JP2893160B2 - Melting method of copper or copper alloy with low sulfur content - Google Patents

Melting method of copper or copper alloy with low sulfur content

Info

Publication number
JP2893160B2
JP2893160B2 JP7452094A JP7452094A JP2893160B2 JP 2893160 B2 JP2893160 B2 JP 2893160B2 JP 7452094 A JP7452094 A JP 7452094A JP 7452094 A JP7452094 A JP 7452094A JP 2893160 B2 JP2893160 B2 JP 2893160B2
Authority
JP
Japan
Prior art keywords
weight
copper
desulfurizing agent
melting
copper alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7452094A
Other languages
Japanese (ja)
Other versions
JPH07138667A (en
Inventor
隆紹 波多野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NITSUKO KINZOKU KK
Original Assignee
NITSUKO KINZOKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NITSUKO KINZOKU KK filed Critical NITSUKO KINZOKU KK
Priority to JP7452094A priority Critical patent/JP2893160B2/en
Publication of JPH07138667A publication Critical patent/JPH07138667A/en
Application granted granted Critical
Publication of JP2893160B2 publication Critical patent/JP2893160B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、スクラップ原料の多
用を可能にすると共に、極低硫黄濃度の銅又は銅合金を
低コストで供給することができる銅又は銅合金の溶製方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper or copper alloy smelting method capable of supplying copper or a copper alloy having an extremely low sulfur concentration at a low cost while enabling a large amount of scrap materials to be used. is there.

【0002】[0002]

【従来技術とその課題】鉱石から銅を採取するに際して
現在主流となっている“乾式精錬プロセス”を適用する
と、鉱石中に存在していた硫黄は溶錬工程での酸化によ
り0.02重量%程度にまで低減される。そして、続く電解
工程によって硫黄濃度を更に下げることができるが、電
解液として硫酸銅浴を使用する関係上、析出する銅中へ
不可避的に硫黄が混入するのを阻止できず、電解工程を
付加したとしても約 0.001重量%程度にまで硫黄濃度を
低減するのが精錬限界である。もっとも、銅中の硫黄濃
度をこれ以下に下げる手段として“硝酸銅浴を用いて再
電解する方法”等があるが、この場合には製造コストの
増加が著しく、得られる製品には金なみの価格が付加さ
れることになる。
[Prior art and its problems] When copper is extracted from ore, the current mainstream “dry refining process” is applied, and the sulfur present in the ore is reduced to about 0.02 wt% by oxidation in the smelting process. To be reduced. Then, the sulfur concentration can be further reduced by the subsequent electrolysis process.However, since the copper sulfate bath is used as the electrolytic solution, it cannot be prevented that sulfur is inevitably mixed into the precipitated copper. Even if it does, the refining limit is to reduce the sulfur concentration to about 0.001% by weight. However, as a means of reducing the sulfur concentration in copper to less than this, there is a method of re-electrolysis using a copper nitrate bath, etc., but in this case, the production cost is remarkably increased, and the obtained product is as good as gold. Price will be added.

【0003】また、板材,線材,棒材等のような銅又は
銅合金から成る材料の製造では、精錬後の電気銅,合金
成分及びスクラップといった原料を再溶解して所定形状
のインゴットに鋳造し、これを加工するというのが一般
的に採用されている工程である。この場合、製造コスト
削減のためスクラップを多用することが望ましいが、ス
クラップの使用量が多くなると不純物の混入が問題とな
る。特に、硫黄はスクラップに付着する油分等からも容
易に混入し、そのためスクラップの使用量は自ずと制限
されざるを得なかった。
In the production of copper or copper alloy materials such as sheet materials, wires, rods, etc., raw materials such as refined electrolytic copper, alloy components and scrap are remelted and cast into ingots of a predetermined shape. Processing this is a generally adopted process. In this case, it is desirable to use a large amount of scrap in order to reduce the manufacturing cost. However, if the amount of used scrap increases, mixing of impurities becomes a problem. In particular, the sulfur easily mixes in from the oil and the like adhering to the scrap, so that the amount of scrap used has to be naturally restricted.

【0004】このようなことから、本発明が目的とした
のは、銅又は銅合金材料を製造する際におけるスクラッ
プ原料の多用を可能とし、更に硫黄濃度が通常の精錬限
界以下の材料を低コストで製造できる“銅又は銅合金の
溶製プロセス”を確立することである。
[0004] In view of the above, an object of the present invention is to make it possible to use a large amount of scrap raw materials in producing copper or copper alloy materials, and to reduce materials having a sulfur concentration lower than the ordinary refining limit at low cost. Is to establish a "copper or copper alloy smelting process" that can be manufactured by

【0005】[0005]

【課題を解決するための手段】本発明者等は、上記目的
を達成すべく種々検討を行い、「硫黄濃度が極力低い銅
又は銅合金材料の実現のためには再溶解時に脱硫処理を
行うのが最も実際的な手段である」との結論を得て更に
検討を重ねたところ、以下に示す知見を得ることができ
た。まず、原料の再溶解時に脱硫処理として“通常の銅
精錬工程で適用されている酸化脱硫法(酸素吹錬による
脱硫法)”を適用することについて検討したが、この方
法では極低濃度まで硫黄を下げるのに長時間を要し、原
料たる銅及び銅合金成分が酸化によって著しく損失され
てしまうことが分かった。
Means for Solving the Problems The present inventors have conducted various studies in order to achieve the above object, and have stated that "for realization of a copper or copper alloy material having a sulfur concentration as low as possible, desulfurization treatment is performed at the time of remelting. Is the most practical means, "and the following findings were obtained. First, we examined the use of the “oxidative desulfurization method (desulfurization method using oxygen blowing) that is used in ordinary copper refining processes” as a desulfurization process when re-dissolving raw materials. It took a long time to lower the copper content, and it was found that copper and copper alloy components as raw materials were significantly lost by oxidation.

【0006】そこで、今度は、溶銑の脱硫に適用されて
いるところの酸化損失がそれほど問題にならないと考え
られる“スラグを使った脱硫精錬”に着目し、この手法
を銅又は銅合金の脱硫に適用することの可否、更には使
用するスラグについて鋭意研究を行った結果、「銅又は
銅合金原料の再溶解に当り、 特に Na2O, Na2CO3
はNaOHを脱硫剤として溶湯の処理を行うと、 原料の酸
化損失が懸念されることなく脱硫が著しく進行し、 前記
の目的が十分に達成される」との事実が明らかとなっ
た。
[0006] Therefore, this time, focusing on “desulfurization refining using slag”, in which oxidation loss that is applied to the desulfurization of hot metal is considered to be not so problematic, this method is applied to desulfurization of copper or copper alloy. As a result of diligent research on the feasibility of the application and on the slag to be used, "When re-dissolving the copper or copper alloy raw material, the treatment of the molten metal using Na 2 O, Na 2 CO 3 or NaOH as a desulfurizing agent is particularly important. Then, desulfurization proceeds remarkably without fear of oxidation loss of the raw material, and the above-mentioned object is sufficiently achieved. "

【0007】なお、溶銑処理の分野ではCaC2 系やCaO
−CaF2 系のフラックスが脱硫剤として良く用いられる
が、CaC2 は、銅に対して使用するとアセチレン銅とい
う爆発性の物質を生成するおそれがあり、安全上その使
用が困難であった。また、CaO−CaF2 系フラックスに
ついては、CaF2 自体には脱硫力はなく、これはCaOの
融点を低下させて脱硫速度を改善する目的で添加されて
いるが、銅又は銅合金の溶解温度は鉄と比較して低いた
めにCaF2 のこのような効果は現れず、CaO−CaF2
銅又は銅合金に対する脱硫速度は極めて遅いものであっ
た。更に、近年に至っては Na2CO3 系フラックスも溶
銑の同時脱硫・脱りん剤として検討されているが、カ−
ボンとの反応によるヒュ−ムの発生、更には耐火物との
反応による精錬容器の損傷といった問題が指摘されるも
のであった。
In the field of hot metal processing, CaC 2 and CaO
Although -CaF 2 based flux is often used as a desulfurizing agent, CaC 2, there is a possibility of generating explosive substance called acetylene copper With the copper, safety of use thereof is difficult. As for the CaO-CaF 2 flux, CaF 2 itself has no desulfurizing power, which is added for the purpose of lowering the melting point of CaO and improving the desulfurization rate. The effect of CaF 2 was not exhibited because of the lower temperature of iron compared to iron, and the desulfurization rate of CaO—CaF 2 to copper or copper alloy was extremely slow. In recent years, Na 2 CO 3 flux has also been studied as a simultaneous desulfurization and dephosphorization agent for hot metal.
Problems have been pointed out, such as generation of fumes due to the reaction with the bon and damage to the smelting vessel due to the reaction with the refractory.

