JP3003377B2 - Method for manufacturing molten carbonate fuel cell - Google Patents

Method for manufacturing molten carbonate fuel cell

Info

Publication number
JP3003377B2
JP3003377B2 JP4081919A JP8191992A JP3003377B2 JP 3003377 B2 JP3003377 B2 JP 3003377B2 JP 4081919 A JP4081919 A JP 4081919A JP 8191992 A JP8191992 A JP 8191992A JP 3003377 B2 JP3003377 B2 JP 3003377B2
Authority
JP
Japan
Prior art keywords
air electrode
electrolyte
nickel
oxidation
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4081919A
Other languages
Japanese (ja)
Other versions
JPH05290858A (en
Inventor
洋司 藤田
隆 西村
広明 漆畑
一直 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4081919A priority Critical patent/JP3003377B2/en
Publication of JPH05290858A publication Critical patent/JPH05290858A/en
Application granted granted Critical
Publication of JP3003377B2 publication Critical patent/JP3003377B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • H01M4/8885Sintering or firing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、溶融炭酸塩型燃料電
池の製造方法に関し、特に、高積層体の運転起動時に問
題となる空気極の厚みの縮みの防止対策に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a molten carbonate fuel cell, and more particularly to a measure for preventing a reduction in the thickness of an air electrode, which is a problem at the time of starting operation of a high stack.

【0002】[0002]

【従来の技術】従来のこの種の燃料電池の構成は図5の
断面構成図に示すとおりである。例えば、アルカリ金属
炭酸塩を電解質とする溶融炭酸塩型燃料電池は、一般に
電解質と電解質に保持する物質とからなる電解質層1
と、この電解質層1を挟み込むように設けられている燃
料極2及び空気極3が接触して配置されており、更に、
集電作用及びこれらの電池部材を物理的に支持して反応
ガスを流す目的を持つ燃料極2側の集電板4、燃料極側
ガス流路板5及びセパレーター6aの燃料極2に対向す
る面よりなる燃料極側ガス室7と、空気極3側の集電板
8、空気極側ガス流路板9及びセパレーター6bの空気
極3に対向する面よりなる空気極側ガス室10より構成
されている。
2. Description of the Related Art The structure of a conventional fuel cell of this type is as shown in the sectional view of FIG. For example, a molten carbonate fuel cell using an alkali metal carbonate as an electrolyte generally has an electrolyte layer 1 composed of an electrolyte and a substance held by the electrolyte.
And the fuel electrode 2 and the air electrode 3 provided so as to sandwich the electrolyte layer 1 are arranged in contact with each other.
It faces the current collector plate 4 on the fuel electrode 2 side, the fuel electrode side gas flow path plate 5, and the fuel electrode 2 of the separator 6 a for the purpose of flowing the reaction gas while physically supporting the battery member and these cell members. A fuel electrode side gas chamber 7 composed of a surface, a current collector plate 8 on the air electrode 3 side, an air electrode side gas flow path plate 9, and an air electrode side gas chamber 10 composed of a surface of the separator 6 b facing the air electrode 3. Have been.

【0003】図6に従来のセルにおける、電池運転加熱
前の電解質層、電極断面の模式図を示す。14は電解質
層成形時に電解質層に可撓性を付与するために添加され
た例えば組成、ポリビニルアルコール、アルキルフタレ
ート、ポリアルキレングリコールからなる有機物であ
る。11は電解質を保持する役目の平均粒径0.5μm
のLiAlO2 粒子である。この電解質層の脱脂後の平
均孔径は約0.4μmである。
FIG. 6 shows a schematic diagram of a cross section of an electrolyte layer and electrodes before heating a battery in a conventional cell. Numeral 14 denotes an organic substance made of, for example, a composition, polyvinyl alcohol, alkyl phthalate, or polyalkylene glycol added to impart flexibility to the electrolyte layer at the time of forming the electrolyte layer. 11 is an average particle size of 0.5 μm for holding the electrolyte.
Of LiAlO 2 particles. The average pore size of this electrolyte layer after degreasing is about 0.4 μm.

【0004】燃料極2は例えばNiに5WT%のアルミ
ニウムを含有するニッケル合金粒子12の焼結多孔体
(気孔率60%、平均孔径5μm)よりなっており、そ
の空孔の80体積%を埋めるだけのL/K=62/38
共晶電解質17(62モル%の炭酸リチウムと38モル
%の炭酸カリウム)を予め含浸したものである。
The fuel electrode 2 is made of, for example, a sintered porous body (porosity: 60%, average pore diameter: 5 μm) of nickel alloy particles 12 containing 5 wt% of aluminum in Ni, and fills 80% by volume of the pores. L / K = 62/38
The eutectic electrolyte 17 (62 mol% lithium carbonate and 38 mol% potassium carbonate) was previously impregnated.

