JP2894377B2 - Method for manufacturing molten carbonate fuel cell - Google Patents

Method for manufacturing molten carbonate fuel cell

Info

Publication number
JP2894377B2
JP2894377B2 JP3123722A JP12372291A JP2894377B2 JP 2894377 B2 JP2894377 B2 JP 2894377B2 JP 3123722 A JP3123722 A JP 3123722A JP 12372291 A JP12372291 A JP 12372291A JP 2894377 B2 JP2894377 B2 JP 2894377B2
Authority
JP
Japan
Prior art keywords
electrolyte
air electrode
electrode
gas
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3123722A
Other languages
Japanese (ja)
Other versions
JPH04351854A (en
Inventor
洋司 藤田
隆 西村
一直 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3123722A priority Critical patent/JP2894377B2/en
Publication of JPH04351854A publication Critical patent/JPH04351854A/en
Application granted granted Critical
Publication of JP2894377B2 publication Critical patent/JP2894377B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、溶融炭酸塩型燃料電
池の製造方法に関し、特に、高積層体の運転起動時に問
題となる空気極の厚みの縮みの防止対策に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a molten carbonate fuel cell, and more particularly to a measure for preventing a reduction in the thickness of an air electrode, which is a problem at the time of starting operation of a high stack.

【0002】[0002]

【従来の技術】従来のこの種の燃料電池の構成を示す
と、図2のとおりである。例えば、アルカリ金属炭酸塩
を電解質とする溶融炭酸塩型燃料電池は、一般に電解質
と電解質を保持する物質とからなる電解質層1と、この
電解質層1を挟み込むように設けられている燃料極2及
び空気極3とを備えており、更に、集電作用及びこれら
の電池部材を物理的に支持して反応ガスを流す目的を持
つ燃料極2側の集電板4、燃料極側ガス流路板5及びセ
パレーター6aの燃料極2に対向する面よりなる燃料極
側ガス室7と、空気極3側の集電板8、空気極側ガス流
路板9及びセパレーター6bの空気極3に対向する面よ
りなる空気極側ガス室10とより構成されている。
2. Description of the Related Art FIG. 2 shows the structure of a conventional fuel cell of this type. For example, a molten carbonate fuel cell using an alkali metal carbonate as an electrolyte generally includes an electrolyte layer 1 made of an electrolyte and a substance holding the electrolyte, and a fuel electrode 2 provided so as to sandwich the electrolyte layer 1. A current collector plate 4 on the fuel electrode 2 side, which has a current collecting function and a purpose of physically supporting these battery members and flowing a reaction gas, and a fuel electrode side gas flow path plate; 5 and a fuel electrode side gas chamber 7 composed of a surface of the separator 6a facing the fuel electrode 2, and a current collector 8 on the air electrode 3 side, an air electrode side gas flow path plate 9 and the air electrode 3 of the separator 6b. It is composed of an air electrode side gas chamber 10 composed of a surface.

【0003】図3に例えば特開平2−299156号公
報に示されている従来のセルにおける、電池運転加熱前
の電解質層および電極断面の模式図を示す。図におい
て、14は電解質層1成形時に電解質層1に可とう性を
付与するために添加され、例えば組成、ポリビニルアル
コール、アルキルフタレート、ポリアルキレングリコー
ルからなる有機物である。11は電解質を保持する役目
の平均粒径0.5μmのLiAlO2 粒子である。この
電解質層1の脱脂後の平均孔径は約0.4μmである。
FIG. 3 is a schematic diagram showing a cross section of an electrolyte layer and electrodes of a conventional cell shown in, for example, Japanese Patent Application Laid-Open No. 2-299156 before the battery is heated for operation. In the figure, reference numeral 14 denotes an organic substance which is added for imparting flexibility to the electrolyte layer 1 at the time of forming the electrolyte layer 1 and comprises, for example, a composition, polyvinyl alcohol, alkyl phthalate, and polyalkylene glycol. Reference numeral 11 denotes LiAlO 2 particles having an average particle size of 0.5 μm, which serves to hold an electrolyte. The average pore size of the electrolyte layer 1 after degreasing is about 0.4 μm.

【0004】また、燃料極2は例えばNiに5WT%の
アルミニウムを含有するニッケル合金粒子12の焼結多
孔体(気孔率60%、平均孔径5μm)よりなってお
り、その空孔の80体積%を埋めるだけのL/K=62
/38共晶電解質17(62モル%の炭酸リチウムと3
8モル%の炭酸カリウム)をあらかじめ含浸したもので
ある。
The fuel electrode 2 is made of, for example, a sintered porous body (porosity: 60%, average pore diameter: 5 μm) of nickel alloy particles 12 containing 5 wt% of aluminum in Ni, and 80% by volume of the pores L / K = 62 just to fill
/ 38 eutectic electrolyte 17 (62 mol% lithium carbonate and 3
8 mol% of potassium carbonate).