【0008】ところが、溶銑精錬での脱硫剤としては使
用が困難であると考えられていた上記 Na2CO3 を始め
とする Na2O,NaOHといったNa系フラックスも、銅又
は銅合金を対象とした場合には、これらは溶解温度が低
く、また溶湯自体がカ−ボンを含有していないことから
“ヒュ−ムの発生", "耐火物との反応”はそれほど問題
にならないことが分かった。しかも、融点が低くて高い
硫黄分配値を有するNa系フラックスを銅又は銅合金溶湯
の脱硫剤とした場合には、極めて有効な脱硫力が働くこ
とが明らかとなったのである。なお、 Na2CO3 やNaO
Hは、銅又は銅合金の溶解温度では Na2Oに解離するた
め Na2Oと同等の脱硫力を発揮する。
However, Na-based fluxes such as Na 2 CO 3 , Na 2 O, and NaOH, which are considered to be difficult to use as desulfurizing agents in hot metal refining, are also intended for copper or copper alloys. In these cases, the melting temperature was low and the molten metal itself did not contain carbon, indicating that "generation of fumes" and "reaction with refractories" were not significant. . In addition, it has been clarified that when a Na-based flux having a low melting point and a high sulfur distribution value is used as a desulfurizing agent for molten copper or copper alloy, an extremely effective desulfurizing power works. In addition, Na 2 CO 3 or NaO
H dissociates into Na 2 O at the melting temperature of copper or a copper alloy, and therefore exhibits the same desulfurization power as Na 2 O.

【0009】更に、Na系脱硫剤では、特に処理温度が高
い場合や脱硫剤の添加量が少ない場合に“硫黄濃度が一
旦低値まで下がった後再び増加する”といった現象(復
硫)が認められるが、Na系脱硫剤にCaO,CaCO3, Ca
(OH)2,MgO,MgCO3 又はMg(OH)2のような高融点
の塩基性酸化物を混合すると前記“復硫”が効果的に抑
制されることも見出した。
[0009] Further, in the case of a Na-based desulfurizing agent, particularly when the treatment temperature is high or the amount of the desulfurizing agent added is small, a phenomenon (sulfur concentration once decreases to a low value and then increases again) (resulfurization) is recognized. However, CaO, CaCO 3 , Ca
It has also been found that when a basic oxide having a high melting point such as (OH) 2 , MgO, MgCO 3 or Mg (OH) 2 is mixed, the “resulfurization” is effectively suppressed.

【0010】勿論、過去に銅又は銅合金の脱硫のために
Na2O, Na2CO3 あるいはNaOHによるスラグ精錬を
適用した例はなく、本発明者等による「極低硫黄濃度を
目標とする銅又は銅合金の脱硫には Na2O, Na2CO3
又はNaOHを用いるスラグ精錬が最適である」との知見
は画期的なものであった。
Of course, because of the desulfurization of copper or copper alloy in the past,
There is no example of applying slag refining with Na 2 O, Na 2 CO 3 or NaOH, and the inventors of the present invention have stated that “Na 2 O, Na 2 CO 3 is used for desulfurization of copper or a copper alloy aiming at an extremely low sulfur concentration.
Or slag refining using NaOH is the best. "

【0011】その上、脱硫処理を還元性ガス又は不活性
ガスの雰囲気下で行ったり、脱硫剤にカ−ボン粉を混合
したり、処理溶湯表面を木炭又はカ−ボン質の物質で被
覆した上で脱硫処理を行ったり、あるいはカ−ボンを含
有した耐火物からなる溶解炉又はるつぼを用いて脱硫処
理を行った場合には、その脱硫効率が一層向上すること
も見出された。
[0011] In addition, the desulfurization treatment may be carried out using a reducing gas or an inert gas.
Performed in a gas atmosphere , mixed carbon powder with a desulfurizing agent, performed desulfurization treatment after coating the surface of the treated molten metal with charcoal or carbonaceous material, or contained carbon. It has also been found that when a desulfurization treatment is performed using a melting furnace or a crucible made of a refractory, the desulfurization efficiency is further improved.

【0012】本発明は、上記知見事項を基に行われた更
なる研究の結果完成されたものであり、次に示す「硫黄
含有量の極力低い“銅”又は“Cuを60重量%以上含有す
る銅合金”を低コストで安定に溶製し得る方法を提供す
るものである。 1) 銅あるいはこれに合金元素やスクラップ等を加えた
銅又は銅合金溶製用原料を溶解して融点又は液相線温度
よりも50〜500℃高い温度にまで昇温した後、その
溶湯に、還元性ガス又は不活性ガス雰囲気下で“ Na
2O, Na2CO3 又はNaOHの1種以上とそれらの合計
量に対する割合が0〜50重量%の量のCaO,CaCO3, C
a(OH)2,MgO,MgCO3 及び Mg(OH)2の1種以上と
を混合して成る脱硫剤”を Na2O, Na2CO3 及びNaO
Hの合計重量が溶湯重量の 0.1〜10%の範囲内となるよ
うに添加して保持し、次いで反応後の脱硫剤を除去する
ことを特徴とする、硫黄含有量の低い銅又はCuを60重量
%以上含有する銅合金の溶製方法。 2) 銅又は銅合金溶製用原料を溶解して融点又は液相線
温度よりも50〜500℃高い温度にまで昇温した後、
その溶湯に“ Na2O, Na2CO3 又はNaOHの1種以上
から成る脱硫剤”と“脱硫剤重量の10%未満のカ−ボン
粉”との混合物を脱硫剤重量にて溶湯重量の 0.1〜10%
の範囲で添加して保持し、次いで反応後の脱硫剤を除去
することを特徴とする、硫黄含有量の低い銅又はCuを60
重量%以上含有する銅合金の溶製方法。 3) 銅又は銅合金溶製用原料を溶解して融点又は液相線
温度よりも50〜500℃高い温度にまで昇温し、この
溶湯の表面を“木炭又はカ−ボンを50重量%以上含有す
る物質”で被覆した後、その溶湯に“ Na2O, Na2CO
3 又はNaOHの1種以上から成る脱硫剤”を Na2O, N
a2CO3 及びNaOHの合計重量が溶湯重量の 0.1〜10%
の範囲内となるように添加して保持し、次いで反応後の
脱硫剤を除去することを特徴とする、硫黄含有量の低い
銅又はCuを60重量%以上含有する銅合金の溶製方法。 4) 銅又は銅合金溶製用原料を溶解して融点又は液相線
温度よりも50〜500℃高い温度にまで昇温し、この
溶湯の表面を“木炭又はカ−ボンを50重量%以上含有す
る物質”で被覆した後、その溶湯に“ Na2O, Na2CO
3 又はNaOHの1種以上から成る脱硫剤”と“脱硫剤重
量の10%未満のカ−ボン粉”との混合物を脱硫剤重量に
て溶湯重量の 0.1〜10%の範囲で添加して保持し、次い
で反応後の脱硫剤を除去することを特徴とする、硫黄含
有量の低い銅又はCuを60重量%以上含有する銅合金の溶
製方法。 5) 脱硫剤として、 Na 2 O, Na 2 CO 3 又はNaOHの1
種以上に加え、それらの合計量に対する割合が50重量
%以下の量のCaO,CaCO 3 , Ca(OH) 2 ,MgO,MgCO
3 及び Mg(OH) 2 の1種以上を混合して成るものを用い
ることを特徴とする、前記1)ないし4)項の何れかに記載
の硫黄含有量の低い銅又はCuを60重量%以上含有する銅
合金の溶製方法。 6) 原料の溶解及びその後の処理を“カ−ボンを10重量
%以上含有する耐火物で築炉された炉中”又は“カ−ボ
ンを10重量%以上含有するるつぼ中”で行うことを特徴
とする、前記1)ないし5)項の何れかに記載の硫黄含有量
の低い銅又はCuを60重量%以上含有する銅合金の溶製方
法。ここで、本発明において、溶製対象の1つである銅
合金のCu含有量を60重量%以上としたのは、溶湯に“銅
の溶湯としての性状”が現れるのは60重量%以上のCuを
含有する場合であるとの理由からである。
The present invention has been completed as a result of further research conducted on the basis of the above findings, and is described below. To provide a low-cost and stable method of smelting copper alloys. 1) Dissolve copper or copper or copper alloy smelting raw materials to which alloy elements, scraps, etc. are added, and melt the copper or copper alloy. After the temperature is raised to a temperature higher by 50 to 500 ° C. than the liquidus temperature, the molten metal is mixed with “Na” in a reducing gas or inert gas atmosphere.
CaO, CaCO 3 , C in an amount of at least one of 2 O, Na 2 CO 3 or NaOH and a ratio of 0 to 50% by weight based on the total amount thereof
a (OH) 2 , MgO, MgCO 3 and one or more of Mg (OH) 2 mixed with at least one of desulfurizing agents “Na 2 O, Na 2 CO 3 and NaO
H and H are added and maintained so that the total weight of H is within the range of 0.1 to 10% of the weight of the molten metal, and then the desulfurizing agent after the reaction is removed. Melting method of copper alloy containing more than 10% by weight. 2) After melting the raw material for copper or copper alloy smelting and raising the temperature to a temperature 50 to 500 ° C. higher than the melting point or liquidus temperature,
At least one of Na 2 O, Na 2 CO 3 or NaOH
Desulfurizing agent "and" desulfurizing agent by weight of less than 10% Ca consisting - 0.1% to 10% of the melt weight at desulfurizing agent by weight of a mixture of carbon powder "
, And then removing the desulfurizing agent after the reaction.
Melting method of copper alloy containing more than 10% by weight. 3) The raw material for melting copper or copper alloy is melted and heated to a temperature 50 to 500 ° C. higher than the melting point or the liquidus temperature, and the surface of this molten metal is made up of 50% by weight or more of charcoal or carbon. Containing material ”, and then add“ Na 2 O, Na 2 CO
3 or desulfurizing agent "consisting of one or more NaOH Na 2 O, N
The total weight of a 2 CO 3 and NaOH is 0.1-10% of the melt weight
A method for producing a copper alloy containing 60% by weight or more of copper or Cu having a low sulfur content, characterized by adding and maintaining the content within the range described above and then removing the desulfurizing agent after the reaction. 4) The raw material for copper or copper alloy smelting is melted and heated to a temperature 50 to 500 ° C. higher than the melting point or liquidus temperature, and the surface of the molten metal is made up of 50% by weight or more of charcoal or carbon. Containing material ”, and then add“ Na 2 O, Na 2 CO
3 or one or more from the consisting desulfurizing agent "and" desulfurizing agent by weight of less than 10% mosquito NaOH - held is added in a range from 0.1 to 10% of the melt weight mixture at desulfurization agent by weight of the carbon powder " And then removing the desulfurizing agent after the reaction.5) A method for melting copper or a copper alloy containing 60% by weight or more of copper having a low sulfur content, 5) Na 2 O, Na 2 1 of CO 3 or NaOH
50% by weight of the total amount in addition to the seeds
% Or less of CaO, CaCO 3 , Ca (OH) 2 , MgO, MgCO
With 3 and Mg (OH) those comprising a mixture of one or more 2
According to any one of the above items 1) to 4),
Copper with low sulfur content or copper containing at least 60% by weight of Cu
How to make alloys. 6) The melting and subsequent treatment of the raw materials should be performed in a furnace built with a refractory containing 10% by weight or more of carbon or in a crucible containing 10% by weight or more of carbon. The method for melting a copper alloy containing 60% by weight or more of copper or Cu having a low sulfur content according to any one of the above items 1) to 5) . Here, in the present invention, the reason why the Cu content of the copper alloy which is one of the objects of smelting is set to 60% by weight or more is that "the property as a molten copper" appears in the molten metal at 60% by weight or more. This is because Cu is contained.