【0005】空気極3にはニッケル粒子13の多孔体
(気孔率70%、平均孔径10μm)を用い、その空孔
の65体積%を埋めるだけのL/K=62/38共晶電
解質17(62モル%の炭酸リチウムと38モル%の炭
酸カリウム)を予め含浸したものを用いる。
For the air electrode 3, a porous body of nickel particles 13 (porosity 70%, average pore diameter 10 μm) is used, and an L / K = 62/38 eutectic electrolyte 17 (only to fill 65% by volume of the pores) is used. It is impregnated with 62 mol% of lithium carbonate and 38 mol% of potassium carbonate in advance.

【0006】次に図6に示すようにL/K=62/38
共晶電解質15を含むニッケル合金粒子12の多孔体で
ある燃料極2、電解質保持体であるLiAlO2 粒子とバ
インダー可塑剤等の有機物14を含む電解質層1、燃料
極2側と同じ組成のL/K=62/38共晶電解質15
を含むニッケル粒子13の多孔体である空気極3からな
る溶融炭酸塩型燃料電池の、従来の運転たち上げ法及び
同時におこる空気極の酸化について説明する。その過程
の昇温パターンと燃料極、空気極への供給ガスの組成を
図1の説明図に示す。破線が従来の昇温パターンであ
る。また図2の説明図に空気極の酸化(ニッケル酸化
量)を破線で示す。
Next, as shown in FIG. 6, L / K = 62/38
Fuel electrode 2 which is a porous body of nickel alloy particles 12 containing eutectic electrolyte 15, electrolyte layer 1 containing LiAlO 2 particles serving as an electrolyte holder and organic matter 14 such as a binder plasticizer, and L having the same composition as fuel electrode 2 side / K = 62/38 eutectic electrolyte 15
A conventional method for starting up a molten carbonate fuel cell including an air electrode 3 which is a porous body of nickel particles 13 containing nickel and a simultaneous oxidation of the air electrode will be described. FIG. 1 is an explanatory diagram showing the temperature rise pattern and the composition of the gas supplied to the fuel electrode and the air electrode in the process. The dashed line is the conventional heating pattern. Further, in the explanatory diagram of FIG. 2, the oxidation of the air electrode (the amount of nickel oxidation) is indicated by a broken line.

【0007】室温ではニッケル粒子13の多孔体である
空気極は、酸化がはやまる400℃以下の380℃まで
は電解質層1内に含まれる有機物14を焼き飛ばすため
に燃料極雰囲気、空気極雰囲気とも空気を供給する。こ
の段階ではニッケル粒子13の多孔体自体の強度のため
と電極に含まれるL/K=62/38共晶電解質15が
固体であるために電極の縮みは生じない。この段階での
ニッケルの酸化量は約3%である。
At room temperature, the air electrode, which is a porous body of the nickel particles 13, burns the organic substances 14 contained in the electrolyte layer 1 up to 380 ° C., which is 400 ° C. or less at which oxidation stops. Supply air. At this stage, the electrode does not shrink because of the strength of the porous body of the nickel particles 13 itself and because the L / K = 62/38 eutectic electrolyte 15 contained in the electrode is solid. The oxidation amount of nickel at this stage is about 3%.

【0008】380℃において空気雰囲気下で電解質層
1内の有機物14を焼き飛ばした後、電解質が融解して
(488℃)電解質層内の空孔を満たしてガスの隔壁を構
成する(ガスを透過させなくなる)まで電解質15の分
解を防止するための窒素と炭酸ガスの混合ガスを流す。
After burning off the organic substance 14 in the electrolyte layer 1 at 380 ° C. in an air atmosphere, the electrolyte is melted.
(488 ° C.) A mixed gas of nitrogen and carbon dioxide gas for preventing the decomposition of the electrolyte 15 is flowed until the pores in the electrolyte layer are filled to form gas partition walls (gas does not pass).

【0009】L/K=62/38共晶電解質15が融解
したことを確認して(約500℃)燃料極側に水素と炭
酸ガスの混合ガス、空気極側に空気と窒素と炭酸ガスの
混合ガスを流す。この段階で空気極を酸化し酸化ニッケ
ルの多孔構造を構成する。
After confirming that the L / K = 62/38 eutectic electrolyte 15 has melted (about 500 ° C.), a mixed gas of hydrogen and carbon dioxide gas is provided on the fuel electrode side, and air, nitrogen and carbon dioxide gas are provided on the air electrode side. Pour the mixed gas. At this stage, the air electrode is oxidized to form a nickel oxide porous structure.