【0005】また、空気極3にはニッケル粒子13の多
孔体(気孔率70%、平均孔径10μm)を用い、その
空孔の65体積%を埋めるだけのL/K=62/38共
晶電解質17(62モル%の炭酸リチウムと38モル%
の炭酸カリウム)をあらかじめ含浸したものを用いる。
Further, a porous body of nickel particles 13 (porosity 70%, average pore diameter 10 μm) is used for the air electrode 3, and an L / K = 62/38 eutectic electrolyte is used to fill 65% by volume of the pores. 17 (62 mol% lithium carbonate and 38 mol%
Which is previously impregnated with potassium carbonate).

【0006】次に、図3に示すようにL/K=62/3
8共晶電解質17を含むニッケル合金粒子12の多孔体
である燃料極2、電解質保持体であるLiAlO2 粒子
11とバインダー可塑剤等の有機物14を含む電解質層
1、燃料極2側と同じ組成のL/K=62/38共晶電
解質17を含むニッケル粒子13の多孔体である空気極
3からなる溶融炭酸塩型燃料電池の従来の製造方法につ
いて説明する。なお、その過程の昇温パターンと燃料
極、空気極への供給ガスの組成を図4に、また、気孔率
75%のニッケル多孔体の昇温時の厚み変化の様子を図
5に示す。なお、図5では面圧は5Kg/cm2 、供給
ガスはN2 :CO2 =70:30であり、実線は電解質
を含浸しない場合、破線はL/K=62/38共晶電解
質を60体積%含浸した場合、一点鎖線はL/K=80
/20共晶電解質を65体積%含浸した場合を示す。
Next, as shown in FIG. 3, L / K = 62/3
Fuel electrode 2 which is a porous body of nickel alloy particles 12 containing eutectic electrolyte 17, electrolyte layer 1 containing LiAlO 2 particles 11 which are electrolyte holders and organic matter 14 such as a binder plasticizer, and the same composition as fuel electrode 2 side A conventional method for producing a molten carbonate fuel cell comprising the air electrode 3 which is a porous body of nickel particles 13 containing the L / K = 62/38 eutectic electrolyte 17 will be described. FIG. 4 shows the heating pattern and the composition of the gas supplied to the fuel electrode and the air electrode in the process, and FIG. 5 shows how the thickness of the nickel porous body having a porosity of 75% changes when the temperature is raised. In FIG. 5, the contact pressure is 5 kg / cm 2 , the supply gas is N 2 : CO 2 = 70: 30, the solid line is the case where the electrolyte is not impregnated, and the broken line is the L / K = 62/38 eutectic electrolyte. When impregnated by volume%, the one-dot chain line is L / K = 80
This shows a case in which a / 20 eutectic electrolyte is impregnated with 65% by volume.

【0007】室温ではニッケル粒子13の多孔体である
空気極3は酸化がはじまる380℃までは電解質層1内
に含まれる有機物14を焼き飛ばすために燃料極、空気
極へはとも空気を供給する。この段階ではニッケル粒子
13の多孔体自体の強度のためと電極に含まれるL/K
=62/38共晶電解質17が固体であるために電極の
縮みは生じない(図5の破線参照)。
At room temperature, the air electrode 3, which is a porous body of the nickel particles 13, supplies air to both the fuel electrode and the air electrode until 380.degree. . At this stage, the strength of the porous body itself of the nickel particles 13 and the L / K
= 62/38 The eutectic electrolyte 17 is a solid, so that no shrinkage of the electrode occurs (see the broken line in FIG. 5).

【0008】380℃において空気雰囲気下で電解質層
1内の有機物14を焼き飛ばした後、電解質が融解して
(488℃)電解質層1内の空孔を満たしてガスの隔壁
を構成する(ガスを透過させなくなる)まで燃料極2の
酸化を防ぐために、空気極3側に酸化性のガスを流すこ
とは好ましくない。従って燃料極2側、空気極3側の両
側に窒素とL/K=62/38共晶電解質17の分解を
防止するための炭酸ガスを流す。
After burning off the organic substance 14 in the electrolyte layer 1 at 380 ° C. in an air atmosphere, the electrolyte is melted (488 ° C.) to fill the pores in the electrolyte layer 1 to form a gas partition (gas). It is not preferable to flow an oxidizing gas toward the air electrode 3 in order to prevent the oxidation of the fuel electrode 2 until the fuel electrode 2 does not pass through). Accordingly, nitrogen and carbon dioxide gas for preventing the decomposition of the L / K = 62/38 eutectic electrolyte 17 are flown to both sides of the fuel electrode 2 side and the air electrode 3 side.

