JP2893459B2 - Air conditioning method using latent heat of water evaporation - Google Patents

Air conditioning method using latent heat of water evaporation

Info

Publication number
JP2893459B2
JP2893459B2 JP1230982A JP23098289A JP2893459B2 JP 2893459 B2 JP2893459 B2 JP 2893459B2 JP 1230982 A JP1230982 A JP 1230982A JP 23098289 A JP23098289 A JP 23098289A JP 2893459 B2 JP2893459 B2 JP 2893459B2
Authority
JP
Japan
Prior art keywords
air
temperature
water
heat
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1230982A
Other languages
Japanese (ja)
Other versions
JPH03207967A (en
Inventor
英正 鶴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP1230982A priority Critical patent/JP2893459B2/en
Publication of JPH03207967A publication Critical patent/JPH03207967A/en
Application granted granted Critical
Publication of JP2893459B2 publication Critical patent/JP2893459B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Landscapes

  • Other Air-Conditioning Systems (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は主として夏季において居住空間や各種作業空
間の空気の温度および湿度を適当な範囲に保つための空
気調和に関するもので、主たるエネルギー源として各種
燃料の燃焼ガスや高温の廃ガスを使用する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to air conditioning for keeping the temperature and humidity of air in living spaces and various working spaces in an appropriate range mainly in summer, and as a main energy source. Use combustion gas of various fuels and high temperature waste gas.

[従来の技術] 夏季における通常の居住空間の雰囲気としてはたとえ
ば温度26℃,相対湿度(以下RHと称す)50%,絶体湿度
(以下湿度と称す)0.0105[kg水分/kg乾空気]付近が
適当とされている。
[Prior art] In a normal living space atmosphere in summer, for example, a temperature of 26 ° C., a relative humidity (hereinafter referred to as RH) of 50%, and an absolute humidity (hereinafter referred to as “humidity”) of around 0.0105 [kg moisture / kg dry air] Is appropriate.

一方夏季、昼間に戸外より換気のために取入れられる
空気は一般にこれより高温多湿である。しかも建物の屋
根や壁面等よりの顕熱の侵入と内部で発生する顕熱と蒸
発水分の潜熱が常時加わるために前記のような快適な雰
囲気を得るにはこれ等の顕熱と潜熱を循環空気より除去
する必要がある。これ等の顕熱の除去のためには通常冷
凍機により得られる5〜10℃程度の冷水を熱交換器の低
温側に送り、伝熱面を介して高温側を通過する循環空気
を15℃前後に冷却したのち室内へ返送している。また潜
熱すなわち湿分の除去には同じく熱交換器を用いるか、
直接冷水と接触させ、空気温度を所望する湿度に相当す
る露点温度付近まで下げて含有水分の凝縮、除去を行う
のが通例である。このような冷凍機としてはフレオン等
の冷媒の液化と蒸発よりなる冷凍サイクルによって低温
を得る機械的エネルギーを用いる冷凍方式のほかに、一
部吸収式冷凍機が知られている。
On the other hand, in the summer, the air taken in for ventilation from outside in the daytime is generally hotter and humid. In addition, since sensible heat invades from the roof and walls of the building, etc., and the sensible heat generated inside and the latent heat of evaporated water are constantly applied, circulating these sensible heat and latent heat to obtain the above-mentioned comfortable atmosphere Must be removed from air. In order to remove such sensible heat, cold water of about 5 to 10 ° C. usually obtained by a refrigerator is sent to the low temperature side of the heat exchanger, and circulating air passing through the high temperature side through the heat transfer surface is cooled to 15 ° C. After cooling back and forth, they are returned to the room. Also use a heat exchanger to remove latent heat, that is, moisture,
It is customary to directly contact cold water and lower the air temperature to near the dew point temperature corresponding to the desired humidity to condense and remove the water content. As such a refrigerator, besides a refrigeration system using mechanical energy for obtaining a low temperature by a refrigeration cycle consisting of liquefaction and evaporation of a refrigerant such as freon, a partial absorption refrigerator is known.

これは臭化リチウム(LiBr)等の水溶液の呈する水蒸
気圧が溶液の濃度と温度によって変化する性質を利用し
て冷凍サイクルを組むものである。
In this method, a refrigeration cycle is constructed by utilizing the property that the water vapor pressure of an aqueous solution such as lithium bromide (LiBr) changes depending on the concentration and temperature of the solution.

吸収式冷凍方式ではこの水溶液を作動液と称するが使用
済の稀釈作動液を濃縮して再使用するために燃焼ガスや
スチーム、熱水等の熱源を主たるエネルギー源とする。
In the absorption refrigeration system, this aqueous solution is referred to as a working fluid, and a heat source such as a combustion gas, steam, or hot water is used as a main energy source in order to concentrate and reuse a used diluted working fluid.

[発明が解決しようとする課題] 近時夏季昼間に消費される冷房用の電力需要が急増し
ており、各電力会社はこの時点に合わせて設備を増強す
る必要に迫られている。そのため年間を通じての設備の
稼動率の低下を余儀なくされている。一方都市ガスまた
は石油会社はその需要のうち、冬季に暖房用として多量
に消費されている部分が夏季には消滅するために設備の
稼動率がその時期に低下する問題をかゝえている。
[Problems to be Solved by the Invention] Demand for electric power for cooling consumed in the summertime in the recent days is rapidly increasing, and each electric power company is required to reinforce the equipment at this time. For this reason, the operation rate of the facilities has to be reduced throughout the year. On the other hand, city gas or petroleum companies have a problem that a portion of the demand that is consumed in large quantities for heating in winter disappears in summer and the operation rate of the equipment is reduced at that time.

このような季節的なエネルギーの需給の不均衡を解決
するために近来燃料をエネルギー源とする前記吸収式冷
凍機を用いた冷房設備が普及しつつある。これによれば
冷房のための電力消費はポンプや送風機等の駆動用とし
て少量を要するのみで、前記のごとき矛盾を解消する上
で原理的に優れている。
In order to solve such an imbalance in seasonal energy supply and demand, cooling equipment using the absorption refrigerator using fuel as an energy source has recently become widespread. According to this, power consumption for cooling requires only a small amount for driving a pump, a blower, and the like, and is excellent in principle in resolving the contradiction as described above.

この方式の1つの欠点はその設備の複雑性にある。燃
料の燃焼ガスを通常ボイラー等によりスチームまたは熱
水に変えてから最終的な冷風を得るまでに熱交換器を7
ケ所以上要する。またその間で、稀釈作動液の蒸発濃縮
とそのさい発生する水蒸気の凝縮、冷熱を得るために水
の減圧下での蒸発と発生水蒸気の濃厚作動液への吸収は
いづれも減圧真空下で行う必要がある。作動液よりの塩
類の析出防止や材質の腐蝕のおそれのある熱交換器の運
転にも十分の注意が必要であり、また保守点検も容易で
ない。
One disadvantage of this approach is the complexity of the equipment. After changing the combustion gas of the fuel to steam or hot water using a boiler, etc.
It takes more than two places. In the meantime, evaporation and condensation of the diluted working fluid, condensation of the generated steam, and evaporation of water under reduced pressure and absorption of the generated steam into the concentrated working fluid must all be performed under reduced pressure in order to obtain cold heat. There is. Sufficient attention must be paid to the operation of the heat exchanger which may prevent the precipitation of salts from the working fluid and corrode the material, and maintenance and inspection are not easy.

また吸収式冷凍機方式はまず10℃前後の冷水を作り、
これを用いて空気を冷却するにはさらに熱交換器を要す
るが、そのさいにもし空気の脱湿を同時に達成しようと
すれば、空気の一部または全部をその要求湿度に見合う
露点まで冷却して、余剰の湿分を凝縮除去したのち、さ
らに温度を所定の条件に調整して元の室内に返送する必
要があり、システムはさらに複雑となる。
In addition, absorption chiller method first makes cold water around 10 ° C,
In order to cool the air using this, an additional heat exchanger is required.In this case, if the air is to be simultaneously dehumidified, part or all of the air is cooled to a dew point corresponding to the required humidity. Therefore, after condensing and removing excess moisture, it is necessary to further adjust the temperature to a predetermined condition and return it to the original room, which further complicates the system.

このように全体のシステムが複雑なために設備費は割
高となる。またその装置の構造上1台当りの設備能力に
は上限があり、また逆に経済性からみて小規模では引き
合わない。
As described above, since the entire system is complicated, the equipment cost is relatively high. In addition, due to the structure of the apparatus, there is an upper limit to the equipment capacity per unit.

[問題点を解決するための手段] 本発明はLiBr等の水溶液の示す水蒸気圧が、その溶質
の濃度と温度によって大きく変化する性質を利用する点
では従来の吸収式冷凍機と同様である。たゞし根本的に
異なるのは受入空気を直接これ等水溶液と接触させて脱
湿し、これを後述するような特殊な熱交換方式で20℃付
近まで冷却し、続いて水と接触させて断熱的な蒸発を行
い所定の温度、湿度の返送空気を得る手段を用いる点で
ある。これ等の操作はすべて常圧下50℃以下で行うこと
でき、必要な熱交換器も1〜2基で済む利点をもつ。ま
た高温の燃焼ガスをボイラー等によりスチーム、熱水に
変えたのち作動液の濃縮を行う代わりに、高温ガスを常
圧下で直接これと接触させ実施することができる。
[Means for Solving the Problems] The present invention is the same as a conventional absorption refrigerator in that it utilizes the property that the water vapor pressure of an aqueous solution of LiBr or the like greatly changes depending on the concentration and temperature of the solute. The fundamental difference is that the incoming air is brought into direct contact with these aqueous solutions to dehumidify it, cooled to around 20 ° C by a special heat exchange method as described below, and then brought into contact with water. The point is to use means for performing adiabatic evaporation to obtain return air at a predetermined temperature and humidity. All of these operations can be performed at 50 ° C. or lower under normal pressure, and have the advantage that only one or two heat exchangers are required. Instead of converting the high-temperature combustion gas into steam or hot water using a boiler or the like and then concentrating the working fluid, the high-temperature gas can be directly brought into contact with the working gas under normal pressure to perform the operation.

このようにして全体のシステムはきわめて簡単であり、
設備費も規模の大小によらずに安価となる可能性があ
る。
In this way the whole system is very simple,
Equipment costs may also be low, regardless of the size.

運転も常圧下であるために簡単であり、設備の保守点
検も容易に行うことができる。
The operation is simple under normal pressure, and the maintenance and inspection of the equipment can be easily performed.

しかしながら実際の条件にあてはめてみるとこの方法
は問題点のあることが判明した。
However, when applied to actual conditions, this method proved to be problematic.

すなわち夏季昼間の室内空気を前述のごとく温度26
℃,湿度0.0105[kg/kg]に保つためには返送空気はこ
れより低い、たとえば温度14℃,湿度0.0080[kg/kg]
付近に調整して室内に吹込む必要があるとされている。
この条件は後述する第2図の湿り空気線図上で湿球温度
で約12℃付近を通る断熱冷却線上にある。
In other words, as described above, indoor air during summer
In order to keep the temperature at ℃ and the humidity at 0.0105 [kg / kg], the returned air should be lower, for example, the temperature at 14 ℃ and the humidity at 0.0080 [kg / kg]
It is said that it is necessary to adjust to the vicinity and blow it into the room.
This condition is on the adiabatic cooling line passing about 12 ° C. at the wet bulb temperature in the psychrometric chart of FIG. 2 described later.

一方、同時間帯における屋外の空気を33℃,湿度0.02
0[kg/kg]とするとその条件の下で冷却塔によって得ら
れる冷却水の温度は実用上32℃程度となる。
On the other hand, in the same time zone, the outdoor air
If it is 0 [kg / kg], the temperature of the cooling water obtained by the cooling tower under that condition is practically about 32 ° C.

したがってこの温度の冷却水により工程中で得られる
乾燥空気を間接冷却する実用上の限度は37℃程度となろ
う。
Therefore, the practical limit of indirect cooling of the dry air obtained in the process with the cooling water at this temperature will be about 37 ° C.

このような乾球温度の空気からはたとえ湿度が0であ
っても到達できる湿球温度は断熱冷却線からみて13℃程
度であり前記湿球温度に到達しない。後述するようにLi
Br水溶液と接触して得られる乾燥空気の湿度は実用上0.
0050[kg/kg]程度と考えられるので、これを21℃程度
まで冷却しないと前記湿球温度12℃を通る断熱冷却線上
に載らず、従って前記のごとき返送空気は得られない。
Even when the humidity is 0, the wet bulb temperature that can be reached from the air having such a dry bulb temperature is about 13 ° C. when viewed from the adiabatic cooling line, and does not reach the wet bulb temperature. As described later, Li
The humidity of dry air obtained by contact with Br aqueous solution is practically 0.
[0050] Since it is considered to be about [kg / kg], unless this is cooled to about 21 ° C, it will not be placed on the adiabatic cooling line passing through the wet bulb temperature of 12 ° C, and thus the return air as described above cannot be obtained.

このように32℃の冷却水を用いるかぎり間接冷却方式
で前記21℃まで空気を冷却することは到底不可能であ
り、したがってこのような方式で冷房を行う見込みはな
い。
As long as the cooling water of 32 ° C. is used, it is almost impossible to cool the air to the above-mentioned 21 ° C. by the indirect cooling method, and therefore, there is no possibility of performing the cooling by such a method.

本発明においては返送空気の一部を熱交換器の低温側
に還流し、高温側の乾燥空気と対向流に流して熱交換を
行うものであるが、そのさいに水と絶えず接触させてこ
れを湿球温度付近に下げつゝ、高温側と十分の温度差を
保ちながら対応させたのち排気する。これにより還流量
を全体の15〜20%に設定すれば高温側の出口空気温度を
20℃付近まで下げることができることが判明した。もし
このような注水を行わないとすれば還流量は100%近く
を要することになり、返送空気の確保は困難となる。
In the present invention, a part of the return air is returned to the low temperature side of the heat exchanger, and the heat is exchanged by flowing in a counterflow with the dry air on the high temperature side. When the temperature is lowered to near the wet-bulb temperature, the exhaust gas is exhausted after maintaining a sufficient temperature difference from the high-temperature side. By setting the reflux amount to 15-20% of the total, the outlet air temperature on the high-temperature side
It was found that the temperature can be lowered to around 20 ° C. If such water injection is not performed, the amount of reflux will need to be close to 100%, and it will be difficult to secure return air.

またこのような排気に必要な還流比率は受入空気全体に
対する室内換気のための戸外よりの取入比率とおゝむね
一致するために換気のために戸外に廃棄する空気を利用
することになり、実用上とくに損失とはならない。
In addition, the recirculation ratio required for such exhaust generally matches the intake ratio from the outside for indoor ventilation with respect to the whole received air, so that air to be discarded outdoors for ventilation will be used. Above all, there is no loss.

[作用] 本発明の作用についてその一例を第1図を用いて説明
する。
[Operation] An example of the operation of the present invention will be described with reference to FIG.

受入空気1は送風機2により空気脱湿塔3に送られ
る。1には通常室内の空気と共に換気用として戸外の新
鮮空気が一定の比率、たとえば15〜20%程度で混合して
いる。3の中央部には充填物層4と冷却水6による冷却
管5が内蔵されている。受入空気が4の内部を上昇する
さいにLiBrの濃厚吸収液7が3の頂部より灌液され、4
を降下する間に上昇する空気と接触する。この接触界面
において空気中の水分は吸収液に移動するが同時に気液
間の温度差による熱移動も生ずる。そのさいの水の吸収
凝縮熱による液の昇温は水分吸収の妨げになるので冷却
管5によって適宜除去される。
The incoming air 1 is sent to an air dehumidification tower 3 by a blower 2. In No. 1, fresh air outside is usually mixed with indoor air at a certain ratio, for example, about 15 to 20% for ventilation. A cooling pipe 5 for a filler layer 4 and cooling water 6 is built in the center of 3. As the incoming air rises inside 4, a thick absorbing solution 7 of LiBr is irrigated from the top of 3 and 4
Comes in contact with rising air while descending. At this contact interface, the moisture in the air moves to the absorbing liquid, but at the same time heat transfer occurs due to the temperature difference between the gas and liquid. At this time, the temperature rise of the liquid due to the heat of absorption and condensation of the water hinders the absorption of water, and thus is appropriately removed by the cooling pipe 5.

かくて吸収の終った稀釈吸収液8は塔底より、また空
気は塔頂よりたとえば温度40℃で湿度0.0050[kg/kg]
程度まで脱湿乾燥されて排出する。
The diluted absorption liquid 8 thus absorbed is taken from the bottom of the column and air is taken from the top of the column, for example, at a temperature of 40 ° C. and a humidity of 0.0050 [kg / kg].
Dehumidify and dry to the extent and discharge.

このようにして得られた乾燥空気は冷却管10を内蔵する
空気冷却器9を通過し、冷却水11によって適宜予備冷却
することがある。またときには室内より取り入れた前記
26℃付近の空気と熱交換することも有効である。
The dry air thus obtained passes through an air cooler 9 containing a cooling pipe 10 and may be appropriately pre-cooled by cooling water 11 in some cases. Also sometimes said from the room
It is also effective to exchange heat with air around 26 ° C.

次にこの乾燥空気は空気熱交換器12において所定の温度
20℃付近まで冷却される。
Next, the dried air is heated to a predetermined temperature in the air heat exchanger 12.
Cool to around 20 ° C.

12は図のごとく縦型に配設され、内部は高温部12hと
低温部12cとに隔壁により分割され、両者間で伝熱機構1
3を介し温度差による熱の移動が行われる。図はフィン
付のヒートパイプ群を想定しているが、両側の空気が実
質的に混合しない他の伝熱方式を用いることもできる。
12 is arranged vertically as shown in the figure, and the inside is divided into a high temperature section 12h and a low temperature section 12c by a partition wall, and a heat transfer mechanism 1 is provided between the two.
The heat transfer due to the temperature difference takes place via 3. Although the figure assumes a heat pipe group with fins, other heat transfer methods in which the air on both sides are not substantially mixed can be used.

前記乾燥空気は12hを下から上に通過するさいに冷却
され、たとえば20℃に達したのち続いて断熱水蒸発器
(だんねつみずじょうはつき)14に至る。ここで空気は
噴霧ノズル16を経て供給される適当量の常温付近の注水
15と接触し、水の蒸発による空気の断熱的冷却と増湿が
同時に行われ所定の温度と湿度に達する。
The dry air is cooled as it passes from bottom to top for 12 h and reaches, for example, 20 ° C. and subsequently to an adiabatic water evaporator 14. Here, air is injected through a spray nozzle 16 at an appropriate amount near normal temperature.
15 and adiabatic cooling and humidification of air by evaporation of water are performed simultaneously to reach a predetermined temperature and humidity.

たとえば14の入口空気の条件が前記のごとくであれば注
水量を乾燥空気量の0.25%重量比程度とすると、水はす
べて蒸発し温度14℃,湿度0.008[kg/kg]程度の空気を
得ることができる。これは室内へ返送する空気としては
前記のごとく満足すべき状態である。
For example, if the conditions of the 14 inlet air are as described above, and the water injection amount is about 0.25% by weight of the dry air amount, all the water evaporates to obtain air at a temperature of 14 ° C. and a humidity of about 0.008 [kg / kg]. be able to. This is a satisfactory condition for returning air to the room as described above.

かくて14を出た空気は空気分配弁17により約15〜20%
が還流空気19として12に戻され、残部は返送空気18とし
て室内に戻される。
The air that has exited 14 is about 15-20% by the air distribution valve 17.
Is returned to 12 as return air 19, and the remainder is returned to the room as return air 18.

19は熱交換器低温部12cの上部に導かれ、前記12hの高
温空気流と向流的に内部を流下する。
19 is guided to the upper part of the heat exchanger low temperature section 12c, and flows down in the counter current with the high temperature air flow of 12h.

そのさいに12hの上部より注水ノズル20を経て水が17
の気流中に灌液分散される。水と空気の接触は13のフィ
ンの表面で十分に行われるが、さらに接触効果を増すた
めに適宜充填物等を13の周辺に配設することもできる。
At that time, water was supplied from the upper part of 12h through the water injection nozzle 20 to 17
Is dispersed in the air stream. Although the contact between water and air is sufficiently performed on the surface of the fins 13, a filler or the like may be appropriately disposed around the fins 13 to further increase the contact effect.

12cの内部では気流にそって常に水の蒸発による空気
の断熱冷却と増湿が行われる。
Inside 12c, adiabatic cooling and humidification of air are always performed by evaporation of water along the air flow.

温度条件としてはまず12cの入口では17はその湿球温
度12℃付近まで減温されているので前記12hの出口側温
度20℃を得るには十分の温度差が得られる。さらに12c
を通過する空気は12h側より13を経て熱移動を受けて昇
温するが、共存して接触する水がそれに見合って蒸発す
るために空気は常にその湿球温度付近を保ちつゝ序々に
昇温する。
As the temperature condition, first, at the inlet of 12c, the temperature of 17 is reduced to around 12 ° C., so that a sufficient temperature difference is obtained to obtain the outlet side temperature of 20 ° C. of 12h. Further 12c
The air passing through the heater receives heat from the 12h side through 13 and heats up, but the water that coexists and contacts it evaporates in proportion to it, so the air always keeps near the wet bulb temperature. Warm up.

12cの底部を出た空気は分離槽21において余剰の水流
を分離して排出空気24として系外に放出される。
The air that has exited from the bottom of 12c separates the excess water flow in the separation tank 21 and is discharged out of the system as discharged air 24.

21では蒸発した水に相当する補給水23が加わり、循環
水として循環ポンプ22を経て再び20に送られる。
In 21, supplementary water 23 corresponding to the evaporated water is added, and is sent again to circulation 20 through circulation pump 22 as circulation water.

次に空気脱湿塔3より排出する稀釈吸収液8の濃縮再
生について説明する。
Next, the concentration and regeneration of the dilution absorbent 8 discharged from the air dehumidification tower 3 will be described.

この濃縮方式は使用する熱エネルギーの種類によって当
然異なるものである。
This concentrating method naturally depends on the type of thermal energy used.

第1図は都市ガス、LPG,その他石油系留分等の流体燃
料の使用を前提としたものであり、バーナ26,燃焼ガス
噴出管27,液中燃焼式濃縮缶25を主体として液の濃縮が
行われる。
FIG. 1 assumes the use of fluid fuel such as city gas, LPG and other petroleum-based fractions, and concentrates the liquid mainly using a burner 26, a combustion gas injection pipe 27, and a submerged combustion type concentrator 25. Is performed.

8はたとえば濃度53%付近のLiBr水溶液であり、回収
ポンプ31により液々熱交換器32を通る間に高温の濃縮液
7により昇温して25に供給される。26には燃料28と燃焼
用空気29が送られ、ここで完全燃焼で得られた高温ガス
は27を通って25に滞留している液中に噴出する。
Numeral 8 denotes, for example, an aqueous solution of LiBr having a concentration of about 53%, which is supplied to 25 after being heated by the high-temperature concentrated liquid 7 while passing through the liquid-liquid heat exchanger 32 by the recovery pump 31. The fuel 28 and the combustion air 29 are sent to 26, and the high-temperature gas obtained by the complete combustion is jetted into the liquid retained at 25 through 27.

液中に細泡となって分散した高温ガスと液との間には
きわめて良好な熱交換が行われ、液の加熱により蒸発し
た水蒸気は燃焼ガスにともなわれて液面より離脱して排
ガス30として系外に出る。
Very good heat exchange takes place between the high-temperature gas dispersed as fine bubbles in the liquid and the liquid, and the water vapor evaporated by the heating of the liquid is separated from the liquid surface by the combustion gas and exhausted. Get out of the system as 30.

このとき缶液の濃度はたとえばLiBr 63%付近に調節
され、送液ポンプ33により濃縮再生液として取り出され
32を通る間に8に熱を与えつゝ自らは冷却する。これは
さらに冷却水35による液冷却器34で所定温度たとえば40
℃付近まで冷却されたのち7として3の頂部に戻る。
At this time, the concentration of the can solution is adjusted to, for example, about 63% of LiBr, and is taken out as a concentrated regenerating solution by the solution sending pump 33.
Give heat to 8 while passing through 32-cool yourself. This is further reduced to a predetermined temperature, for example, 40
After cooling to around ℃, return to the top of 3 as 7.

この濃縮操作は缶自体は常圧下で行われるものである
が29はバーナ内部の圧損失と27の先端を液表面より若干
下部に設定するためにその分の差圧を必要とする。
This concentration operation is performed under normal pressure in the can itself, but 29 requires a pressure loss corresponding to the pressure loss inside the burner and the tip of 27 is set slightly below the liquid surface.

以上は熱源として流体燃料をバーナで空気と共に完全燃
焼した高温ガスを直接稀吸収液と接触させてこれを濃縮
再生する例であるが、その他の高温排ガス(例えばエン
ジンの排気)等を利用して同様の操作を行うこともでき
る。また高温ガスと液との直接接触の方法としてガスを
液中に噴出させる以外に、セラミックス等の充填物の表
面で気液を接触させる方法や、熱ガス中に液を噴霧する
方法等公知の方法も適宜応用できる。
The above is an example in which a high-temperature gas obtained by completely burning a fluid fuel together with air as a heat source is brought into direct contact with a diluted absorption liquid to concentrate and regenerate the same, but other high-temperature exhaust gas (eg, engine exhaust) or the like is used. A similar operation can be performed. As a method of direct contact between the high-temperature gas and the liquid, in addition to jetting the gas into the liquid, known methods such as a method of contacting gas and liquid on the surface of a filler such as ceramics and a method of spraying a liquid into a hot gas are known. The method can be appropriately applied.

また吸収式冷凍機と同様にスチームや熱水を用いて減
圧下で吸収液の濃縮を行う公知の方法も、その熱量単価
が格安であれば採用できる。
A known method of concentrating the absorbing solution under reduced pressure using steam or hot water as in the case of the absorption refrigerator can also be employed if the unit price of the calorific value is low.

[実施例] 第1図のフローシートに従って夏季昼間時の空気調和
を計画する。このさい空気予冷器9は省略する。このと
きの室内空気、戸外空気、返送空気18の温度と湿度の条
件を表1の通りとする。各々の記号A,B,C・・・は第2
図に示す湿り空気線図上の位置A,B,C・・・に対応す
る。このとき室内空気と戸外空気の混合比を0.80/0.20
(乾空気量基準)として受入空気1を定めている。
[Example] The air conditioning during the daytime in summer is planned according to the flow sheet of FIG. In this case, the air precooler 9 is omitted. Table 1 shows the conditions of the temperature and humidity of the indoor air, the outdoor air, and the return air 18 at this time. Each symbol A, B, C ... is the second
Corresponding to positions A, B, C,... On the psychrometric chart shown in the figure. At this time, the mixing ratio of indoor air and outdoor air was 0.80 / 0.20
The incoming air 1 is defined as (on a dry air basis).

次にこのときのフローシート上の各点の液温度とLiBr
吸収液の濃度は表2のごとく定める。
Next, the liquid temperature at each point on the flow sheet and LiBr
The concentration of the absorbing solution is determined as shown in Table 2.

このとき10,12の型式、伝熱面積、空気線速を適当に選
ぶことにより、このシステムの各点の温度と湿度を表3
のごとく計画設定することが可能である。
At this time, the temperature and humidity at each point of this system can be set as shown in Table 3 by appropriately selecting the models 10 and 12, the heat transfer area, and the air linear velocity.
It is possible to set a plan as follows.

このときの還流空気19と返送空気18の比率は19.6/80.4
と計算され、おおむね換気のために戸外から取入れた空
気に相当する量が排出空気として棄却される。
At this time, the ratio of the return air 19 to the return air 18 is 19.6 / 80.4
Is calculated, and the amount corresponding to the air taken in from outside for ventilation is rejected as exhaust air.

以上説明したような受入空気の設定に始まりその脱
湿、冷却、断熱水蒸発による返送空気の調整、還流空気
の挙動等の一切は第2図においてA,B,C,D,E,F,G,Hの各
点で示される。
Starting with the setting of the receiving air as described above, its dehumidification, cooling, adjustment of the return air by evaporation of adiabatic water, behavior of the return air, etc. are all shown in FIG. 2, A, B, C, D, E, F, It is indicated by each point of G and H.

このシステムでは熱交換器5と12における温度差の選
定が設備費の関連において重要である。
In this system, the selection of the temperature difference between the heat exchangers 5 and 12 is important in terms of equipment costs.

表4は前記の条件下での温度差を示す。 Table 4 shows the temperature difference under the above conditions.

これ等はいづれも低温度差であるが実用域にある。ま
た補給水は15,23を合わせて処理すべき受入空気量1に
対して約0.7%重量で、その他冷却水6が冷水塔で再生
されるさいの蒸発損失は約0.5%と見込まれる。これは
従来の機械式または吸収式の冷凍方式に比較して同程度
でとくに問題になる消費量ではない。
Although these are all low temperature differences, they are in the practical range. Also, make-up water is about 0.7% by weight of the received air quantity 1 to be treated in combination with 15, 23, and the evaporation loss when the cooling water 6 is regenerated in the cooling water tower is expected to be about 0.5%. This is a comparable and not particularly problematic consumption compared to conventional mechanical or absorption refrigeration systems.

次に第1図で3より排出する稀釈LiBr液8の濃縮再生
を行って濃厚吸収液7を得る運転条件と予想される結果
について説明する。
Next, referring to FIG. 1, the operating conditions for obtaining the concentrated absorbing solution 7 by performing the concentration regeneration of the diluted LiBr solution 8 discharged from 3 and the expected results will be described.

燃料としては都市ガスを使用する。表5はその組成と
発熱量である。
City gas is used as fuel. Table 5 shows the composition and the calorific value.

表5 使用燃料(都市ガス)の仕様 組成 メタン(CH4) 約82% エタン(C2H6) 約 6% プロパン(C3H8) 約 4% ブタン(C4H18) 約 2% 高位発熱量 約10,800kcal/Nm3 この燃料を用いて第1図に示すようなバーナ26,液中
燃焼式濃縮缶25,液々熱交換器32および冷却水35を用い
た液冷却器34の組合せにより吸収液の濃縮再生を行な
う。表6はその運転条件と得られる予想値である。
Table 5 Fuel Specifications composition methane (CH 4) of (city gas) to about 82% ethane (C 2 H 6) about 6% propane (C 3 H 8) 4% butane (C 4 H 18) about 2% high A calorific value of about 10,800 kcal / Nm 3 Using this fuel, a combination of a burner 26, a submerged combustion type concentrator 25, a liquid-liquid heat exchanger 32 and a liquid cooler 34 using cooling water 35 as shown in FIG. To perform the concentration regeneration of the absorbing solution. Table 6 shows the operating conditions and expected values obtained.

表6 吸収液の濃縮再生の運転条件 燃料 都市ガス(表5参照) 空気率 1.25 吸収液 表2の通りの温度、濃度とする。Table 6 Operating conditions for concentration and regeneration of absorbents Fuel City gas (see Table 5) Air rate 1.25 Absorbent Temperature and concentration as shown in Table 2.

缶液温度 141℃ 排ガス30 141℃,湿度0.706[kg/kg] 熱損失 入力高位燃焼熱に対して8% 濃縮熱効率 61.1%(対入力高位燃焼熱) なおこの排ガスは露点83℃,湿球温度84℃を保持し系外
に持ち去るエンタルピーは入熱量の約10%に相当する。
必要により熱交換器を用いるか、水と接触させて直接熱
交換を行うことによりこの排ガスより容易に60℃以上の
温水を回収することができる。
Tank temperature 141 ° C Exhaust gas 30 141 ° C, Humidity 0.706 [kg / kg] Heat loss 8% against high input combustion heat Condensed heat efficiency 61.1% (vs input high combustion heat) The exhaust gas has a dew point of 83 ° C and wet bulb temperature The enthalpy of keeping 84 ° C and taking it out of the system is equivalent to about 10% of the heat input.
If necessary, by using a heat exchanger or performing direct heat exchange by contacting with water, hot water of 60 ° C. or more can be easily recovered from the exhaust gas.

以上を総合して受入空気1を1000kg処理して返送空気
18を約800kgを得ることができるが、その所要冷却量751
5kcal(2.26冷凍トン)に対してこれに要する前記燃料
消費量は6880kcal(高位発熱基準)でCOP換算値1.10と
なる。
Combining the above, the incoming air 1 is treated 1000 kg and returned air
About 800 kg of 18 can be obtained, but the required cooling amount is 751
For 5 kcal (2.26 refrigeration tons), the required fuel consumption is 6.80 kcal (higher heat generation standard), which is a COP conversion value of 1.10.

もちろん前記のごとく温水を回収利用すればこの熱効
率はさらに上昇する。
Of course, if the hot water is recovered and used as described above, the thermal efficiency is further increased.

[発明の効果] 本発明は以上に説明したように構成されているので以
下に記載されているような効果を有する。第1に本発明
によれば夏季において室内の環境条件を快適にするため
に、その温度と湿度を別個に定めてこれに対応する運転
ができる。このことは後述するようにこのシステムをこ
れを冬季暖房用に運用するさいにも同様に可能である。
[Effects of the Invention] The present invention is configured as described above and has the following effects. First, according to the present invention, in order to make indoor environmental conditions comfortable in summer, the temperature and the humidity can be separately determined and the operation corresponding thereto can be performed. This is also possible when the system is operated for winter heating, as described below.

第2の効果はLiBr水溶液等の呈する水蒸気分圧がその
濃度と温度によって変化する性質を利用し、かつその再
生に熱源を利用することで、この点では公知の吸収式冷
凍機と同じであり、したがって電力消費はポンプや送風
機等の補助機器の駆動用のみで済む点である。
The second effect is that it utilizes the property that the water vapor partial pressure of LiBr solution or the like changes depending on its concentration and temperature, and uses a heat source for its regeneration. In this respect, it is the same as a known absorption refrigerator. Therefore, power consumption is only required for driving auxiliary equipment such as a pump and a blower.

この熱源としては、都市ガス、各種石油留分の燃焼ガ
スのほか、中高温の排ガスを利用できる。そのさい特に
ボイラー等を使用してスチーム、熱水に変えて使用する
必要はなく、常圧下で吸収液と直接接触させてその濃縮
再生を行うことができる。
As the heat source, city gas, combustion gas of various petroleum fractions, and medium-high temperature exhaust gas can be used. In this case, it is not necessary to use steam or hot water, particularly by using a boiler or the like, and it is possible to directly contact the absorbing solution under normal pressure to perform the concentration regeneration.

このために低廉なエネルギーを用いて高い熱効率をもっ
て経済性の高い運転を行うことができる。第3は公知の
吸収式冷凍機が真空下で運転され、また系内には多くの
熱交換器群を組み込む必要があるのに対し、本発明は常
圧下で運転され、熱交換器数も半分以下で済む。また各
要素は簡単かつ小型で一部を除き大部分は安価な材料を
以て基準的手法で設計製作できる。
For this reason, highly economical operation can be performed with high thermal efficiency using inexpensive energy. Third, while the known absorption refrigerator is operated under vacuum and many heat exchanger groups need to be incorporated in the system, the present invention is operated under normal pressure and the number of heat exchangers is also small. Less than half. In addition, each element is simple and small, and can be designed and manufactured by a standard method using inexpensive materials, except for some parts.

したがって設備費が安く保守点検も簡単である。第4
はこのシステムの持つ多目的性である。前記の説明は夏
季の冷房についてであったが、冬季暖房用に利用するに
は単にこのシステムの運転条件を変えればよく、したが
って設備は冷暖房用として兼用できる。
Therefore, equipment costs are low and maintenance and inspection are easy. 4th
Is the versatility of this system. Although the above description is for cooling in summer, it can be used for heating in winter simply by changing the operating conditions of this system, so that the equipment can also be used for cooling and heating.

これを第1図のシステムについて説明する。 This will be described with reference to the system shown in FIG.

たとえば冬季の外気条件を0℃,湿度0.0017[kg/k
g]とし、これを換気用に取り入れながら室内空気条件
を20℃,湿度0.0073[kg/kg]に保つものとする。これ
に対して受入空気1が3を通過する間にLiBrの作動液よ
り顕熱と共に、湿分すなわち潜熱の補給を受け、塔頂よ
りの排気が30℃,湿度0.0073[kg/kg]に達するように
調整されて、そのまゝ室内へ返送空気として吹き込むよ
うに設定できる。
For example, when the outside air condition in winter is 0 ° C and humidity is 0.0017 [kg / k
g], and the indoor air condition shall be maintained at 20 ° C and humidity of 0.0073 [kg / kg] while taking this in for ventilation. On the other hand, while the incoming air 1 passes through 3, the liquor, ie, the latent heat, is supplied from the working fluid of LiBr together with the sensible heat, and the exhaust from the top of the tower reaches 30 ° C. and the humidity reaches 0.0073 [kg / kg]. It can be set so that it is blown into the room as return air.

そのためには3の塔頂へ戻るLiBr液を50%,35℃前後
に保つように25を運転すればよい。このときは25の目的
は単に液の加熱昇温用であり、水分は夏季とは逆に3で
空気の加湿用に失われた分を缶液に追加補給することに
なる。またこの際には熱交換器、冷却器類、冷水塔およ
びその周辺機器は不要となる。
For that purpose, 25 may be operated so as to maintain the LiBr liquid returning to the top of column 3 at 50%, around 35 ° C. At this time, the purpose of 25 is simply to raise the temperature of the liquid by heating, and the water is replenished in the can liquid with the amount lost in 3 for the humidification of the air, contrary to the summer. In this case, a heat exchanger, a cooler, a cooling water tower and its peripheral devices are not required.

これまでの説明においては受入空気1の脱湿乾燥の手
段として、もっぱらLiBr水溶液と接触させて水分を吸収
することを述べてきたが、本発明はこれに限定する必要
はない。たとえばガスの脱湿用として公知のトリエチレ
ングリコール(C6H14O4)等の水溶液を用いることも条
件により可能である。また公知のLiBr等の結晶とその飽
和液の混合物を多孔質充填物に含浸させ、この表面に空
気と接触させてその湿分を吸収する方法やシリカゲル、
モレキュラーシーブ等の吸着剤を空気の脱湿乾燥手段と
して用いることも当然可能である。
In the description so far, as a means for dehumidifying and drying the received air 1, it has been described that water is absorbed solely by contact with an aqueous solution of LiBr, but the present invention is not limited to this. For example, a known aqueous solution of triethylene glycol (C 6 H 14 O 4 ) or the like may be used for dehumidifying a gas depending on conditions. Also, a method of impregnating a porous filler with a mixture of a known crystal of LiBr or the like and a saturated liquid thereof and contacting the surface with air to absorb the moisture or silica gel,
Naturally, it is also possible to use an adsorbent such as molecular sieve as a means for dehumidifying and drying air.

【図面の簡単な説明】[Brief description of the drawings]

第1図は水の蒸発潜熱を利用する空気調和方法の実施の
一例を示すフローシートである。 第2図は実施例のフローシート上の各点に対応する空気
の温度、湿度の値を示す湿り空気線図であり、横軸は空
気の温度、縦軸は湿度[kg水分/kg乾空気]を示す。 1…受入空気、2…送風機 3…空気脱湿塔、4…充填物層 5…冷却管、6…冷却水 7…濃厚吸収液、8…稀釈吸収液 9…空気予冷器、10…冷却管 11…冷却水、12…空気熱交換器 12h…同熱交高温部、12C…同熱交低温部 13…伝熱機構、14…断熱水蒸発器 15…注水、16…噴霧ノズル 17…空気分配弁、18…返送空気 19…還流空気、20…注水ノズル 21…分離槽、22…循環ポンプ 23…補給水、24…排出空気 25…液中燃焼式濃縮缶、26…バーナ 27…燃焼ガス噴出管、28…燃料 29…燃焼用空気、30…排ガス 31…回収ポンプ、32…液々熱交換器 33…送液ポンプ、34…液冷却器 35…冷却水 A…室内空気、B…戸外空気 C…受入空気1、D…返送空気18 E…乾燥空気(12h入口)、F…乾燥空気(12h出口) G…還流空気19(12c入口) H…排出空気24(12c出口)
FIG. 1 is a flow sheet showing an example of an air conditioning method using latent heat of vaporization of water. FIG. 2 is a psychrometric chart showing the values of the temperature and humidity of air corresponding to each point on the flow sheet of the embodiment. The horizontal axis is the air temperature, and the vertical axis is the humidity [kg moisture / kg dry air]. ]. DESCRIPTION OF SYMBOLS 1 ... Intake air, 2 ... Blower 3 ... Air dehumidification tower, 4 ... Packing layer 5 ... Cooling pipe, 6 ... Cooling water 7 ... Rich absorption liquid, 8 ... Dilution absorption liquid 9 ... Air precooler, 10 ... Cooling pipe 11 ... Cooling water, 12 ... Air heat exchanger 12h ... Heat exchange high temperature section, 12C ... Heat exchange low temperature section 13 ... Heat transfer mechanism, 14 ... Adiabatic water evaporator 15 ... Injection, 16 ... Spray nozzle 17 ... Air distribution Valve, 18 ... Return air 19 ... Reflux air, 20 ... Water injection nozzle 21 ... Separation tank, 22 ... Circulation pump 23 ... Make-up water, 24 ... Discharge air 25 ... Submerged combustion type concentrator, 26 ... Burner 27 ... Combustion gas ejection Pipe, 28 ... Fuel 29 ... Combustion air, 30 ... Exhaust gas 31 ... Recovery pump, 32 ... Liquid heat exchanger 33 ... Liquid sending pump, 34 ... Liquid cooler 35 ... Cooling water A ... Indoor air, B ... Outdoor air C: Incoming air 1, D: Return air 18 E: Dry air (12h inlet), F: Dry air (12h outlet) G: Reflux air 19 (12c inlet) H ... Discharge air 24 (12c outlet)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】受入空気1を空気脱湿器3により脱湿した
のち熱交換器12の高温側12−hに導いて冷却し、これを
所定量の注水14と接触させて断熱的な水の蒸発による冷
却と増湿を行って返送空気を得る一方で、その一部を12
の低温側12cに還流し12hを流れる前記高温側空気と対向
流に伝熱機構13を通じて熱交換を行うさいに、水と絶え
ず接触させてこれを湿球温度付近に保ちつゝ、排気する
ことを特徴とする水の蒸発潜熱を利用する空気調和方
法。
After dehumidifying incoming air by an air dehumidifier, the air is introduced into a high-temperature side of a heat exchanger and cooled, and the cooled air is brought into contact with a predetermined amount of water to provide adiabatic water. Cooling and humidification by evaporation of water to obtain return air,
When exchanging heat through the heat transfer mechanism 13 with the high-temperature air flowing back to the low-temperature side 12c and flowing through the 12h through the heat-transfer mechanism 13, the air is constantly brought into contact with water to keep the temperature close to the wet-bulb temperature and exhaust air. An air conditioning method using latent heat of evaporation of water.
JP1230982A 1989-09-06 1989-09-06 Air conditioning method using latent heat of water evaporation Expired - Lifetime JP2893459B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1230982A JP2893459B2 (en) 1989-09-06 1989-09-06 Air conditioning method using latent heat of water evaporation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1230982A JP2893459B2 (en) 1989-09-06 1989-09-06 Air conditioning method using latent heat of water evaporation

Publications (2)

Publication Number Publication Date
JPH03207967A JPH03207967A (en) 1991-09-11
JP2893459B2 true JP2893459B2 (en) 1999-05-24

Family

ID=16916375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1230982A Expired - Lifetime JP2893459B2 (en) 1989-09-06 1989-09-06 Air conditioning method using latent heat of water evaporation

Country Status (1)

Country Link
JP (1) JP2893459B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU6228999A (en) * 1999-10-22 2001-04-30 Seft Development Laboratory Co., Ltd. Cooling device
JP4648370B2 (en) * 2007-08-10 2011-03-09 繁雄 片平 Outside air cooler

Also Published As

Publication number Publication date
JPH03207967A (en) 1991-09-11

Similar Documents

Publication Publication Date Title
El-Dessouky et al. A novel air conditioning system: membrane air drying and evaporative cooling
Kojok et al. Hybrid cooling systems: A review and an optimized selection scheme
CN101240925B (en) Solar energy absorption type liquid dehumidifying air-conditioning system
CN100432573C (en) Radiation cold-supplying air-conditioner driven by solar energy and radiation cold-supply method
CA1196266A (en) System of moisture and temperature conditioning air using a solar pond
Su et al. Performance analysis of a novel frost-free air-source heat pump with integrated membrane-based liquid desiccant dehumidification and humidification
WO1997018423A1 (en) Polymer enhanced glycol desiccant heat-pipe air dehumidifier preconditioning system
JPS624614B2 (en)
CN106091187A (en) The low-temperature heat source absorption coupling air-conditioning device of a kind of dehumidification solution condensation heat regeneration and regulation and control method
Enteria et al. Review of the advances in open-cycle absorption air-conditioning systems
US7871458B2 (en) Apparatus and method for energy recovery
CN112728658B (en) Rotary dehumidifier
Kassem et al. Solar powered dehumidification systems using desert evaporative coolers
JP2005233435A5 (en)
Batukray Advances in liquid desiccant integrated dehumidification and cooling systems
CN201016499Y (en) Solar energy stepping utilization type air-conditioning system
JP2893459B2 (en) Air conditioning method using latent heat of water evaporation
JP2000257907A (en) Dehumidifying apparatus
CN200975755Y (en) Heating drive solution fresh air disposer with cooling water as cold source
CN216114413U (en) Open type refrigerating system
JP4749559B2 (en) Dehumidifying air conditioner
Batukray Application of renewable solar energy in liquid desiccant powered dehumidification and cooling
CN109579038B (en) Natural gas flue gas dehumidification waste heat reutilization system
CN108488955B (en) Dehumidification solution regenerating unit and air dehumidification system
Kodama et al. Process configurations and their performance estimations of an adsorptive desiccant cooling cycle for use in a damp climate