【0010】このあと約500℃での空気極3の酸化処
理が済んだ溶融炭酸塩型燃料電池を燃料極側に水素と炭
酸ガスの混合ガス、空気極側に空気と炭酸ガスの混合ガ
スを流して運転温度の650℃まで昇温する。
Then, the molten carbonate fuel cell, which has been subjected to the oxidation treatment of the air electrode 3 at about 500 ° C., is supplied with a mixed gas of hydrogen and carbon dioxide on the fuel electrode side and a mixed gas of air and carbon dioxide on the air electrode side. And raise the temperature to the operating temperature of 650 ° C.

【0011】以上の一連の昇温過程での空気極3に対す
る面圧は約2Kg/cm2である。空気極3が酸化されておら
ずL/K=62/38共晶電解質15が融解した段階3
80〜500℃で空気極3の縮みが生じるが、小規模の
溶融炭酸塩型燃料電池積層体ではその間の面圧が2Kg/c
m2と低いことと、昇温に要する時間、空気極3を酸化す
るのに必要な時間が短いことによって、昇温時の空気極
3の縮みは運転開始前の厚みの10%以下に抑えられて
いる。(特開平2−299156号公報、特開平2−2
04971号公報参照)
The surface pressure on the air electrode 3 during the above-described series of heating processes is about 2 kg / cm 2 . Stage 3 in which air electrode 3 is not oxidized and L / K = 62/38 eutectic electrolyte 15 is melted
Although the air electrode 3 shrinks at 80 to 500 ° C., the surface pressure of the small-sized molten carbonate fuel cell stack is 2 kg / c.
m 2 , the time required to raise the temperature, and the time required to oxidize the air electrode 3 are short, so that the shrinkage of the air electrode 3 at the time of raising the temperature is suppressed to 10% or less of the thickness before starting operation. Have been. (JP-A-2-299156, JP-A-2-2-2)
04971)

【0012】[0012]

【発明が解決しようとする課題】従来の装置は以上のよ
うに構成されているので、電池高積層化のよる重量増に
よって面圧が2Kg/cm2以下とすることができなくなる
、電解質が溶解後、まだ空気極が酸化していない状態
では、空気極の縮みが10%以上生じ、空気極のポロシ
ティが低下することによって特性が劣化し、小型電池と
同等な効率で発電運転ができなくなるという問題点があ
った。なお、特開平2−299156号公報に空気極を
予め酸化させて使用することは空気極の寸法縮み防止に
有効であることが示されているが、10%以上の酸化を
行なうと電極の取扱いが困難になる、また電池に組み込
む前に酸化工程が必要にな、工程が増えコスト上昇の
原因となるという問題点があった。
Since the conventional apparatus [0005] is constructed as described above, the surface pressure by the weight increase due the battery high lamination may not be a 2Kg / cm 2 or less, electrolytic state that after the quality is dissolved, still air electrode is not oxidized
In this case, there is a problem that the air electrode shrinks by 10% or more, and the porosity of the air electrode decreases, thereby deteriorating the characteristics and making it impossible to perform power generation operation with the same efficiency as a small battery. Japanese Unexamined Patent Publication (Kokai) No. 2-299156 discloses that the use of an air electrode which is previously oxidized is effective in preventing the dimensional shrinkage of the air electrode. becomes difficult, and the oxidation process ing necessary before incorporation into the battery, there is a problem that the process causes increases cost.

【0013】この発明は上記のような問題点を解決する
ためになされたもので、電池組立前に特別な工程を追加
せずとも、高積層化された燃料電池においても空気極の
著しい縮みを避けることのできる、溶融炭酸塩型燃料電
池の製造方法を得ることを目的している。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and the remarkable shrinkage of the air electrode can be achieved even in a highly stacked fuel cell without adding a special step before assembling the cell. It is an object of the present invention to provide a method of manufacturing a molten carbonate fuel cell which can be avoided.

【0014】[0014]

【課題を解決するための手段】この発明に係る溶融炭酸
塩型燃料電池の製造方法は、ニッケルを含む多孔体材料
を空気極に用い、電池の運転立ち上げ時(昇温時)にニ
ッケルを酸化させる過程によって酸化物多孔体を形成す
る際に、350℃以上かつ上記電解質の融解温度以下の
温度で酸化処理し、上記電解質融解前に予め上記空気極
のニッケルの5%以上を酸化するようにしたものであ
る。
According to a method of manufacturing a molten carbonate fuel cell according to the present invention, a porous material containing nickel is used for an air electrode, and nickel is used at the start-up of the cell (at the time of temperature rise). When the oxide porous body is formed by the oxidizing process, the porous body is oxidized at a temperature of 350 ° C. or more and the melting temperature of the electrolyte, and 5% or more of nickel in the air electrode is oxidized in advance before melting the electrolyte. It was made.