【0009】L/K=62/38共晶電解質17が融解
したことを確認して(約500℃)、燃料極2側に水素
と炭酸ガスの混合ガスを、空気極3側に空気と炭酸ガス
の混合ガスをそれぞれ流す。この段階で空気極3を酸化
して酸化ニッケルの多孔構造を構成する。
After confirming that the L / K = 62/38 eutectic electrolyte 17 has melted (about 500 ° C.), a mixed gas of hydrogen and carbon dioxide is supplied to the fuel electrode 2 side, and air and carbon dioxide are supplied to the air electrode 3 side. A mixture of gases is flowed. At this stage, the air electrode 3 is oxidized to form a nickel oxide porous structure.

【0010】このあと約500℃での空気極3の酸化処
理が済んだ溶融炭酸塩型燃料電池を燃料極側に水素と炭
酸ガスの混合ガス、空気極3側に空気と炭酸ガスの混合
ガスを流して運転温度の650℃まで昇温する。
Then, the molten carbonate fuel cell, which has been subjected to the oxidation treatment of the air electrode 3 at about 500 ° C., is supplied with a mixed gas of hydrogen and carbon dioxide gas on the fuel electrode side and a mixed gas of air and carbon dioxide gas on the air electrode 3 side. To raise the temperature to the operating temperature of 650 ° C.

【0011】以上の一連の昇温過程での空気極3に対す
る面圧は約2Kg/cm2 である。空気極3が酸化され
ておらずL/K=62/38共晶電解質17が融解した
段階380〜500℃で空気極3の縮みが生じるが、小
規模の溶融炭酸塩型燃料電池積層体ではその間の面圧が
2Kg/cm2 と低いことと昇温に要する時間、すなわ
ち空気極3を酸化するのに必要な時間が短いことによっ
て、昇温時の空気極3の縮みは昇温開始前の厚みの10
%以下に抑えられている。
The surface pressure applied to the air electrode 3 during the above-described series of heating processes is about 2 kg / cm 2 . Although the air electrode 3 is not oxidized and the L / K = 62/38 eutectic electrolyte 17 melts, the air electrode 3 shrinks at 380 to 500 ° C., but in a small-scale molten carbonate fuel cell stack, Since the surface pressure during this time is as low as 2 kg / cm 2 and the time required for temperature rise, that is, the time required for oxidizing the air electrode 3 is short, the shrinkage of the air electrode 3 at the time of temperature rise is before the start of temperature rise. Thickness of 10
% Or less.

【0012】[0012]

【発明が解決しようとする課題】従来の装置は以上のよ
うに製造されているので、電池高積層化による重量増に
よって面圧を2Kg/cm2 以下とすることができなく
なると、運転初期の空気極3の縮みが、電解質がとけて
いるがまだ空気極3が酸化していない間に10%以上生
じ、空気極3のポロシティが低下することによって特性
が劣化し、小型電池と同等な効率で発電運転ができなく
なるという問題点があった。
Since the conventional apparatus is manufactured as described above, if the surface pressure cannot be reduced to 2 kg / cm 2 or less due to the increase in weight due to the high stacking of the batteries, the initial operation of the apparatus will be reduced. Shrinkage of the cathode 3 occurs 10% or more while the electrolyte is melted but the cathode 3 is not yet oxidized, and the porosity of the cathode 3 is deteriorated so that the characteristics are deteriorated and the efficiency is equivalent to that of a small battery. There is a problem that power generation operation cannot be performed.

【0013】この発明は上記のような問題点を解決する
ためになされたもので、高積層化された燃料電池におい
ても空気極の著しい縮みを避けることのできる、溶融炭
酸塩型燃料電池の製造方法を得ることを目的している。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and is intended to manufacture a molten carbonate fuel cell capable of avoiding remarkable shrinkage of an air electrode even in a highly stacked fuel cell. The aim is to get the way.