【0012】ここで、本発明において、溶製対象の1つ
である銅合金のCu含有量を60重量%以上としたのは、溶
湯に“銅の溶湯としての性状”が現れるのは60重量%以
上のCuを含有する場合であるとの理由からである。
In the present invention, the reason why the copper content of the copper alloy, which is one of the objects of smelting, is set to 60% by weight or more is that the "characteristics of copper as a molten metal" appears in the molten metal at 60% by weight. % Of Cu or more.

【0013】次に、本発明において銅又は銅合金の溶製
条件を前記の如くに限定した理由をその作用と共に詳述
する。
Next, the reason why the conditions for smelting copper or copper alloy in the present invention are limited as described above will be described in detail together with the operation thereof.

【作用】まず、Na系脱硫剤の作用について説明する。先
にも触れた通り、 Na2CO3 やNaOHといったNa系脱硫
剤は銅又は銅合金の溶解温度では Na2Oに解離するので
Na2Oと同等の作用を発揮するが、このNa系脱硫剤(Na2
O) による銅又は銅合金の脱硫反応は下記 (1)式で表さ
れる。 Na2O+= Na2S+ ……(1) なお、この時の標準自由エネルギ−変化(ΔG0), 平衡
定数(K)並びに硫黄の分配比はそれぞれ下記 (2)〜
(4)式で表される。 ΔG0 =6111−1.56T (cal/mol) ……(2)
[Operation] First, the operation of the Na-based desulfurizing agent will be described. As mentioned earlier, Na-based desulfurizing agents such as Na 2 CO 3 and NaOH dissociate into Na 2 O at the melting temperature of copper or copper alloy.
It exhibits the same effect as Na 2 O, but this Na-based desulfurizing agent (Na 2
The desulfurization reaction of copper or copper alloy by O) is represented by the following equation (1). Na 2 O + S = Na 2 S + O (1) The standard free energy change (ΔG 0 ), equilibrium constant (K) and sulfur distribution ratio at this time are as follows (2) to (2), respectively.
It is expressed by equation (4). ΔG 0 = 6111-1.56T (cal / mol) …… (2)

【0014】[0014]

【数1】 (Equation 1)

【0015】[0015]

【数2】 (Equation 2)

【0016】ところで、上記Na系脱硫剤は脱硫以外にも
脱珪や脱りんの作用を発揮する。そして、これら反応に
よって生成するP25 やSiO2 は強い酸性酸化物であ
り、前記 (4)式において「スラグ中の Na2O活量」を小
さくし硫黄の分配比を低下させる。また、Na系脱硫剤は
カ−ボンとの反応によって分解する。この時、炎及び白
煙を伴ってNaが気化損失し硫黄の分配比が低下する。こ
れらの現象が“復硫”の原因であると推測される。従っ
て、「スラグ中の Na2O活量」の低下を防止することが
“復硫”の抑制につながることになる。ここに、CaO,
CaCO3, Ca(OH)2,MgO,MgCO3 , Mg(OH)2とい
った酸化物はそれ自体では銅又は銅合金に対する脱硫能
力は非常に小さく、Na系脱硫剤に混合しても硫黄の分配
比や脱硫速度を大きくする効果は殆ど認められないが、
脱珪反応や脱りん反応が進行した場合にP25 やSiO2
と結合して「スラグ中のNa2O活量」の低下を防止する
効果、即ち“復硫”を抑制する効果を発揮する。また、
Naが気化損失した場合でも、脱硫剤中に上記酸化物が添
加されているとスラグ中にCa2+やMg2+が存在することと
なるので、このCa2+やMg2+がS2+と親和力を持つために
“復硫”を緩和することができる。
Incidentally, the above-mentioned Na-based desulfurizing agent exerts an effect of desiliconization and dephosphorization other than desulfurization. P 2 O 5 and SiO 2 generated by these reactions are strong acidic oxides, and reduce the “Na 2 O activity in the slag” in the above formula (4) to lower the distribution ratio of sulfur. Further, the Na-based desulfurizing agent is decomposed by the reaction with carbon. At this time, Na is vaporized and lost along with the flame and white smoke, and the distribution ratio of sulfur decreases. It is presumed that these phenomena are the cause of "resulfurization". Therefore, preventing a decrease in “Na 2 O activity in slag” leads to suppression of “resulfurization”. Where CaO,
Oxides such as CaCO 3 , Ca (OH) 2 , MgO, MgCO 3 , and Mg (OH) 2 by themselves have very low desulfurization capacity for copper or copper alloys. The effect of increasing the ratio and desulfurization rate is hardly recognized,
When the desiliconization reaction or dephosphorization reaction proceeds, P 2 O 5 or SiO 2
And an effect of preventing a decrease in “Na 2 O activity in slag”, that is, an effect of suppressing “resulfurization”. Also,
Even if the Na is vaporized lost, since the fact that Ca 2+ and Mg 2+ is present in the slag when the oxide is added to the desulfurizing agent, the Ca 2+ and Mg 2+ is S 2 "Resulfurization" can be mitigated by having affinity with + .