【0015】[0015]

【作用】ニッケル多孔体は空気中で350℃以上になる
と酸化を開始する。ただしこの温度では反応速度がちい
さいため、実際上の酸化温度は400℃以上にとること
が望ましい。また、電解質が融解すると酸化前の空気極
は容易に変形してしまうため、酸化温度は電解質が融解
を開始する温度よりも低い温度で行なうことが必要であ
る。この酸化温度以下では空気極を構成するニッケル多
孔体は固体状態の電解質を含んでいるため電極の縮みは
生じない。この段階で空気極のニッケルを5%以上、望
ましくは15%以上酸化させ、酸化ニッケルの生成によ
って強化された空気極を昇温し電解質を溶かすため、空
気極の縮みを防ぐことができる。
When the temperature of the porous nickel becomes 350 ° C. or more in the air, the nickel starts oxidizing. However, since the reaction rate is small at this temperature, the actual oxidation temperature is preferably set to 400 ° C. or higher. Further, since the air electrode before oxidation is easily deformed when the electrolyte is melted, it is necessary to perform the oxidation at a temperature lower than the temperature at which the electrolyte starts to melt. Below this oxidation temperature, the electrode does not shrink because the nickel porous body constituting the air electrode contains a solid-state electrolyte. At this stage, nickel in the air electrode is oxidized by 5% or more, desirably 15% or more, and the temperature of the air electrode reinforced by the generation of nickel oxide is raised to melt the electrolyte, so that shrinkage of the air electrode can be prevented.

【0016】[0016]

【実施例】【Example】

実施例1 以下、この発明の一実施例を図について説明する。図6
は本実施例の電池加熱前における電解質層1と空気極
2、燃料極3との積層体の断面模式図である。
Embodiment 1 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG.
FIG. 2 is a schematic cross-sectional view of a laminate of the electrolyte layer 1, the air electrode 2, and the fuel electrode 3 before heating the battery according to the present embodiment.

【0017】14は電解質層成形時に電解質層に可撓性
を付与するために添加された組成、ポリビニルアルコー
ル、アルキルフタレート、ポリアルキレングリコールか
らなる有機物である。11は電解質を保持する役目の平
均粒径0.5μmのLiAlO2 粒子である。この電解
質層の脱脂後の平均孔径は約0.4μmである。
Reference numeral 14 denotes an organic substance comprising polyvinyl alcohol, alkyl phthalate, and polyalkylene glycol, which is a composition added to impart flexibility to the electrolyte layer when the electrolyte layer is formed. Reference numeral 11 denotes LiAlO 2 particles having an average particle size of 0.5 μm, which serves to hold an electrolyte. The average pore size of this electrolyte layer after degreasing is about 0.4 μm.

【0018】本実施例の燃料極2はNiに5WT%のア
ルミを含むニッケル合金粒子12の焼結多孔体(気孔率
60%、平均孔径5μm)よりなっており、その空孔の
80体積%を埋めるだけの電解質15(62モル%の炭
酸リチウムと38モル%の炭酸カリウム)を予め含浸し
たものを用いる。
The fuel electrode 2 of this embodiment is made of a sintered porous body (porosity 60%, average pore diameter 5 μm) of nickel alloy particles 12 containing 5 wt% of aluminum in Ni, and 80% by volume of the pores. Which is previously impregnated with an electrolyte 15 (62 mol% of lithium carbonate and 38 mol% of potassium carbonate) just to fill the gap.

【0019】空気極3にはニッケル粒子13の多孔体
(気孔率70%、平均孔径10μm)を用い、その空孔
の65体積%を埋めるだけの電解質(62モル%の炭酸
リチウムと38モル%の炭酸カリウム)を予め含浸した
ものを用いる。
A porous body of nickel particles 13 (porosity 70%, average pore diameter 10 μm) is used for the air electrode 3, and an electrolyte (62 mol% lithium carbonate and 38 mol% Used beforehand is impregnated with potassium carbonate).

【0020】次に実施例の溶融炭酸塩型燃料電池の運転
たち上げ法及び同時におこる空気極の酸化について図1
及び図2を用いて説明する。図1の実線がこの実施例の
運転立ち上げ法(昇温パターン)を、図2の実線がこの
実施例の空気極の酸化(ニッケル酸化量)を表してい
る。
Next, a method for starting up the molten carbonate fuel cell of the embodiment and the simultaneous oxidation of the cathode are shown in FIG.
This will be described with reference to FIG. The solid line in FIG. 1 shows the operation start-up method (temperature rising pattern) of this embodiment, and the solid line in FIG. 2 shows the oxidation of the air electrode (nickel oxidation amount) in this embodiment.