【0014】[0014]

【課題を解決するための手段】この発明に係る溶融炭酸
塩型燃料電池の製造方法は、ニッケル、銅、および鉄の
うちの少なくとも一種の金属を含み孔部に電解質を保持
する多孔体からなる空気極、並びに有機物を含む電解質
層を有し、昇温により、上記有機物を焼き飛ばす工程
上記空気極に保持される電解質より低融点の電解質を溶
融して上記有機物跡に含浸する工程、および上記電解質
層が電解質の含浸によりガスを透過せずしかも上記空気
極の電解質がまだ完全に溶けない状態で上記空気極に酸
化ガスを流して上記空気極の金属を酸化する工程を備え
るものである。
A method of manufacturing a molten carbonate fuel cell according to the present invention comprises a porous body containing at least one metal of nickel, copper and iron and holding an electrolyte in a hole. An air electrode, and an electrolyte layer containing an organic substance, and a step of burning off the organic substance by raising the temperature;
A step of melting an electrolyte having a lower melting point than the electrolyte held by the air electrode to impregnate the organic substance traces, and the electrolyte layer does not allow gas to permeate due to the impregnation of the electrolyte, and the electrolyte of the air electrode is still completely dissolved. A step of flowing an oxidizing gas to the air electrode in a non-existent state to oxidize the metal of the air electrode.

【0015】[0015]

【作用】この発明によれば、低融点電解質が空気極3内
の高融点電解質よりも低温で融解して電解質層内の細孔
を埋めてガスの隔壁をつくる。そのとき空気極内の高融
点電解質は完全に溶解していない。この溶解していない
高融点電解質が酸化前の金属を有する空気極が縮むこと
を防ぐ。ガスの隔壁が形成された段階で、燃料極には還
元性のガスを供給して燃料極の酸化による電池特性の劣
化を防ぎ、一方で空気極に酸化ガスを供給して空気極に
保持される高融点電解質が完全に溶解しないうちに縮み
を防止しつつ空気極の酸化をすることができる。
According to the present invention, the low-melting-point electrolyte melts at a lower temperature than the high-melting-point electrolyte in the air electrode 3 and fills the pores in the electrolyte layer to form a gas partition. At that time, the high melting point electrolyte in the air electrode is not completely dissolved. The unmelted high melting point electrolyte prevents the air electrode having the metal before oxidation from shrinking. At the stage when the gas partition is formed, a reducing gas is supplied to the fuel electrode to prevent deterioration of the cell characteristics due to oxidation of the fuel electrode, while an oxidizing gas is supplied to the air electrode to be held by the air electrode. The air electrode can be oxidized while preventing shrinkage before the high melting point electrolyte is completely dissolved.

【0016】[0016]

【実施例】以下、この発明の一実施例を図について説明
する。図1はこの発明の一実施例の電池加熱前における
電解質層と空気極および燃料極との積層体の断面模式図
である。図において、14および11は図3に示す従来
例と同一である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic cross-sectional view of a laminate of an electrolyte layer, an air electrode, and a fuel electrode before heating a battery according to an embodiment of the present invention. In the figure, reference numerals 14 and 11 are the same as those in the conventional example shown in FIG.

【0017】この実施例の燃料極2はNiに5WT%の
アルミニウムを含有するニッケル合金粒子12の焼結多
孔体(気孔率60%、平均孔径5μm)よりなってお
り、その空孔の80体積%を埋めるだけの低融点電解質
15(58.9モル%の炭酸リチウムと36.1モル%
の炭酸カリウムと5モル%の炭酸マグネシウムの混合
塩)をあらかじめ含浸したものを用いる。
The fuel electrode 2 of this embodiment is made of a sintered porous body (porosity: 60%, average pore diameter: 5 μm) of nickel alloy particles 12 containing 5 WT% of aluminum in Ni, and has a volume of 80 pores. % Of the low melting point electrolyte 15 (58.9 mol% of lithium carbonate and 36.1 mol%
Of potassium carbonate and 5 mol% of magnesium carbonate).

【0018】空気極3にはニッケル粒子13の多孔体
(気孔率70%、平均孔径10μm)を用い、その空孔
の65体積%を埋めるだけの高融点電解質16(80モ
ル%の炭酸リチウムと20モル%の炭酸カリウム)をあ
らかじめ含浸したものを用いる。
A porous body of nickel particles 13 (porosity: 70%, average pore diameter: 10 μm) is used for the air electrode 3, and a high melting point electrolyte 16 (80 mol% lithium carbonate and 80 mol%) is used to fill 65% by volume of the pores. 20 mol% of potassium carbonate) is used.

【0019】次に溶融炭酸塩型燃料電池の製造方法すな
わち運転たち上げ法及び同時におこる空気極の酸化につ
いて説明する。
Next, a method for manufacturing a molten carbonate fuel cell, that is, an operation start-up method and simultaneous oxidation of an air electrode will be described.

【0020】室温では金属ニッケル多孔体である空気極
3は酸化がはじまる380℃までは電解質層1内に含ま
れる有機物14を焼き飛ばすために燃料極雰囲気、空気
極雰囲気とも空気を供給する。この段階では電極内に含
まれる電解質が固体であるために電極の縮みは生じにく
い。
At room temperature, the air electrode 3, which is a metallic nickel porous material, supplies air to both the fuel electrode atmosphere and the air electrode atmosphere to burn off the organic substances 14 contained in the electrolyte layer 1 until 380 ° C. at which oxidation starts. At this stage, since the electrolyte contained in the electrode is solid, the electrode is unlikely to shrink.

【0021】380℃において空気雰囲気下で電解質層
1内の有機物14を焼き飛ばした後、電解質が融解(4
88℃)してマトリクス内の空孔を満たしてガスの隔壁
を構成するまで、燃料極2の酸化を防ぐために空気極3
側に酸化性のガスを流すことは好ましくない。従って燃
料極2側および空気極3側の両側にに窒素と炭酸塩の分
解を防止するための炭酸ガスを流す。
After burning off the organic matter 14 in the electrolyte layer 1 at 380 ° C. in an air atmosphere, the electrolyte is melted (4
88 ° C.) to prevent oxidation of the anode 2 until the pores in the matrix are filled to form gas barriers.
Flowing an oxidizing gas on the side is not preferred. Therefore, a carbon dioxide gas for preventing the decomposition of nitrogen and carbonate is supplied to both sides of the fuel electrode 2 and the air electrode 3.

【0022】空気極3内以外の電解質が融解し、電解質
層1がガス隔壁として働くことを確認して(約500
℃)、燃料極2側に水素と炭酸ガスの混合ガスを、空気
極3側に空気と炭酸ガスの混合ガスを流す。この段階で
空気極3を酸化し、酸化ニッケルの多孔構造を構成す
る。
It is confirmed that the electrolyte other than in the air electrode 3 is melted and the electrolyte layer 1 functions as a gas partition (about 500).
° C), a mixed gas of hydrogen and carbon dioxide gas is flown to the fuel electrode 2 side, and a mixed gas of air and carbon dioxide gas is flown to the air electrode 3 side. At this stage, the air electrode 3 is oxidized to form a nickel oxide porous structure.

【0023】このあと約500℃での空気極3の酸化処
理が済んだ溶融炭酸塩型燃料電池を燃料極2側に水素と
炭酸ガスの混合ガスを、空気極3側に空気と炭酸ガスの
混合ガスを流して運転温度の650℃まで昇温する。
Thereafter, the molten carbonate fuel cell, which has been subjected to the oxidation treatment of the air electrode 3 at about 500 ° C., is supplied with a mixed gas of hydrogen and carbon dioxide gas on the fuel electrode 2 side and with air and carbon dioxide gas on the air electrode 3 side. The mixed gas was flowed to raise the temperature to the operating temperature of 650 ° C.

【0024】以上の一連の昇温過程での空気極3に対す
る面圧は約5Kg/cm2 である。本実施例において、
500℃の段階では空気極3内の電解質の50%以上は
まだ固体の状態である。つまりこの段階でのニッケル粒
子と未融解の電解質の和による空気極3内の固体の体積
の割合は約50%となっている。未融解の電解質が空気
極3のニッケル粒子を支えることにより面圧が高くとも
空気極3の縮みは発生しない(図5の一点鎖線参照)。
空気極3以外の部分からの電解質が電解質層1の細孔を
埋めたことを確認してから空気極3にのみ酸化ガスを流
すことができるため燃料極2の酸化によって細孔構造が
変化することによるセル特性の劣化も防ぐことができ
る。図6に荷重5Kg/cm2 での実施例および従来例
における空気極の縮みの割合を示す。この図から、従来
例では30%近く縮んでいたものがこの実施例では数%
に抑えられていることが判る。
The surface pressure on the air electrode 3 during the above-described series of heating processes is about 5 kg / cm 2 . In this embodiment,
At the stage of 500 ° C., 50% or more of the electrolyte in the air electrode 3 is still in a solid state. That is, the ratio of the volume of the solid in the air electrode 3 due to the sum of the nickel particles and the unmelted electrolyte at this stage is about 50%. Since the unmelted electrolyte supports the nickel particles of the cathode 3, the cathode 3 does not shrink even if the surface pressure is high (see the dashed line in FIG. 5).
After confirming that the electrolyte from the portion other than the cathode 3 has filled the pores of the electrolyte layer 1, the oxidizing gas can flow only to the cathode 3, so that the oxidation of the anode 2 changes the pore structure. As a result, the deterioration of the cell characteristics can be prevented. FIG. 6 shows the shrinkage ratio of the air electrode in the example under the load of 5 kg / cm 2 and the conventional example. From this figure, it can be seen that in the conventional example, the shrinkage was about 30%, but in this embodiment, it is several%.
It turns out that it is suppressed to.

【0025】なお、上記実施例ではより低融点の電解質
15を保持する場所として燃料極2の場合を挙げたが、
これに限るものではなく、例えば燃料極側の集電板4、
燃料極側ガス流路板5、空気極3側の集電板8、空気極
側ガス流路板9などであってもよく、さらに空気極3内
の電解質16が溶解しおわるまでにより融点の低い電解
質をセル外部からセル内に供給しても上記実施例と同様
な効果を奏することは言うまでもない。
In the above embodiment, the case where the fuel electrode 2 is used as a place for holding the electrolyte 15 having a lower melting point is described.
The present invention is not limited to this. For example, the current collector plate 4 on the fuel electrode side,
The fuel electrode side gas flow path plate 5, the current collector plate 8 on the air electrode 3 side, the air electrode side gas flow path plate 9, and the like may be used. It goes without saying that even if a low electrolyte is supplied into the cell from outside the cell, the same effect as in the above embodiment can be obtained.

【0026】また、上記実施例では空気極3の多孔構造
構成体としてニッケル粒子13の場合を示したが、還元
雰囲気下500℃以上で、3Kg/cm2 以上の面圧で
縮みが問題となる鉄の多孔体の場合にもこの発明は適用
でき、上記実施例と同様な効果を奏する。
In the above embodiment, nickel particles 13 are used as the porous structure of the air electrode 3. However, shrinkage becomes a problem at a temperature of 500 ° C. or more and a surface pressure of 3 kg / cm 2 or more in a reducing atmosphere. The present invention can be applied to the case of a porous iron body, and has the same effects as those of the above embodiment.

【0027】また、上記実施例では低融点電解質15と
して58.9モル%の炭酸リチウムと36.1モル%の
炭酸カリウムと5モル%の炭酸マグネシウムの混合塩
を、高融点電解質16として80モル%の炭酸リチウム
と20モル%の炭酸カリウムの混合塩を用いた場合を示
したが、基本的には高融点電解質と低融点電解質の完全
に溶解する温度の差が30℃以上あれば上記実施例に準
じた効果が得られる。例えば低融点電解質15として4
3.5モル%の炭酸リチウムと31.5モル%の炭酸カ
リウムと5モル%の炭酸ナトリウムの混合塩を用いると
融点は397℃となり、高融点電解質16として融点4
88℃の62モル%の炭酸リチウムと38モル%の炭酸
カリウムの混合塩をはじめ多くの組成の電解質を用いる
ことが可能である。
In the above embodiment, the low-melting-point electrolyte 15 is a mixed salt of 58.9 mol% of lithium carbonate, 36.1 mol% of potassium carbonate and 5 mol% of magnesium carbonate, and the high-melting-point electrolyte 16 is 80 mol%. % Of lithium carbonate and 20 mol% of potassium carbonate were used. Basically, if the difference between the temperatures at which the high-melting electrolyte and the low-melting electrolyte completely dissolve was 30 ° C. or more, the above procedure was performed. The effect according to the example is obtained. For example, as the low melting point electrolyte 15, 4
When a mixed salt of 3.5 mol% of lithium carbonate, 31.5 mol% of potassium carbonate and 5 mol% of sodium carbonate is used, the melting point is 397 ° C.
It is possible to use electrolytes of many compositions, including a mixed salt of 62 mol% lithium carbonate and 38 mol% potassium carbonate at 88 ° C.

【0028】なお、上記実施例において、500℃の段
階では空気極3内の電解質16の50%以上はまだ固体
の状態であり、この段階でのニッケル粒子と未融解の電
解質の和による空気極3内の固体の体積の割合は約50
%であった。空気極3内の未融解の電解質がわずかでも
電極の縮みを防ぐのに効果はあるが空気極3内のニッケ
ル粒子の体積と融解していない電解質の体積の和が35
%以上であれば空気極3の縮みを防ぐのにより大きな効
果がある。
In the above embodiment, at the temperature of 500 ° C., 50% or more of the electrolyte 16 in the air electrode 3 is still in a solid state, and the air electrode is formed by the sum of nickel particles and unmelted electrolyte at this stage. The volume fraction of solids in 3 is about 50
%Met. Even if the unmelted electrolyte in the cathode 3 is small, it is effective to prevent the electrode from shrinking, but the sum of the volume of the nickel particles in the cathode 3 and the volume of the unmelted electrolyte is 35.
% Or more, it is more effective to prevent the air electrode 3 from shrinking.

【0029】なお、上記実施例では空気極3の構成材料
がニッケルである場合について説明したが、溶融炭酸塩
型燃料電池を構成する空気極3や空気極3と一体となっ
た多孔体のガス流路に用いられる金属多孔体が500℃
程度において、その電池運転面圧の条件下で厚みが減じ
ることによって電池特性、電池積層体の構成に問題が生
じるニッケル合金以外、例えば銅合金や鉄合金で構成さ
れている場合でも、同様な効果を奏する。
In the above embodiment, the case where the constituent material of the air electrode 3 is nickel has been described. However, the air electrode 3 constituting the molten carbonate type fuel cell and the gas of the porous material integrated with the air electrode 3 have been described. 500 ° C porous metal used for flow channel
To the extent that the thickness is reduced under the conditions of the battery operating surface pressure, the battery characteristics, other than the nickel alloy that causes a problem in the configuration of the battery stack, such as a copper alloy or an iron alloy, the same effect. To play.

【0030】[0030]

【発明の効果】以上のように、この発明によれば、ニッ
ケル、銅、および鉄のうちの少なくとも一種の金属を含
み孔部に電解質を保持する多孔体からなる空気極、並び
に有機物を含む電解質層を有し、昇温により、上記有機
物を焼き飛ばす工程、上記空気極に保持される電解質よ
り低融点の電解質を溶融して上記有機物跡に含浸する
、および上記電解質層が電解質の含浸によりガスを透
過せずしかも上記空気極の電解質がまだ完全に溶けない
状態で上記空気極に酸化ガスを流して上記空気極の金属
を酸化する工程を備えるので、空気極の縮みと燃料極の
酸化を防止できる溶融炭酸塩型燃料電池の製造方法が得
られる効果がある。
As described above, according to the present invention, an air electrode made of a porous material containing at least one metal of nickel, copper and iron and holding an electrolyte in a hole portion, and an electrolyte containing an organic substance a layer, by heating, the step of burn off the organics and melt the electrolyte of the low melting point than the electrolyte held in the air electrode is impregnated with the organic trace Engineering
Degree, and a step of oxidizing the metal of the air electrode the electrolyte layer by flowing an oxidizing gas into the air electrode in a state where the electrolyte of the addition the air electrode does not transmit gas insoluble still completely by impregnation of the electrolyte Therefore, there is an effect that a method for manufacturing a molten carbonate fuel cell which can prevent the shrinkage of the air electrode and the oxidation of the fuel electrode can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の一実施例による溶融炭酸塩型燃料電
池の製造方法に係る電解質層および電極を示す断面側面
図である。
FIG. 1 is a sectional side view showing an electrolyte layer and electrodes according to a method for manufacturing a molten carbonate fuel cell according to one embodiment of the present invention.

【図2】従来の溶融炭酸塩型燃料電池を示す分解斜視図
である。
FIG. 2 is an exploded perspective view showing a conventional molten carbonate fuel cell.

【図3】従来の溶融炭酸塩型燃料電池の製造方法に係る
電解質層および電極をを示す断面側面図である。
FIG. 3 is a sectional side view showing an electrolyte layer and electrodes according to a conventional method for manufacturing a molten carbonate fuel cell.

【図4】従来の溶融炭酸塩型燃料電池の昇温過程におけ
る温度パターンおよび電極に流すガス組成を示す説明図
である。
FIG. 4 is an explanatory diagram showing a temperature pattern and a gas composition flowing to an electrode in a process of raising the temperature of a conventional molten carbonate fuel cell.

【図5】気孔率75%のニッケル多孔体の昇温時の厚み
変化に及ぼす各種電解質含浸の影響を示す特性図であ
る。
FIG. 5 is a characteristic diagram showing the effect of various electrolyte impregnations on the change in thickness of a porous nickel body having a porosity of 75% when the temperature is raised.

【図6】従来例と実施例との空気極の縮みを比較して示
すグラフである。
FIG. 6 is a graph showing a comparison of the shrinkage of an air electrode between a conventional example and an example.

【符号の説明】[Explanation of symbols]

1 電解質層 2 燃料極 3 空気極 12 ニッケル合金粒子 13 ニッケル粒子 14 有機物 15 低融点電解質 16 高融点電解質 17 L/K=62/38共晶電解質 DESCRIPTION OF SYMBOLS 1 Electrolyte layer 2 Fuel electrode 3 Air electrode 12 Nickel alloy particle 13 Nickel particle 14 Organic matter 15 Low melting point electrolyte 16 High melting point electrolyte 17 L / K = 62/38 eutectic electrolyte

フロントページの続き (56)参考文献 特開 昭63−6754(JP,A) 特開 平1−183069(JP,A) 特開 平3−238764(JP,A) 特開 昭62−24571(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01M 8/00 - 8/24 H01M 4/86 - 4/98 Continuation of the front page (56) References JP-A-63-6754 (JP, A) JP-A-1-183069 (JP, A) JP-A-3-238764 (JP, A) JP-A-62-24571 (JP, A) , A) (58) Field surveyed (Int. Cl. 6 , DB name) H01M 8/00-8/24 H01M 4/86-4/98

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ニッケル、銅、および鉄のうちの少なく
とも一種の金属を含み孔部に電解質を保持する多孔体か
らなる空気極、並びに有機物を含む電解質層を有し、昇
温により、上記有機物を焼き飛ばす工程、上記空気極に
保持される電解質より低融点の電解質を溶融して上記有
機物跡に含浸する工程、および上記電解質層が電解質の
含浸によりガスを透過せずしかも上記空気極の電解質が
まだ完全に溶けない状態で上記空気極に酸化ガスを流し
て上記空気極の金属を酸化する工程を備える溶融炭酸塩
型燃料電池の製造方法。
1. An air electrode comprising at least one metal selected from the group consisting of nickel, copper, and iron and comprising a porous body for holding an electrolyte in a hole, and an electrolyte layer containing an organic substance. the burn off process, the step of from the electrolyte held in the air electrode to melt the electrolyte having a low melting point is impregnated into the organic material remains, and the electrolyte layer is an electrolyte in addition the air electrode does not transmit gas by impregnation of the electrolyte A method for producing a molten carbonate fuel cell, comprising the step of flowing an oxidizing gas through the air electrode in a state where the metal is not completely melted yet to oxidize the metal of the air electrode.
JP3123722A 1991-05-28 1991-05-28 Method for manufacturing molten carbonate fuel cell Expired - Lifetime JP2894377B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3123722A JP2894377B2 (en) 1991-05-28 1991-05-28 Method for manufacturing molten carbonate fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3123722A JP2894377B2 (en) 1991-05-28 1991-05-28 Method for manufacturing molten carbonate fuel cell

Publications (2)

Publication Number Publication Date
JPH04351854A JPH04351854A (en) 1992-12-07
JP2894377B2 true JP2894377B2 (en) 1999-05-24

Family

ID=14867745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3123722A Expired - Lifetime JP2894377B2 (en) 1991-05-28 1991-05-28 Method for manufacturing molten carbonate fuel cell

Country Status (1)

Country Link
JP (1) JP2894377B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4303136C1 (en) * 1993-02-04 1994-06-16 Mtu Friedrichshafen Gmbh Molten carbonate fuel cell - comprises matrix layer impregnated with molten electrolyte contg. lithium carbonate, having anode and cathode layers on either side
NL1009815C2 (en) * 1998-08-06 2000-02-15 Stichting Energie Method of manufacturing an MCFC electrochemical cell.

Also Published As

Publication number Publication date
JPH04351854A (en) 1992-12-07

Similar Documents

Publication Publication Date Title
JP2846738B2 (en) Method for producing molten carbonate-fuel cell
JP3333207B2 (en) Electrochemical alkali metal battery and method for manufacturing the same
JP2894377B2 (en) Method for manufacturing molten carbonate fuel cell
JPH0785876A (en) Manufacture of positive electrode for fused carbonate fuel cell
US4643955A (en) Molten carbonate fuel cell reduction of nickel deposits
JP3003377B2 (en) Method for manufacturing molten carbonate fuel cell
KR20170089630A (en) Molten carbonate fuel cells including electrolyte impregnated matrix and methods of manufacturing the same
JPS6366858A (en) Electrode for molten carbonate fuel cell
KR102570076B1 (en) Lithium air battery and manufacturing method thereof
JP2957315B2 (en) Molten carbonate fuel cell
JP2517750B2 (en) Method for producing molten salt fuel cell
JPH1074529A (en) Fused carbonate type fuel cell and its manufacture
JP3091495B2 (en) Method of manufacturing electrode for molten carbonate fuel cell, electrode manufactured by this method, and molten carbonate fuel cell using electrode manufactured by this method
JP3208528B2 (en) Electrode for molten carbonate fuel cell and method for producing the same
JP2944097B2 (en) Molten carbonate fuel cell
JP2678080B2 (en) Starting method of molten carbonate fuel cell
RU2046460C1 (en) Air electrode for chemical source of electric energy
JP2000156235A (en) Corrosion restraining method for molten carbonate type fuel cell current collecting member
JPH07272729A (en) Fused carbonate fuel cell and its manufacture
JPH06325778A (en) Fused carbonate type fuel cell
JP3029197B2 (en) Molten carbonate fuel cell and heat treatment method thereof
JPH01231273A (en) Manufacture of fused carbonate fuel cell
JPH0570266B2 (en)
JPS6124165A (en) Electrolyte supporter of fused carbonate type fuel cell
JPH1186883A (en) Processing method for cathode for fused carbonate fuel cell