【0017】さて、本発明においては、「CaO,CaCO
3, Ca(OH)2,MgO,MgCO3 及びMg(OH)2の1種以
上を混合して成る脱硫剤」についてもその添加量を Na2
O,Na2CO3 及びNaOHの合計重量で規定している
が、その理由は、CaO,CaCO3,Ca(OH)2,MgO,MgC
3 及び Mg(OH)2自体は脱硫力を改善する効果を持っ
ておらず、“復硫”を抑制する効果のみを示すからであ
る。この場合、 Na2O, Na2CO3 又はNaOHの添加重
量が多くなるほど溶湯の硫黄濃度を低減できるが、製造
コストからすれば溶湯重量の10%を超えて添加すること
は実際的ではない。一方、該脱硫剤の添加量が溶湯重量
の 0.1%を下回ると有効な脱硫効果を確保することがで
きない。従って、脱硫剤の添加量は Na2O, Na2CO3
及びNaOHの合計重量が溶湯重量の 0.1〜10%の範囲内
となる量と限定した。
In the present invention, "CaO, CaCO
3, Ca (OH) 2, MgO, the amount also MgCO 3 and Mg (OH) desulfurizing agent comprising a mixture of one or more 2 'Na 2
It is defined by the total weight of O, Na 2 CO 3 and NaOH, because the reason is CaO, CaCO 3 , Ca (OH) 2 , MgO, MgC
This is because O 3 and Mg (OH) 2 themselves do not have the effect of improving the desulfurization power, but show only the effect of suppressing “desulfurization”. In this case, the sulfur concentration of the molten metal can be reduced as the added weight of Na 2 O, Na 2 CO 3 or NaOH increases, but it is not practical to add more than 10% of the weight of the molten metal in view of the production cost. On the other hand, if the amount of the desulfurizing agent is less than 0.1% of the weight of the molten metal, an effective desulfurizing effect cannot be secured. Therefore, the added amount of the desulfurizing agent is Na 2 O, Na 2 CO 3
And the total weight of NaOH is limited to the range of 0.1 to 10% of the weight of the molten metal.

【0018】また、脱硫剤の構成成分としてCaO,CaC
3 , Ca(OH) 2 ,MgO,MgCO 3 又は Mg(OH) 2 を配合
する場合に、CaO,CaCO3, Ca(OH)2,MgO,MgCO
3 及び Mg(OH)2のうちの1種又は2種以上の配合量を
「 Na2O, Na2CO3 及びNaOHの合計量に対して50重
量%以下」と限定した理由は、50重量%が“復硫”を抑
制するための十分な量であって、配合量が50重量%を超
えて多くなっても製造コストが増加する上に除滓作業
(脱硫処理後に脱硫剤を除去する作業)の負荷を大きく
するだけだからである。なお、これらCaO,CaCO3, C
a(OH)2,MgO,MgCO3 又は Mg(OH)2の配合量に下
限を設けなかった理由は、硫黄濃度が最低値を示した時
に速やかに(復硫が開始する前に)除滓作業を行うとい
った処理プロセスを適用すれば、配合量が極く微量であ
って殆ど Na2O, Na2CO3 又はNaOHだけでも“復
硫”を防止できるからである。
[0018] In addition, CaO, CaC
Contains O 3 , Ca (OH) 2 , MgO, MgCO 3 or Mg (OH) 2
When performing , CaO, CaCO 3 , Ca (OH) 2 , MgO, MgCO
The reason why the amount of one or more of Mg 3 and Mg (OH) 2 is limited to “50% by weight or less based on the total amount of Na 2 O, Na 2 CO 3 and NaOH” is as follows. % Is a sufficient amount to suppress "resulfurization", and even if the compounding amount exceeds 50% by weight, the production cost increases, and the descaling operation (removing the desulfurizing agent after desulfurization treatment) This is because it only increases the load of (work). Note that these CaO, CaCO 3 , C
The reason for not setting a lower limit on the amount of a (OH) 2 , MgO, MgCO 3 or Mg (OH) 2 is that when the sulfur concentration shows the lowest value, the debris is removed immediately (before resulfurization starts). by applying the processes such as to work, the amount is extremely small amount der
This is because “resulfurization” can be prevented by only Na 2 O, Na 2 CO 3 or NaOH alone.

【0019】次に、脱硫処理温度を“溶湯の融点又は液
相線温度に対して50〜500℃高い温度”に限定した
理由は次の通りである。即ち、処理温度が溶湯の融点又
は液相線温度に50℃をプラスした温度よりも低いと脱
硫剤添加時に溶湯の表面温度が急激に低下して溶湯が凝
固し、脱硫速度が著しく低下する。一方、処理温度が高
いほど反応速度が大きくなるが、“溶湯の融点又は液相
線温度よりも500℃高い温度”を超えた場合にはNaの
気化損失量が増加し、脱硫後の硫黄濃度が高くなったり
復硫量が大きくなったりする。また、電力費等のような
操業コストが増加するといった問題も生じる。
Next, the reason why the desulfurization treatment temperature is limited to "a temperature 50 to 500 ° C. higher than the melting point or liquidus temperature of the molten metal" is as follows. That is, when the treatment temperature is lower than the melting point or liquidus temperature of the molten metal plus 50 ° C., the surface temperature of the molten metal is rapidly lowered when the desulfurizing agent is added, and the molten metal is solidified, and the desulfurization rate is significantly reduced. On the other hand, the higher the processing temperature, the higher the reaction rate. However, when the temperature exceeds “the temperature higher than the melting point of the molten metal or the liquidus temperature by 500 ° C.”, the vaporization loss of Na increases, and the sulfur concentration after desulfurization increases. And the amount of resulfurization increases. In addition, there also arises a problem that operating costs such as power costs increase.

【0020】ところで、この場合、前記 (4)式から予想
されるように溶湯/スラグ界面の酸素分圧が低いほど硫
黄の平衡分配比は増加する。そして、通常は大気中で行
われる銅又は銅合金の溶解において界面酸素分圧を低下
させるためには、脱硫剤にカ−ボン粉を混合したり、処
理溶湯表面を“木炭”又は“カ−ボン質の物質(例えば
カ−ボン系耐火物又はるつぼの破砕片等)”で被覆する
のが効果的である。ここで、カ−ボン質物質のカ−ボン
含有量が50重量%未満のものでは所望の効果が得られな
い。
In this case, as expected from equation (4), the lower the oxygen partial pressure at the molten metal / slag interface, the higher the equilibrium distribution ratio of sulfur. In order to lower the interfacial oxygen partial pressure in the melting of copper or copper alloy usually performed in the atmosphere, carbon powder is mixed with a desulfurizing agent, or the surface of the treated molten metal is treated with “charcoal” or “carbon”. It is effective to coat with a carbonaceous substance (for example, a carbon-based refractory or a crushed crucible). Here, if the carbon content of the carbonaceous substance is less than 50% by weight, the desired effect cannot be obtained.

【0021】なお、脱硫剤にカ−ボン粉を混合する場合
には、混合するカ−ボン粉の量を脱硫剤重量の10%未満
に止めておくのが良い。なぜなら、混合するカ−ボン粉
の量が脱硫剤重量の10%以上になると Na2O, Na2CO
3 あるいはNaOHとカ−ボンとの反応によるNaの分解損
失量が大きくなり、かえって脱硫効率が低下するためで
ある。
When carbon powder is mixed with the desulfurizing agent, the amount of the carbon powder to be mixed is preferably limited to less than 10% of the weight of the desulfurizing agent. This is because when the amount of carbon powder to be mixed exceeds 10% of the weight of the desulfurizing agent, Na 2 O, Na 2 CO 3
This is because the loss of decomposition of Na due to the reaction of 3 or NaOH with carbon is increased, and the desulfurization efficiency is rather reduced.

【0022】更に、上述した銅又は銅合金原料の溶解・
脱硫処理においては、“カ−ボンを含有した耐火物”か
らなる溶解炉又はるつぼを用いることも界面酸素分圧を
低下させて脱硫を進行させる上で効果的である。ただ、
この場合にも、耐火物中のカ−ボン含有量が10重量%未
満であるとやはり所望の効果が得られない。
Further, melting of the above-mentioned copper or copper alloy raw material
In the desulfurization treatment, the use of a melting furnace or a crucible made of "a refractory containing carbon" is also effective in reducing the interfacial oxygen partial pressure to promote desulfurization. However,
Also in this case, if the carbon content in the refractory is less than 10% by weight, the desired effect cannot be obtained.

【0023】ところで、上述のように、 Na2O, Na2
3 又はNaOHをカ−ボン質物質と接触させることによ
って脱硫の効率化を図る場合には、比較的溶解温度が低
い銅又は銅合金の処理であっても多少のヒュ−ムが発生
するのを抑えることは困難である。そのため、排ガス設
備の設置が推奨される。また、本発明に係る溶解・脱硫
処理においては、脱硫剤を添加する前にスラグをでき得
る限り除去して炉内又はるつぼ内を清浄にしておくこと
が肝要である。これは、高い酸化力を持つCuO, Cu2
等が脱硫剤に混入すると界面の酸素分圧が増大するため
である。
By the way, as described above, Na 2 O, Na 2 C
When desulfurization efficiency is improved by bringing O 3 or NaOH into contact with a carbonaceous substance, some fumes are generated even in the treatment of copper or copper alloy having a relatively low melting temperature. It is difficult to control. Therefore, installation of exhaust gas equipment is recommended. In addition, in the dissolution / desulfurization treatment according to the present invention, it is important to remove the slag as much as possible and to clean the inside of the furnace or the crucible before adding the desulfurizing agent. This is because CuO and Cu 2 O have high oxidizing power.
This is because if oxygen is mixed in the desulfurizing agent, the oxygen partial pressure at the interface increases.

【0024】溶湯/スラグ界面の酸素分圧を低下させる
ためには、還元性ガス又は不活性ガスの雰囲気下に置く
こと、即ち還元性ガス又は不活性ガスによる溶湯のシ−
ルや、還元性ガス又は不活性ガスの溶湯中への吹き込み
を行うこと等も有効である。しかも、この方法を適用し
た場合には、攪拌による反応促進効果も期待でき、脱硫
剤を同時に吹き込めば反応効率はより向上する。但し、
コスト増加が大きいので、その適用は高級材料に限定さ
れると言えよう。原料を溶解するための溶解炉として
は、抵抗加熱炉よりも電磁誘導炉を用いた方が好ましい
と言える。なぜなら、電磁誘導炉であれば湯運動によっ
て攪拌効果が生じ、反応効率が大きくなるからである。
In order to reduce the oxygen partial pressure at the molten metal / slag interface, it is placed in an atmosphere of a reducing gas or an inert gas.
That is, the melting of the molten metal with an inert gas or an inert gas.
Gas, reducing gas or inert gas into the molten metal
It is carried out and the like are also effective. Moreover, when this method is applied, a reaction promoting effect by stirring can be expected, and the reaction efficiency is further improved by simultaneously blowing a desulfurizing agent. However,
Due to the large cost increase, its application can be said to be limited to high-grade materials. As a melting furnace for melting the raw materials, it can be said that an electromagnetic induction furnace is more preferable than a resistance heating furnace. This is because in the case of an electromagnetic induction furnace, a stirring effect is generated by the movement of hot water, and the reaction efficiency is increased.

【0025】更に、同一の脱硫剤使用量でより低い値に
まで硫黄濃度を下げるためには、脱硫剤を分割して添加
することが有効である。これは、以下に示すように証明
される。溶湯重量をW(kg),脱硫剤添加量をV(kg),硫
黄分配比をLS ,脱硫前の溶湯中及び脱硫剤中の硫黄濃
度をそれぞれ [%S]0及び (%S)0,脱硫後の溶湯中及
び脱硫剤中の硫黄濃度をそれぞれ [%S] 及び (%S)
とすると、溶湯/脱硫剤の硫黄の物質収支として下記
(5)式が成立する。 V{ (%S) − (%S)0}=W{ [%S]0− [%S] } ……(5) また、LS の定義より LS = (%S) / [%S] ……(6) が成立する。そこで、 (6)式を (5)式に代入し、 (%
S)0=0として変形すると下記 (7)式となる。
Further, in order to lower the sulfur concentration to a lower value with the same amount of desulfurizing agent, it is effective to add the desulfurizing agent in portions. This is proved as shown below. The weight of the molten metal is W (kg), the amount of the desulfurizing agent added is V (kg), the sulfur distribution ratio is L S , and the sulfur concentrations in the molten metal and the desulfurizing agent before desulfurization are [% S] 0 and (% S) 0, respectively. , The sulfur concentration in the molten metal after desulfurization and in the desulfurization agent are [% S] and (% S), respectively.
Then, the material balance of sulfur in the molten metal / desulfurizer is
Equation (5) holds. V {(% S) - ( % S) 0} = W {[% S] 0 - [% S]} ...... (5) In addition, L the definition of L S S = (% S) / [% S ] ... (6) holds. Therefore, substituting equation (6) into equation (5) gives (%
S) When it is transformed as 0 = 0, the following equation (7) is obtained.

【0026】[0026]

【数3】 (Equation 3)

【0027】一方、例えば 1/2の量のフラックスを添加
して脱硫し除滓を行った後、残りの1/2 量のフラックス
を添加して脱硫し除滓を行うといった処理では、処理後
の硫黄濃度は下記 (8)式で与えられる。
On the other hand, after the Jokasu desulfurized by adding for example 1/2 of the amount of flux in processing such perform a desulfurized by adding the remaining 1/2 the amount of flux Jokasu, after treatment Is given by the following equation (8).

【0028】[0028]

【数4】 (Equation 4)

【0029】上記 (7)式と (8)式を比較すると、脱硫剤
を2分割して添加した方が、硫黄がより低い濃度まで低
減することが分かる。
Comparing the above equations (7) and (8), it can be seen that the sulfur concentration is reduced to a lower concentration by adding the desulfurizing agent in two parts.

【0030】続いて、本発明の効果を実施例によって具
体的に説明する。
Next, the effects of the present invention will be specifically described with reference to examples.

【実施例】【Example】

〔実施例1〕市販不純物レベルの純銅を5kg準備し、こ
れをアルミナるつぼに装入して高周波溶解炉で溶解し1
200℃まで昇温した。そして、溶湯表面を木炭で被覆
した状態で、 Na2O,CaOあるいは Na2O−CaO系の脱
硫剤を Na2OとCaOとの合計重量で100g添加し溶湯
の脱硫試験を行った。
[Example 1] 5 kg of commercially available pure copper having an impurity level was prepared, charged into an alumina crucible, and melted in a high-frequency melting furnace.
The temperature was raised to 200 ° C. Then, in a state of covering the surface of the melt with charcoal were desulfurization test of Na 2 O, and 100g added CaO or Na 2 O-CaO-based desulfurizing agent in the total weight of Na 2 O and CaO melt.

【0031】図1は、この試験において 「 Na2Oを単味
で添加した場合」, 「CaOを単味で添加した場合」及び
「 Na2OとCaOの重量比を変化させた Na2O−CaO系脱
硫剤を添加した場合」 についての、溶湯中の硫黄濃度変
化に関する調査結果を示すグラフである。図1に示され
た結果からも、 Na2OへのCaOの混合により最低硫黄濃
度は高くなり、CaO単味では脱硫が全く進行していない
ことが分かる。即ち、 Na2Oの銅に対する脱硫力はCaO
よりも著しく大きいことが明らかである。また、 Na2
単味の添加では、硫黄濃度は約0.0005%と電気銅以下の
値まで到達したことも確認された。
FIG. 1 shows the results obtained in this test, “when Na 2 O was simply added”, “when CaO was simply added”, and
For "case of adding Na 2 O-CaO-based desulfurizing agent obtained by changing the weight ratio of Na 2 O and CaO" is a graph showing the investigation results on the sulfur concentration change in the melt. From the results shown in FIG. 1, it can be seen that the minimum sulfur concentration was increased by mixing CaO with Na 2 O, and desulfurization did not progress at all with CaO alone. That is, the desulfurizing power of Na 2 O against copper is CaO
It is evident that it is significantly larger. Na 2 O
With simple addition, it was also confirmed that the sulfur concentration reached about 0.0005%, a value lower than that of electrolytic copper.