【0021】室温で金属ニッケル多孔体である空気極3
は350℃よりニッケル多孔体の酸化がはじまるが、反
応がはやまる400℃直前の380℃までは電解質層1
内に含まれる有機物14を焼き飛ばすために燃料極雰囲
気、空気雰囲気とも空気を供給する。この段階では電極
内に含まれる電解質が固体であるために電極の縮みは生
じにくい。ニッケルの酸化は開始するものの反応速度が
遅く温度調整は容易である。(10時間保持したのち3
%の空気極中のニッケルが酸化した。)
Air electrode 3 which is a metallic nickel porous material at room temperature
Oxidation of the nickel porous body starts from 350 ° C., but the electrolyte layer 1
Air is supplied to both the fuel electrode atmosphere and the air atmosphere in order to burn off the organic substances 14 contained therein. At this stage, since the electrolyte contained in the electrode is solid, the electrode is unlikely to shrink. Although nickel oxidation starts, the reaction rate is low and temperature adjustment is easy. (3 after holding for 10 hours
% Of the nickel in the cathode was oxidized. )

【0022】380℃において空気雰囲気下で電解質層
内の有機物を焼き飛ばした後430℃まで昇温し、45
0℃以上にならないように供給空気の量と窒素供給量を
温度をモニターしながら調整し空気極の酸化をおこな
う。(50%窒素50%空気中で430℃にコントロー
ルした場合10時間保持すれば空気極のニッケル粒子の
約40%が酸化した。)酸化量はスタックの出入り口の
ガス組成と流量から推測することができる。
The organic matter in the electrolyte layer is burned off at 380 ° C. in an air atmosphere and then heated to 430 ° C.
The air supply amount and the nitrogen supply amount are adjusted while monitoring the temperature so that the temperature does not exceed 0 ° C., and the air electrode is oxidized. (When controlled at 430 ° C. in 50% nitrogen and 50% air, holding for 10 hours oxidized about 40% of the nickel particles in the air electrode.) The oxidation amount can be estimated from the gas composition and flow rate at the entrance and exit of the stack. it can.

【0023】このあと約500℃まで昇温し、空気極の
酸化処理が済んだ溶融炭酸塩型燃料電池を燃料極側に水
素と炭酸ガスの混合ガス、空気極側に空気と窒素と炭酸
ガスの混合ガスを流して運転温度の650℃まで昇温す
る。
Thereafter, the temperature of the molten carbonate fuel cell was raised to about 500 ° C. and the air electrode was oxidized, and the mixed gas of hydrogen and carbon dioxide was supplied to the fuel electrode side, and air, nitrogen and carbon dioxide gas were supplied to the air electrode side. And the temperature is raised to the operating temperature of 650 ° C.

【0024】以上の一連の昇温過程での空気極に対する
面圧は約5Kg/cm2である。本実施例において380℃か
ら430℃の段階では空気極内の電解質はまだ固体の状
態である。未融解の電解質が空気極のニッケル粒子を支
えることにより面圧が高くとも空気極の縮みは発生しな
い。図3の説明図に荷重5Kg/cm2での実施例および従来
例における空気極の縮みの割合を示す。実線がこの実施
例の、破線が従来法による空気極の縮みを表している。
図から、この実施例では縮みがごく僅かに抑えられてい
ることが判る。
The surface pressure on the air electrode during the above series of heating processes is about 5 kg / cm 2 . In this embodiment, the electrolyte in the air electrode is still in a solid state at the stage of 380 ° C. to 430 ° C. Since the unmelted electrolyte supports the nickel particles in the cathode, the cathode does not shrink even if the surface pressure is high. FIG. 3 is an explanatory diagram showing the shrinkage ratio of the air electrode in the example and the conventional example under a load of 5 kg / cm 2 . The solid line indicates the shrinkage of the air electrode according to the conventional method, and the broken line indicates the shrinkage of the air electrode according to the conventional method.
From the figure, it can be seen that shrinkage is very slightly suppressed in this embodiment.

【0025】なお、上記実施例では空気極の構成材料が
ニッケルである場合について説明したが、溶融炭酸塩型
燃料電池を構成する空気極や空気極と一体となった多孔
体のガス流路に用いられる金属多孔体が450℃から6
50℃程度において、その電池運転面圧の条件下で厚み
が減じることによって電池特性、電池積層体の構成に問
題が生じるニッケル合金以外たとえば、銅合金や鉄合金
で構成されている場合でも、同様な効果を奏する。
In the above embodiment, the case where the constituent material of the air electrode is nickel has been described. However, the air electrode constituting the molten carbonate type fuel cell and the gas flow path of the porous body integrated with the air electrode are provided. The porous metal used is from 450 ° C to 6
At about 50 ° C. , other than nickel alloys that cause problems in battery characteristics and the configuration of the battery stack due to a decrease in thickness under the conditions of the battery operating surface pressure, for example, even when being made of a copper alloy or an iron alloy, the same applies. Effect.

【0026】また、空気極を酸化する温度において燃料
極側に窒素や4%以下の水素を混合することは燃料極の
酸化防止の観点からよりのぞましい。
It is more desirable to mix nitrogen or hydrogen of 4% or less on the fuel electrode side at the temperature for oxidizing the air electrode from the viewpoint of preventing oxidation of the fuel electrode.

【0027】また、空気極中の電解質の含浸量は上記実
施例ではニッケル多孔体の気孔率の65%としたが、空
気極中のニッケルと電解質で占められていない気孔の空
気極中の割合が50%以下(実施例の場合26%)とな
ればよく、実際のスタックで用いられる2.5kg/cm2
度の面圧で実施例と同様な効果を奏する。一方、ニッケ
ル多孔体の気孔率の80%以上電解質を含浸すると酸化
に要する時間が長くなるため、含浸量を80%以下にす
ることが望ましい。
The impregnation amount of the electrolyte in the air electrode is 65% of the porosity of the nickel porous body in the above embodiment, but the ratio of the pores not occupied by nickel in the air electrode and the electrolyte in the air electrode is 65%. Should be 50% or less (26% in the case of the embodiment), and the same effect as that of the embodiment can be obtained with a surface pressure of about 2.5 kg / cm 2 used in an actual stack. On the other hand, if the electrolyte is impregnated with an electrolyte of 80% or more of the porosity of the nickel porous body, the time required for oxidation becomes long. Therefore, it is desirable that the impregnation amount be 80% or less.

【0028】また、燃料極の著しい酸化を防止するため
には電解質融解前の酸化処理温度は450℃以下が望ま
しく、酸化処理終了後の空気極には窒素または窒素を主
とする炭酸ガスの混合ガス等を流すことが望ましい。
空気極の酸化は350℃以上で開始するが、実際の電池
運転においてはたち上げ時間を短縮する意味から400
℃以上が望ましい。なお、350℃未満では実質上酸化
反応が進行しないと考えられる。
Further, in order to prevent significant oxidation of the fuel electrode is oxidized temperature before the electrolyte melt is desirably 450 ° C. or less, the air electrode after the oxidation treatment completion of the carbon dioxide gas mainly nitrogen or nitrogen It is desirable to flow a mixed gas or the like.
Oxidation of the air electrode starts at 350 ° C or higher, but in actual battery operation, 400 mm is required to reduce the startup time.
C or higher is desirable. If the temperature is lower than 350 ° C., it is considered that the oxidation reaction does not substantially proceed.

【0029】また、上記実施例には示さなかったが、燃
料極の気孔に予め気孔の80%以上の電解質を含ませて
おけば燃料極の酸化を低減させることができ、特性の劣
化はみられなかった。
Although not shown in the above embodiment, if the pores of the anode contain 80% or more of the electrolyte in advance, the oxidation of the anode can be reduced, and the deterioration of the characteristics is not observed. I couldn't.

【0030】また、燃料極にアルミニウム、クロム、ジ
ルコニウム等の耐酸化皮膜形成元素を添加することによ
っても、空気極酸化時の燃料極の酸化による電池特性の
劣化を防ぐことができる。
Also, by adding an oxidation-resistant film-forming element such as aluminum, chromium, or zirconium to the fuel electrode, it is possible to prevent deterioration of the battery characteristics due to oxidation of the fuel electrode during oxidation of the air electrode.

【0031】さらに、上記実施例では運転開始時の電解
質溶解前ニッケルの酸化量が40%であったが、図4に
示すように酸化量が15%以上では空気極の縮みが10
%以下に抑制され5kg/cm2の面圧下の立ちあげに効果が
あることがわかる。図4は面圧 5Kgf/cm2、525℃、
窒素雰囲気中で保持した場合の、気孔率75%のニッケ
ル多孔体の昇温時の厚み変化(空気極の縮み)に及ぼす
酸化量の影響を示すグラフである。また、実際のスタッ
クで用いられる2.5kg/cm2程度の面圧の場合には、電
解質溶解前ニッケルの酸化量が5%以上であれば実施例
と同様な効果を奏するので、ニッケルの酸化量としては
5%以上であればよく、望ましくは15%以上がよい。
なお、空気極の縮みは負荷される加重、空気極を構成す
るニッケル多孔体の気孔率等によっても異なるので、ニ
ッケルの酸化量はこれらを加味して空気極の縮みが実質
上電池性能に問題がないと考えられる10%以下になる
ように設定するとよい。
Further, in the above embodiment, the oxidation amount of nickel before dissolving the electrolyte at the start of the operation was 40%. However, as shown in FIG.
% Or less, which is effective for starting under a surface pressure of 5 kg / cm 2 . FIG. 4 shows a surface pressure of 5 kgf / cm 2 at 525 ° C.
5 is a graph showing the effect of the amount of oxidation on the change in thickness (shrinkage of the air electrode) of a nickel porous body having a porosity of 75% when the temperature is increased, when held in a nitrogen atmosphere. In the case of a surface pressure of about 2.5 kg / cm 2 used in an actual stack, if the oxidation amount of nickel before dissolving the electrolyte is 5% or more, the same effect as in the embodiment can be obtained. The amount may be 5% or more, preferably 15% or more.
The shrinkage of the air electrode also depends on the load applied, the porosity of the nickel porous body constituting the air electrode, and the like. It is good to set so that it may be 10% or less which is considered to be no.

【0032】ただし、運転開始時酸化することによる厚
みの増大によるウェットシールの漏れを考慮にいれる
と、ニッケルの酸化による体積の増加が酸化前の電極内
の気孔体積よりもちいさいことが望ましい。
However, considering the leakage of the wet seal due to the increase in thickness due to oxidation at the start of operation, it is desirable that the increase in volume due to oxidation of nickel is smaller than the pore volume in the electrode before oxidation.

【0033】[0033]

【発明の効果】以上のように、この発明においては、ニ
ッケルを含む多孔体材料を空気極に用い、電池の運転立
ち上げ時(昇温時)にニッケルを酸化させる過程によっ
て酸化物多孔体を形成する際に、350℃以上かつ上記
電解質の融解温度以下の温度で酸化処理し、上記電解質
融解前に予め上記空気極のニッケルの一部を酸化するよ
うにした。固体状態の電解質を含んだ状態でニッケル多
孔体を部分的に酸化させているので電極の縮みは生じ
ず、そして酸化ニッケルの生成によって強化された空気
極を昇温し電解質を溶かすため、空気極の縮みを防ぐこ
とができる。電池組立前に特別な工程を施さずとも、高
積層化された燃料電池においても空気極の著しい縮みを
避けることができる溶融炭酸塩型燃料電池の製造方法が
得られる効果がある。
As described above, in the present invention, the porous oxide material is formed by the process of oxidizing nickel at the start-up (at the time of temperature rise) of the battery using the porous material containing nickel for the air electrode. At the time of formation, an oxidation treatment was performed at a temperature of 350 ° C. or higher and a temperature lower than the melting temperature of the electrolyte, and a part of nickel of the air electrode was oxidized in advance before melting the electrolyte. Since the nickel porous body is partially oxidized while containing the solid state electrolyte, the electrode does not shrink, and the temperature of the air electrode strengthened by the generation of nickel oxide is raised to melt the electrolyte. Can be prevented from shrinking. Even if a special process is not performed before assembling the cell, there is an effect that a method for manufacturing a molten carbonate fuel cell which can avoid remarkable shrinkage of the air electrode even in a highly stacked fuel cell can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の一実施例の溶融炭酸塩型燃料電池立
ち上げ時の昇温パターンと供給ガスの組成を従来例とと
もに示す説明図である。
FIG. 1 is an explanatory diagram showing a temperature rising pattern and a composition of a supply gas when a molten carbonate fuel cell according to an embodiment of the present invention is started, together with a conventional example.

【図2】この発明の一実施例と溶融炭酸塩型燃料電池立
ち上げ時の空気極の酸化(ニッケルの酸化量)を従来例
とともに示す説明図である。
FIG. 2 is an explanatory view showing an embodiment of the present invention and oxidation of a cathode (oxidation amount of nickel) at the time of startup of a molten carbonate fuel cell together with a conventional example.

【図3】この発明の一実施例と溶融炭酸塩型燃料電池立
ち上げ時の縮みを従来例とともに示す説明図である。
FIG. 3 is an explanatory view showing an embodiment of the present invention and shrinkage when starting up a molten carbonate fuel cell together with a conventional example.

【図4】この発明に係わる気孔率75%のニッケル多孔
体の昇温時の厚み変化に及ぼす酸化量の影響を示すグラ
フである。
FIG. 4 is a graph showing the effect of the amount of oxidation on the change in thickness of a porous nickel body having a porosity of 75% according to the present invention when the temperature is increased.

【図5】一般的な溶融炭酸塩型燃料電池を示す断面構成
図である。
FIG. 5 is a sectional view showing a general molten carbonate fuel cell.

【図6】一般的な溶融炭酸塩型燃料電池の電解質層、電
極を示す断面模式図である。
FIG. 6 is a schematic cross-sectional view showing an electrolyte layer and electrodes of a general molten carbonate fuel cell.

【符号の説明】[Explanation of symbols]

1 電解質層 2 燃料極 3 空気極 12 ニッケル合金粒子 13 ニッケル粒子 15 L/K=62/38共晶電解質 Reference Signs List 1 electrolyte layer 2 fuel electrode 3 air electrode 12 nickel alloy particles 13 nickel particles 15 L / K = 62/38 eutectic electrolyte

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 一直 尼崎市塚口本町8丁目1番1号 三菱電 機株式会社 材料デバイス研究所内 (56)参考文献 特開 昭63−66858(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 8/00 - 8/24 H01M 4/86 - 4/98 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Kazunori Sato 8-1-1, Tsukaguchi-Honmachi, Amagasaki-shi Mitsubishi Electric Corporation Materials and Devices Laboratory (56) References JP-A-63-66858 (JP, A) ( 58) Field surveyed (Int. Cl. 7 , DB name) H01M 8/00-8/24 H01M 4/86-4/98

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 電解質である炭酸塩を含ませたニッケル
を含む多孔体材料を空気極に用い、電池の運転立ち上げ
時にニッケルを酸化させる過程によって酸化物多孔体を
形成する溶融炭酸塩型燃料電池の製造方法において、3
50℃以上かつ上記電解質の融解温度以下の温度で酸化
処理し、上記電解質融解前に予め上記空気極のニッケル
の5%以上を酸化するようにしたことを特徴とする溶融
炭酸塩型燃料電池の製造方法。
1. A molten carbonate fuel in which a porous oxide material is formed by a process of oxidizing nickel at the start of operation of a battery using a porous material containing nickel containing carbonate as an electrolyte for an air electrode. In the battery manufacturing method, 3
A molten carbonate fuel cell characterized in that it is oxidized at a temperature not lower than 50 ° C. and not higher than the melting temperature of the electrolyte to oxidize at least 5% of nickel in the air electrode before melting the electrolyte. Production method.
JP4081919A 1992-04-03 1992-04-03 Method for manufacturing molten carbonate fuel cell Expired - Fee Related JP3003377B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4081919A JP3003377B2 (en) 1992-04-03 1992-04-03 Method for manufacturing molten carbonate fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4081919A JP3003377B2 (en) 1992-04-03 1992-04-03 Method for manufacturing molten carbonate fuel cell

Publications (2)

Publication Number Publication Date
JPH05290858A JPH05290858A (en) 1993-11-05
JP3003377B2 true JP3003377B2 (en) 2000-01-24

Family

ID=13759868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4081919A Expired - Fee Related JP3003377B2 (en) 1992-04-03 1992-04-03 Method for manufacturing molten carbonate fuel cell

Country Status (1)

Country Link
JP (1) JP3003377B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101146944B1 (en) 2010-04-14 2012-05-22 두산중공업 주식회사 Fabrication Method of Electrolyte impregnanted Cathodes

Also Published As

Publication number Publication date
JPH05290858A (en) 1993-11-05

Similar Documents

Publication Publication Date Title
US4663250A (en) Reduction of electrode dissolution
US5629103A (en) High-temperature fuel cell with improved solid-electrolyte/electrode interface and method of producing the interface
JP2846738B2 (en) Method for producing molten carbonate-fuel cell
JP5064023B2 (en) Method for producing electrolyte-impregnated air electrode of molten carbonate fuel cell
EP0714146B1 (en) Fuel cell anode and fuel cell
JPH0746610B2 (en) Molten carbonate fuel cell positive electrode and method for producing the same
JP3003377B2 (en) Method for manufacturing molten carbonate fuel cell
JP2894377B2 (en) Method for manufacturing molten carbonate fuel cell
JP2960548B2 (en) Two-layer tape for molten carbonate fuel cells
CN1262036C (en) Anode assembly for an electrochemical cell
KR20170089630A (en) Molten carbonate fuel cells including electrolyte impregnated matrix and methods of manufacturing the same
JP2005085758A (en) High temperature type fuel cell
JPS6366858A (en) Electrode for molten carbonate fuel cell
JP2007087696A (en) Fuel battery cell, fuel battery cell stack, and fuel cell
JPH1074529A (en) Fused carbonate type fuel cell and its manufacture
KR102369060B1 (en) Solid oxide fuel cell comprising anode alkaline-based promoter loaded
JPH08195216A (en) Manufacture of solid-electrolyte fuel cell
JP3208528B2 (en) Electrode for molten carbonate fuel cell and method for producing the same
JP4705336B2 (en) Electrolyte / electrode assembly and method for producing the same
JP2517750B2 (en) Method for producing molten salt fuel cell
JP2944097B2 (en) Molten carbonate fuel cell
JPH05174836A (en) Forming method for fuel electrode of solid electrolytic fuel cell
JPS61260550A (en) Composite constituent element for fuel cell
JP2678080B2 (en) Starting method of molten carbonate fuel cell
JP4412994B2 (en) Support substrate for fuel cell, fuel cell, and fuel cell

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees