び離型性とB層
の有する優れた耐衝撃性の特性を合せ持つものであっ
た。
The co-extruded sheet of Example 6 and 7 in which the proportion of the layer occupied by the layer A is 30% or less shows that the tray produced has excellent molding and releasability due to the high crystallization rate of the layer A and the layer B. It had excellent impact resistance characteristics.

比較例9におけるB層のみのものは結晶化速度が遅い
ため成形サイクルを5秒にした場合、成形性が良好では
ないことが判る。一方比較例10のA層の割合が30%を超
えるものは、衝撃強度が低く不適である。
In the case of Comparative Example 9, only the layer B had a low crystallization rate, so that when the molding cycle was set to 5 seconds, the moldability was not good. On the other hand, when the ratio of the layer A in Comparative Example 10 exceeds 30%, the impact strength is low and is not suitable.

フロントページの続き (56)参考文献 特開 昭59−14948(JP,A) 特開 昭59−62149(JP,A) 特開 平2−127437(JP,A) 特開 平1−272659(JP,A) 特公 昭62−1894(JP,B2) 特公 昭63−56066(JP,B2) (58)調査した分野(Int.Cl.6,DB名) B29C 51/00 - 51/46 B32B 27/36 B65D 1/00 Continuation of the front page (56) References JP-A-59-14948 (JP, A) JP-A-59-62149 (JP, A) JP-A-2-127374 (JP, A) JP-A 1-272659 (JP) , A) JP-B-62-1894 (JP, B2) JP-B-63-56066 (JP, B2) (58) Fields investigated (Int. Cl. 6 , DB name) B29C 51/00-51/46 B32B 27/36 B65D 1/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】平均粒子径0.1〜20μの無機粒子0.1〜10重
量%を含む固有粘度0.6〜0.95のポリエチレンテレフタ
レート(A層)及び炭素原子2〜6個を含有するモノマ
ーより誘導された繰り返し単位を有するポリオレフィン
を1〜10重量%と結晶核剤を0〜3重量%含む固有粘度
0.7〜1.1のポリエチレンテレフタレート(B層)を積層
してシートとした後、A層側を金型に接触させて熱成形
したことを特徴とするポリエステル容器。
1. A repeating unit derived from polyethylene terephthalate (A layer) having an intrinsic viscosity of 0.6 to 0.95 containing 0.1 to 10% by weight of inorganic particles having an average particle diameter of 0.1 to 20 μm and a monomer containing 2 to 6 carbon atoms. Viscosity containing 1 to 10% by weight of a polyolefin having olefin and 0 to 3% by weight of a nucleating agent
A polyester container obtained by laminating 0.7 to 1.1 polyethylene terephthalate (layer B) to form a sheet, and then thermoforming the layer A by contacting the layer A side with a mold.
JP5081089A 1989-03-01 1989-03-01 Thermoformed polyester container Expired - Lifetime JP2895498B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5081089A JP2895498B2 (en) 1989-03-01 1989-03-01 Thermoformed polyester container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5081089A JP2895498B2 (en) 1989-03-01 1989-03-01 Thermoformed polyester container

Publications (2)

Publication Number Publication Date
JPH02229025A JPH02229025A (en) 1990-09-11
JP2895498B2 true JP2895498B2 (en) 1999-05-24

Family

ID=12869120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5081089A Expired - Lifetime JP2895498B2 (en) 1989-03-01 1989-03-01 Thermoformed polyester container

Country Status (1)

Country Link
JP (1) JP2895498B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3442874A4 (en) * 2016-04-11 2020-01-08 Dak Americas LLC Polyester containers and films with reduced gas permeability

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3442874A4 (en) * 2016-04-11 2020-01-08 Dak Americas LLC Polyester containers and films with reduced gas permeability
US11186713B2 (en) 2016-04-11 2021-11-30 Dak Americas Llc Polyester containers and films with reduced gas permeability

Also Published As

Publication number Publication date
JPH02229025A (en) 1990-09-11

Similar Documents

Publication Publication Date Title
US4981631A (en) Process for making lightweight polyester articles
US5352401A (en) Process for producing elevated temperature dimensionally stable polyester articles with low gas permeability
US6077904A (en) Elevated temperature dimensionally stable, impact modified polyester with low gas permeability
US4463121A (en) Thermoforming partially crystalline polyester articles
EP0625091B1 (en) Elevated temperature dimensionally stable polyester with low gas permeability
JPS63288748A (en) Polymer multilayer sheet proper to manufacture of microwave processable vessel and vessel manufactured from said sheet
JPH04345656A (en) Polyester composition suitable for use in thermoforming tray usable in double oven
US5747127A (en) Polyester composition for use in thermoforming dual-ovenable trays
US5346733A (en) Elevated temperature dimensionally stable polyester articles with low gas permeability
JP4758097B2 (en) Multilayer stretch molding
US5431972A (en) Nucleation of crystallization in polyesters
JP2895498B2 (en) Thermoformed polyester container
JPH0562067B2 (en)
US5843545A (en) Polyester composition for use in thermoforming dual-ovenable trays
JPH01289826A (en) Polyester molding
JP2781590B2 (en) Thermoformed polyester container
JP2546800B2 (en) Thermoformed polyester container
JPH081767A (en) Polyester vessel with excellent impact resistance
JP2546799B2 (en) Polyester container
JPH02127437A (en) Sheet comprising polyester resin composition and hot-molded material thereof
JPH02269761A (en) Thermoformed polyester container
JPH0747648B2 (en) Polyester sheet and thermoformed body thereof
JPH0747647B2 (en) Polyester sheet and thermoformed body thereof
JP2005103777A (en) Polyester molded product and its manufacturing method
JPH07278419A (en) Polyester resin composition

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 10

EXPY Cancellation because of completion of term