【0032】なお、 Na2Oの代わりに Na2CO3 又はNa
OHを用いた場合にも同様の結果が得られた。また、Ca
Oと同様に、CaCO3, Ca(OH)2,MgO,MgCO3 ある
いはMg(OH)2も銅に対して脱硫能力を示さないことも
確認した。
[0032] Instead of Na 2 O Na 2 CO 3 or Na
Similar results were obtained when OH was used. Also, Ca
Similarly to O, it was also confirmed that CaCO 3 , Ca (OH) 2 , MgO, MgCO 3 or Mg (OH) 2 did not show a desulfurizing ability for copper.

【0033】〔実施例2〕市販の純銅,Cu−P合金をCu
−0.03wt%Pの組成になるように調合した。次に、これ
をアルミナるつぼに装入し高周波溶解炉で溶解して13
50℃まで昇温し、溶湯表面を木炭で被覆した。そし
て、 「20g Na2O」, 「20g Na2O+8g CaO」, 「20g N
a2O+4g CaO」及び 「10g Na2O+4g CaO」 の4種
類の脱硫剤について前記銅合金溶湯の脱硫試験を行っ
た。なお、このようにPを含有する溶湯について、高い
温度で少量の脱硫剤を用いて処理を行うような条件下で
は“復硫”が進行し易くなることが知られている。
Example 2 Commercially available pure copper and Cu-P alloy were
It was prepared so as to have a composition of -0.03 wt% P. Next, this was charged into an alumina crucible and melted in a high-frequency melting furnace to obtain 13
The temperature was raised to 50 ° C., and the surface of the molten metal was covered with charcoal. And “20g Na 2 O”, “20g Na 2 O + 8g CaO”, “20g N
A desulfurization test of the molten copper alloy was performed on four types of desulfurizing agents, namely, “a 2 O + 4 g CaO” and “10 g Na 2 O + 4 g CaO”. It is known that “resulfurization” easily proceeds under such a condition that a molten metal containing P is treated at a high temperature with a small amount of a desulfurizing agent.

【0034】図2は、上記それぞれの脱硫剤について溶
湯中の硫黄濃度変化を比較した結果を示すグラフであ
る。この図2に示された結果からも、 Na2O単味では著
しい“復硫”が進行しているが、 Na2Oの添加重量を一
定にしてCaOを混合すると“復硫”が抑制されているこ
とが分かる。なお、CaOの混合量が増加すると“復硫”
の抑制効果は大きくなるが、この試験では、CaOの混合
量は Na2O重量に対して40%で十分であった。
FIG. 2 is a graph showing the results of comparing the sulfur concentration change in the molten metal for each of the above desulfurizing agents. From the results shown in FIG. 2, but significant "resulfurization" is in progress with Na 2 O plain, when mixing CaO and a constant addition weight of Na 2 O "resulfurization" is suppressed You can see that it is. In addition, when the mixing amount of CaO increases, "resulfurization"
In this test, the mixing amount of CaO was sufficient at 40% based on the weight of Na 2 O.

【0035】また、10分経過後の硫黄濃度に着目する
と、 「20gの Na2Oを単味で添加した場合」 と 「10gの
Na2Oに4gのCaOを混合して添加した場合」 では脱硫
効果が等しいことが分かる。即ち、CaOを混合すること
により Na2O添加量を 1/2に減らすことができた訳であ
る。これは、「CaOが Na2Oと比較して安価なこと」や
「 Na2O量の減少により Na2Oの分解による煙の発生並
びに耐火物の損傷を軽減できること」を考慮すると、こ
の効果は非常に大きいと言える。
Focusing on the sulfur concentration after a lapse of 10 minutes, “20 g of Na 2 O added simply” and “10 g of
When 4 g of CaO is mixed and added to Na 2 O ”, the desulfurization effect is equal. That is why it has been possible to reduce the Na 2 O amount to 1/2 by mixing CaO. This, considering "that can reduce damage to the smoke generator and refractories by decomposition of Na 2 O by reduction of Na 2 O amount""CaO inexpensive be compared to Na 2 O" and, this effect Is very large.

【0036】〔実施例3〕アルミナ系炉材(耐火物)で
築炉した3トン低周波誘導炉(実際操業炉)にて市販の
純銅,純すず,Cu−P合金及びりん青銅スクラップを溶
解し、3トンのりん青銅(Cu−0.1%P−6%Sn合金)溶湯
を得た後1250℃±50℃にまで昇温した。そして、
この溶湯に種々の量の Na2CO3 を添加し、溶湯の脱硫
試験を実施した。
Example 3 Commercially produced pure copper, pure tin, Cu-P alloy and phosphor bronze scrap were melted in a 3 ton low frequency induction furnace (actual operation furnace) built with an alumina-based furnace material (refractory). Then, 3 tons of phosphor bronze (Cu-0.1% P-6% Sn alloy) melt was obtained, and then the temperature was raised to 1250 ° C. ± 50 ° C. And
Various amounts of Na 2 CO 3 were added to the melt, and a desulfurization test of the melt was performed.

【0037】図3は、この試験での Na2CO3 添加量と
溶湯中の硫黄濃度変化に関する調査結果を示したグラフ
である。図3に示される結果からも、 Na2CO3 添加量
が2.5kg(溶湯の0.08重量%)では有効な脱硫は進行しな
いが、 Na2CO3 添加量の増加に伴って最低硫黄濃度が
低下することを確認できる。また、 Na2CO3 添加量が
溶湯重量の 0.1重量%以上になると初期の反応速度は極
めて速くなり、通常操業内での脱硫処理が十分に可能で
あることも確かめられた。
FIG. 3 is a graph showing the results of an investigation on the amount of added Na 2 CO 3 and the change in the sulfur concentration in the molten metal in this test. According to the results shown in FIG. 3, effective desulfurization does not progress when the amount of Na 2 CO 3 added is 2.5 kg (0.08% by weight of the molten metal), but the minimum sulfur concentration decreases as the amount of Na 2 CO 3 increases. You can confirm that. When the amount of Na 2 CO 3 added was 0.1% by weight or more of the weight of the molten metal, the initial reaction rate was extremely high, and it was confirmed that desulfurization treatment in normal operation was sufficiently possible.

【0038】〔実施例4〕5kgの市販不純物レベルの純
銅をカ−ボンるつぼに装入して高周波溶解炉で溶解し、
S濃度が 0.007〜 0.008重量%になるようにCuS試薬を
添加した。そして、種々の温度まで昇温して保持した
後、 「25g Na2CO3 +25gNaOH混合物」 及び 「25g
Na2CO3 +25gNaOH+10gCaCO3 +10gMgO混合
物」を添加して溶湯の脱硫試験を実施した。
[Example 4] 5 kg of commercially available pure copper having an impurity level was charged into a carbon crucible and melted in a high-frequency melting furnace.
The CuS reagent was added so that the S concentration was 0.007 to 0.008% by weight. Then, after raising the temperature to various temperatures and holding it, “25 g Na 2 CO 3 +25 g NaOH mixture” and “25 g
A mixture of “Na 2 CO 3 +25 g NaOH + 10 g CaCO 3 +10 g MgO” was added to perform a desulfurization test of the molten metal.

【0039】図4は、 「25g Na2CO3 +25gNaOH混
合物」 を添加した時の脱硫処理温度と溶湯中の硫黄濃度
変化に関する調査結果を示したグラフである。この図4
からは、溶湯温度が高いほど脱硫速度が大きくなり最低
硫黄濃度を示すまでの時間が短縮しているが、最低硫黄
濃度自体は増加し復硫量も大きくなっていることが分か
る。なお、本発明の規定範囲を上回る1600℃(純銅
の融点+517℃)ではこの影響はより顕著であり、脱
硫効率著しく低下した。また、本発明の規定範囲を下回
る1120℃(純銅の融点+37℃)で脱硫剤を添加し
たところ、溶湯の表面が凝固し、これが再羊羹するまで
の5分間は全く脱硫が進行しなかった。
FIG. 4 is a graph showing the results of an investigation on the desulfurization treatment temperature and the change in the sulfur concentration in the molten metal when “25 g Na 2 CO 3 +25 g NaOH mixture” was added. This figure 4
The graph shows that the higher the temperature of the molten metal, the higher the desulfurization rate and the shorter the time until the minimum sulfur concentration is shown, but the higher the minimum sulfur concentration itself and the greater the resulfurization amount. At 1600 ° C. (the melting point of pure copper + 517 ° C.), which exceeds the specified range of the present invention, this effect was more remarkable, and the desulfurization efficiency was significantly reduced. Further, when a desulfurizing agent was added at 1120 ° C. (the melting point of pure copper + 37 ° C.), which was below the specified range of the present invention, the surface of the molten metal was solidified, and desulfurization did not progress at all for 5 minutes until it re-yang.

【0040】次に、図5は、 「25g Na2CO3 +25gNa
OH+10gCaCO3 +10gMgO混合物」 を添加した時の
脱硫処理温度と溶湯中の硫黄濃度変化に関する調査結果
を示したグラフである。図5からは、溶湯温度が高くな
ると脱硫速度が大きくなっているが、CaCO3及びMgO
を混合したため、図4の結果と比較すると最低硫黄濃度
及び復硫量の増加は小さいことが分かる。但し、160
0℃では、1150℃の場合と比較して溶解炉の消費電
力は約2倍になっており、操業コストが増大することが
明らかとなった。なお、図4の結果と同様、1120℃
では脱硫速度が著しく低下している。
Next, FIG. 5 shows "25 g Na 2 CO 3 +25 g Na
OH + 10gCaCO 3 + 10gMgO mixture "is a graph showing the investigation results on the sulfur concentration change desulfurization treatment temperature and the melt when added. From FIG. 5, the desulfurization rate increases as the temperature of the molten metal increases, but the CaCO 3 and MgO
It can be seen that the increase in the minimum sulfur concentration and the resulfurization amount is small as compared with the results of FIG. However, 160
At 0 ° C., the power consumption of the melting furnace was about twice that at 1150 ° C., and it became clear that the operating cost increased. In addition, similar to the result of FIG.
, The desulfurization rate is significantly reduced.

【0041】〔実施例5〕 〔実施例5〕組成がCu−1.6wt%Ni−0.4wt%Siのコルソン
合金を5kg準備し、これをアルミナるつぼ又はカ−ボン
るつぼに装入し高周波溶解炉で溶解して、1250℃ま
で昇温した。そして、10gの Na2O,20gの Na2CO3
及び20gのNaOHを混合したものを脱硫剤とし、この
“脱硫剤”又は“脱硫剤と5gのカ−ボン粉との混合
物"(何れも脱硫剤が50g)を添加して溶湯の脱硫試験を
行った。なお、一部の例については溶湯表面を木炭で被
覆した条件で脱硫剤を添加した。
[Example 5] [Example 5] 5 kg of a Corson alloy having a composition of Cu-1.6 wt% Ni-0.4 wt% Si was prepared and charged into an alumina crucible or a carbon crucible, and a high-frequency melting furnace was prepared. And heated to 1250 ° C. And 10 g of Na 2 O, 20 g of Na 2 CO 3
And a mixture of 20 g of NaOH as a desulfurizing agent, and adding this “desulfurizing agent” or “mixture of desulfurizing agent and 5 g of carbon powder” (both 50 g of desulfurizing agent) to conduct desulfurization test of molten metal. went. In some cases, the desulfurizing agent was added under the condition that the surface of the molten metal was covered with charcoal.

【0042】図6は、この試験での“溶湯中の硫黄濃度
変化”に関する調査結果を示したグラフである。図6に
示される結果からも明らかなように、何れの場合でも良
好な脱硫を行えることが分かる。ただ、この試験結果か
ら見ると、カ−ボンるつぼを使用した場合の脱硫効果が
最も顕著であった。なお、脱硫剤に10重量%以上のカ−
ボン粉を混合してもそれ以上に脱硫効果の向上がなされ
ないことも確認した。
FIG. 6 is a graph showing the results of an investigation on "sulfur concentration change in molten metal" in this test. As is clear from the results shown in FIG. 6, it can be seen that good desulfurization can be performed in any case. However, from the test results, the desulfurization effect when the carbon crucible was used was most remarkable. The desulfurizing agent contains more than 10% by weight of car
It was also confirmed that the desulfurization effect was not further improved even if the bon powder was mixed.

【0043】[0043]

【効果の総括】以上に説明した如く、この発明によれ
ば、通常の溶解操業でもって銅及び銅合金の低コスト脱
硫が可能となり、スクラップ原料を多用して極低硫黄濃
度の銅及び銅合金材料をコスト安く大量生産できるよう
になるなど、産業上極めて有用な効果がもたらされる。
As described above, according to the present invention, copper and copper alloys can be desulfurized at low cost by ordinary melting operation, and copper and copper alloys having extremely low sulfur concentrations can be obtained by using a lot of scrap materials. Industrially extremely useful effects are obtained, such as mass production of materials at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】「 Na2Oを単味で添加した場合」, 「CaOを単味
で添加した場合」及び 「 Na2OとCaOの重量比を変化さ
せた Na2O−CaO系脱硫剤を添加した場合」 についての
溶湯中の硫黄濃度変化に関する調査結果を示すグラフで
ある。
FIG. 1 shows a case where “Na 2 O is simply added”, “a case where CaO is simply added”, and “a Na 2 O—CaO desulfurizing agent in which the weight ratio of Na 2 O and CaO is changed. 6 is a graph showing the results of an investigation regarding a change in sulfur concentration in a molten metal when “added”.

【図2】「20g Na2O」, 「20g Na2O+8g CaO」, 「20
g Na2O+4g CaO」 及び 「10g Na2O+4g CaO」 の
4種類の脱硫剤を添加した場合の溶湯中の硫黄濃度変化
に関する調査結果を示したグラフである。
[Figure 2] “20g Na 2 O”, “20g Na 2 O + 8g CaO”, “20g Na 2 O”
g is a Na 2 O + 4g CaO "and" graph showing the investigation results on the sulfur concentration change in the melt in the case of adding four types of desulfurizing agent 10g Na 2 O + 4g CaO ".

【図3】Na2CO3 添加量と溶湯中の硫黄濃度変化に関
する調査結果を示したグラフである。
FIG. 3 is a graph showing the results of an investigation on the amount of added Na 2 CO 3 and a change in sulfur concentration in a molten metal.

【図4】「25g Na2CO3 +25gNaOH混合物」 を添加
した時の脱硫処理温度と溶湯中の硫黄濃度変化に関する
調査結果を示したグラフである。
FIG. 4 is a graph showing the results of an investigation on the desulfurization treatment temperature and the change in sulfur concentration in the molten metal when “a mixture of 25 g Na 2 CO 3 +25 g NaOH” was added.

【図5】「25g Na2CO3 +25gNaOH+10gCaCO3
+10gMgO混合物」 を添加した時の脱硫処理温度と溶湯
中の硫黄濃度変化に関する調査結果を示したグラフであ
る。
FIG. 5: “25 g Na 2 CO 3 +25 g NaOH + 10 g CaCO 3
10 is a graph showing the results of an investigation regarding the desulfurization treatment temperature and the change in the sulfur concentration in the molten metal when “+10 g MgO mixture” was added.

【図6】各種脱硫処理条件別の“溶湯中の硫黄濃度変
化”に関する調査結果を示したグラフである。
FIG. 6 is a graph showing the results of an investigation on “sulfur concentration change in molten metal” under various desulfurization treatment conditions.

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 銅又は銅合金溶製用原料を溶解して融点
又は液相線温度よりも50〜500℃高い温度にまで昇
温した後、その溶湯に、還元性ガス又は不活性ガス雰囲
下で“ Na2O, Na2CO3 又はNaOHの1種以上から
成る脱硫剤”を Na2O, Na2CO3 及びNaOHの合計重
量が溶湯重量の 0.1〜10%の範囲内となるように添加し
て保持し、次いで反応後の脱硫剤を除去することを特徴
とする、硫黄含有量の低い銅又はCuを60重量%以上含有
する銅合金の溶製方法。
After melting a raw material for producing copper or a copper alloy and raising the temperature to a temperature higher by 50 to 500 ° C. than a melting point or a liquidus temperature, a reducing gas or an inert gas atmosphere is added to the molten metal. Enclosure
Under care "Na 2 O, Na 2 CO 3 or desulfurizing agent comprising <br/> of one or more NaOH" Na 2 O, the total weight of Na 2 CO 3 and NaOH of 0.1% to 10% of the melt weight A method for producing a copper alloy having a low sulfur content of copper or Cu of 60% by weight or more, characterized by adding and maintaining the content within the range and then removing the desulfurizing agent after the reaction.
【請求項2】 銅又は銅合金溶製用原料を溶解して融点
又は液相線温度よりも50〜500℃高い温度にまで昇
温した後、その溶湯に“ Na2O, Na2CO3 又はNaOH
の1種以上から成る脱硫剤”と“脱硫剤重量の10%未満
のカ−ボン粉”との混合物を脱硫剤重量にて溶湯重量の
0.1〜10%の範囲で添加して保持し、次いで反応後の脱
硫剤を除去することを特徴とする、硫黄含有量の低い銅
又はCuを60重量%以上含有する銅合金の溶製方法。
2. A material for melting copper or a copper alloy is melted and heated to a temperature 50 to 500 ° C. higher than the melting point or liquidus temperature, and then “Na 2 O, Na 2 CO 3 ” is added to the melt. Or NaOH
Mosquito less than 10% of the desulfurizing agent by weight "and" desulfurizing agent consisting of one or more - of the melt weight mixture at desulfurization agent by weight of the carbon powder "
A method for melting a copper alloy containing 60% by weight or more of copper or Cu having a low sulfur content, characterized by adding and holding in the range of 0.1 to 10% and then removing the desulfurizing agent after the reaction.
【請求項3】 銅又は銅合金溶製用原料を溶解して融点
又は液相線温度よりも50〜500℃高い温度にまで昇
温し、この溶湯の表面を“木炭又はカ−ボンを50重量%
以上含有する物質”で被覆した後、その溶湯に“ Na
2O, Na2CO3 又はNaOHの1種以上から成る脱硫
剤”を Na2O, Na2CO3 及びNaOHの合計重量が溶湯
重量の 0.1〜10%の範囲内となるように添加して保持
し、次いで反応後の脱硫剤を除去することを特徴とす
る、硫黄含有量の低い銅又はCuを60重量%以上含有する
銅合金の溶製方法。
3. A material for melting copper or a copper alloy is melted and heated to a temperature 50 to 500 ° C. higher than the melting point or liquidus temperature, and the surface of the molten metal is heated with 50% charcoal or carbon. weight%
After covering with the “substances contained above,”
2 O, and adding a desulfurizing agent "consisting of one or more Na 2 CO 3 or NaOH Na 2 O, such that the total weight of Na 2 CO 3 and NaOH is in the range of 0.1% to 10% of the melt weight A method for producing a copper alloy containing 60% by weight or more of copper or Cu having a low sulfur content, wherein the desulfurizing agent after the reaction is retained and then the desulfurizing agent after the reaction is removed.
【請求項4】 銅又は銅合金溶製用原料を溶解して融点
又は液相線温度よりも50〜500℃高い温度にまで昇
温し、この溶湯の表面を“木炭又はカ−ボンを50重量%
以上含有する物質”で被覆した後、その溶湯に“ Na
2O, Na2CO3 又はNaOHの1種以上から成る脱硫
剤”と“脱硫剤重量の10%未満のカ−ボン粉”との混合
物を脱硫剤重量にて溶湯重量の 0.1〜10%の範囲で添加
して保持し、次いで反応後の脱硫剤を除去することを特
徴とする、硫黄含有量の低い銅又はCuを60重量%以上含
有する銅合金の溶製方法。
4. A material for melting copper or a copper alloy is melted and heated to a temperature 50 to 500 ° C. higher than the melting point or liquidus temperature, and the surface of the molten metal is heated with 50% charcoal or carbon. weight%
After covering with the “substances contained above,”
2 O, less than 10% of the desulfurizing agent by weight "and" desulfurizing agent consisting of one or more Na 2 CO 3 or NaOH force - by desulfurizing agent by weight of a mixture of carbon powder "of molten metal by weight 0.1% to 10% of A method for melting a copper alloy containing 60% by weight or more of copper or Cu having a low sulfur content, characterized by adding and holding in a range and then removing a desulfurizing agent after the reaction.
【請求項5】 脱硫剤として、 Na 2 O, Na 2 CO 3 又は
NaOHの1種以上に加え、それらの合計量に対する割合
が50重量%以下の量のCaO,CaCO 3 , Ca(OH) 2 ,Mg
O,MgCO 3 及び Mg(OH) 2 の1種以上を混合して成る
ものを用いることを特徴とする、請求項1ないし4の何
れかに記載の硫黄含有量の低い銅又はCuを60重量%以上
含有する銅合金の溶製方法。
5. A desulfurizing agent comprising Na 2 O, Na 2 CO 3 or
In addition to one or more types of NaOH, their proportion to the total amount
Is less than 50% by weight of CaO, CaCO 3 , Ca (OH) 2 , Mg
A mixture of at least one of O, MgCO 3 and Mg (OH) 2
5. The method according to claim 1, wherein:
60% by weight or more of copper or Cu with low sulfur content described in
Melting method of contained copper alloy.
【請求項6】 原料の溶解及びその後の処理を“カ−ボ
ンを10重量%以上含有する耐火物で築炉された炉中”又
は“カ−ボンを10重量%以上含有するるつぼ中”で行う
ことを特徴とする、請求項1ないしの何れかに記載の
硫黄含有量の低い銅又はCuを60重量%以上含有する銅合
金の溶製方法。
6. The melting of the raw materials and the subsequent treatment are carried out in a furnace constructed of a refractory containing 10% by weight or more of carbon or in a crucible containing 10% by weight or more of carbon. 6. The method for producing a copper alloy having a low sulfur content of copper or Cu of 60% by weight or more according to any one of claims 1 to 5 , which is performed.
JP7452094A 1993-09-17 1994-03-18 Melting method of copper or copper alloy with low sulfur content Expired - Fee Related JP2893160B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7452094A JP2893160B2 (en) 1993-09-17 1994-03-18 Melting method of copper or copper alloy with low sulfur content

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP25489893 1993-09-17
JP5-254898 1993-09-17
JP7452094A JP2893160B2 (en) 1993-09-17 1994-03-18 Melting method of copper or copper alloy with low sulfur content

Publications (2)

Publication Number Publication Date
JPH07138667A JPH07138667A (en) 1995-05-30
JP2893160B2 true JP2893160B2 (en) 1999-05-17

Family

ID=26415671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7452094A Expired - Fee Related JP2893160B2 (en) 1993-09-17 1994-03-18 Melting method of copper or copper alloy with low sulfur content

Country Status (1)

Country Link
JP (1) JP2893160B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114000179B (en) * 2021-11-08 2023-03-17 安徽有研吸气材料有限公司 Preparation method of easy-to-weld copper strip for vacuum device

Also Published As

Publication number Publication date
JPH07138667A (en) 1995-05-30

Similar Documents

Publication Publication Date Title
JP6516264B2 (en) Method of treating copper smelting slag
JP2893160B2 (en) Melting method of copper or copper alloy with low sulfur content
CA1321075C (en) Additive for promoting slag formation in steel refining ladle
JPH0820829A (en) Method for melting copper or copper alloy having low sulfur content
JP2009209405A (en) Method for smelting copper-containing dross
JP2002060857A (en) Method for smelting copper sulfide concentrate
JP4525453B2 (en) Slag fuming method
RU2455379C1 (en) Method to melt low-carbon manganiferous alloys
JPS645085B2 (en)
JPH0820828A (en) Method for melting copper or copper alloy having low sulfur content
JP4274067B2 (en) Method for removing impurity metal from copper alloy and slag fuming method using the same
KR100224635B1 (en) Slag deoxidation material for high purity steel making
RU2092571C1 (en) Composite charge for making steel
JPH0375603B2 (en)
JPH07258762A (en) Method for smelting copper or copper alloy of low sulfur content
SU1110807A1 (en) Slag forming mix for producing alloyed cast iron
RU1770435C (en) Method of alloys melting with vanadium
SU1293238A1 (en) Flux for treating copper alloys
JP2006028586A (en) Method for utilizing copper alloy and mat obtained by slag fuming method
SU1294857A1 (en) Flux for melting copper alloys
JP5962826B2 (en) Method for treating slag containing Cr
RU2153023C1 (en) Method of processing raw materials containing manganese with recovery of metals
SU1502626A1 (en) Charge for melting synthetic slag
SU1388437A1 (en) Slag-formingg mixture
WO2023224516A1 (en) Alloy for processing of iron melts in the processes of ferrous metallurgy

Legal Events

Date Code Title Description
R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees