JP2891444B2 - Delay detection method - Google Patents

Delay detection method

Info

Publication number
JP2891444B2
JP2891444B2 JP5037273A JP3727393A JP2891444B2 JP 2891444 B2 JP2891444 B2 JP 2891444B2 JP 5037273 A JP5037273 A JP 5037273A JP 3727393 A JP3727393 A JP 3727393A JP 2891444 B2 JP2891444 B2 JP 2891444B2
Authority
JP
Japan
Prior art keywords
amplitude
phase
symbol
received
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5037273A
Other languages
Japanese (ja)
Other versions
JPH06232938A (en
Inventor
利則 鈴木
俊夫 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KEI DEI DEI KK
Original Assignee
KEI DEI DEI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KEI DEI DEI KK filed Critical KEI DEI DEI KK
Priority to JP5037273A priority Critical patent/JP2891444B2/en
Publication of JPH06232938A publication Critical patent/JPH06232938A/en
Application granted granted Critical
Publication of JP2891444B2 publication Critical patent/JP2891444B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、デジタル変復調技術に
おける復調方式に関するものであり、特に差動符号化さ
れたデジタル変調信号の復調方式に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a demodulation system in a digital modulation / demodulation technique, and more particularly to a demodulation system for a differentially encoded digital modulation signal.

【0002】[0002]

【従来の技術】デジタル変復調方式において変調信号を
検波する方法は大きく分けて二つある。一つは搬送波を
再生し、被変調信号から搬送波成分を除去し情報信号の
検波を行う同期検波であり、もう一つは搬送波の再生を
行わないで復調する非同期検波である。一般に非同期検
波には振幅変調方式における包絡線検波が含まれるが、
本願では差動符号化された変調信号のみを対象とするか
ら、非同期検波のうち遅延検波の従来技術についてのみ
述べる。一般に伝搬環境が静的であれば同期検波の特性
の方が遅延検波のそれに比べて優れているが、移動通信
のように伝搬環境が激しく変動する場合、搬送波の再生
を完全に行うことは難しく遅延検波が適している。
2. Description of the Related Art In a digital modulation / demodulation system, there are roughly two methods for detecting a modulation signal. One is synchronous detection that reproduces a carrier and removes a carrier component from a modulated signal to detect an information signal, and the other is asynchronous detection that performs demodulation without reproducing a carrier. Generally, asynchronous detection includes envelope detection in amplitude modulation,
In the present application, only the differentially coded modulation signal is targeted, and therefore, only the conventional technique of delay detection among asynchronous detection will be described. In general, if the propagation environment is static, the characteristics of synchronous detection are better than those of delay detection, but if the propagation environment fluctuates drastically as in mobile communications, it is difficult to completely reproduce the carrier. Differential detection is suitable.

【0003】これまで遅延検波方式が広く利用されてい
るのは、差動符号化されたQPSKやπ/4シフトQPS
Kに代表される位相変調方式である。即ち送るべき情報
を送信信号の位相差として変調をかける方式である。こ
の送信信号を遅延検波する方法は一シンボル前の受信信
号点の位相を次の受信シンボルを検波する際の基準位相
として用いるものである。また直前の受信シンボルのみ
でなく、複数の受信信号点の位相を基準位相とすること
により誤り率特性を改善する方式がD.Divsalarらによっ
て論文(Dariush Divsalar, Marvin K. Simon, "Multip
le-Symbol Differential Detection of MPSK", IEEE Tr
ansactions on Communications, Vol.38, No.3, pp.300
-307, March, 1990 )に発表されている。
Until now, differential detection systems have been widely used for differentially encoded QPSK and π / 4 shift QPS.
This is a phase modulation method represented by K. That is, the information to be sent is modulated as the phase difference of the transmission signal. This method of delay-detecting a transmission signal uses the phase of a reception signal point one symbol before as a reference phase when detecting the next reception symbol. D. Divsalar et al. (Dariush Divsalar and Marvin K. Simon, "Multip
le-Symbol Differential Detection of MPSK ", IEEE Tr
ansactions on Communications, Vol.38, No.3, pp.300
-307, March, 1990).

【0004】QPSKやπ/4シフトQPSK方式に比
べ帯域効率をさらに上げる差動変調方式として、位相と
振幅の両方に変調をかける差動振幅位相変調方式があ
る。本願が対象とする遅延検波方式は、振幅及び位相が
差動符号化された振幅位相変調信号を復調するのに適用
される技術である。ここでは振幅位相変調方式としてス
ター16QAM(16DAPSK )方式を例にとり、まず差動符
号化方式について述べ、次に従来技術による遅延検波方
式について図3を用いて説明する。なお従来技術につい
ては文献(W.T.Webb, L.Hanzo, R.Steele, "Bandwidth
efficient QAMschemes for Rayleigh fading channe
ls", IEE Proceedingd-I, Vol.138, No.3, June 1991
)に詳細に述べられている。スター16QAM変調方式
は、1シンボルの送信情報4ビットのうち3ビットを差
動符号化位相変調(8DPSK )し、残り1ビットを差動符
号化振幅変調(DASK)するものである。DASK変調された
信号がとりうる2つの振幅レベルをA1、A2(A1<A2)とす
ると、連続する2ビットの振幅情報が異なれば、被変調
信号の振幅レベルを変化(A1→A2またはA2→A1)させ、
同じであれば振幅レベルを同一のままとする。時刻kに
おける送信シンボルをSk
As a differential modulation method for further improving the band efficiency as compared with the QPSK or π / 4 shift QPSK method, there is a differential amplitude phase modulation method for modulating both the phase and the amplitude. The differential detection system to which the present invention is directed is a technique applied to demodulate an amplitude and phase modulated signal whose amplitude and phase are differentially encoded. Here, a star 16QAM (16DAPSK) system is taken as an example of the amplitude and phase modulation system, a differential coding system will be described first, and then a conventional delay detection system will be described with reference to FIG. For the conventional technology, refer to the literature (WTWebb, L. Hanzo, R. Steele, "Bandwidth
efficient QAMschemes for Rayleigh fading channe
ls ", IEE Proceedingd-I, Vol.138, No.3, June 1991
) Is described in detail. In the star 16 QAM modulation method, three bits of four bits of transmission information of one symbol are subjected to differential encoding phase modulation (8DPSK), and the remaining one bit is subjected to differential encoding amplitude modulation (DASK). Assuming that two possible amplitude levels of the DASK-modulated signal are A1 and A2 (A1 <A2), the amplitude level of the signal to be modulated is changed (A1 → A2 or A2 → A1)
If they are the same, the amplitude level remains the same. Let S k be the transmitted symbol at time k

【0005】[0005]

【数1】Sk =ak exp (jφk )とする。Let S k = a k exp (jφ k ).

【0006】図3はスター16QAMによって変調された
信号の従来技術による遅延検波方式の構成図である。受
信波形はシンボルタイミングに同期してサンプリングさ
れ、離散的な時刻kにおける受信シンボル01(rk )が
包絡線検波器200 及び位相検波器190 に入力される。こ
こにrk は複素数であり、
FIG. 3 is a block diagram of a conventional differential detection system for a signal modulated by star 16QAM. The received waveform is sampled in synchronization with the symbol timing, and the received symbol 01 (r k ) at discrete time k is input to the envelope detector 200 and the phase detector 190. Where rk is a complex number,

【0007】[0007]

【数2】rk =|rk |exp (jθk )とする。It is assumed that r k = | r k | exp (jθ k ).

【0008】位相検波器190 では、受信シンボルrk
1シンボル前の受信シンボルrk-1の位相差Δθk
(θk ―θk-1 )を求め、被変調信号が取りうる8つの
位相差Δφk (=φk ―φk-1 =0,±π/4,±π/2,
±3 π/4,π)のうち最も近い位相差Δφ' k を出力す
る。
[0008] The phase detector 190, the received symbols r k and 1-symbol preceding received symbol r k-1 of the phase difference [Delta] [theta] k =
k −θ k−1 ) is obtained, and eight possible phase differences Δφ k (= φ k −φ k−1 = 0, ± π / 4, ± π / 2,
The closest phase difference Δφ ′ k among ± 3π / 4, π) is output.

【0009】包絡線検波器200 では受信シンボルの振幅
10(|rk |)を出力する。判定器においては、振幅10
(|rk |)と1シンボル前の振幅11(|rk-1 |)と
の比が、γL <γH であるような二つのしきい値γL
γH と比較され、
In the envelope detector 200, the amplitude of the received symbol
10 (| r k |) is output. In the decision unit, the amplitude 10
(| R k |) and two thresholds γ L , such that the ratio of the amplitude 11 (| r k−1 |) one symbol before is γ LH ,
compared to γ H ,

【0010】[0010]

【数3】γL <|rk |/|rk-1 |<γH を満たすとき時刻k における振幅比情報30(1ビット/
1シンボル)の値を“0”とし、そうでなければ“1”
とする。
When satisfying γ L <| r k | / | r k−1 | <γ H , the amplitude ratio information 30 at time k (1 bit /
1) is set to “0”, otherwise “1”
And

【0011】従来技術によるスター16QAM信号の遅延
検波方式の特徴として、次の3点が挙げられる。 振幅の検波と位相の検波がそれぞれ独立に行われて
いる。 振幅の検波では単に1シンボル前の振幅|rk-1
を基準にして振幅比情報(1ビット/1シンボル)を復
調している。 位相の検波においても単に1シンボル前の位相θ
k-1 を基準にして位相差情報Δφk (3ビット/1シン
ボル)を復調している。
The following three points are characteristic of the differential detection method of the star 16QAM signal according to the prior art. Amplitude detection and phase detection are performed independently. In the detection of the amplitude, the amplitude | r k-1 |
Is demodulated with reference to the amplitude ratio information (1 bit / 1 symbol). In phase detection, the phase θ just before the symbol
The phase difference information Δφ k (3 bits / 1 symbol) is demodulated based on k−1 .

【0012】上記3点の特徴は、全て復調後の誤り率特
性劣化の原因となる。この理由をまず特徴について述
べると、振幅と位相の誤り事象は独立ではないからであ
る。次に特徴及びが特性劣化の原因となる理由は、
一シンボル前の受信シンボルrk-1 のみの振幅及び位相
を基準として次の受信シンボルrk を検波するために、
一シンボル前に受けた雑音成分と検波しようとしている
受信シンボルrk が受けた雑音成分の両方が重畳される
からである。このため、搬送波を完全に再生できるとい
う意味において理想的な同期検波に比べ、雑音成分が約
2倍になるという欠点を有する。しかし雑音成分の平均
値がゼロであれば、長期間受信信号を観測することによ
り雑音による特性の劣化を最小限に抑さえることができ
る。
The above three characteristics all cause deterioration of the error rate characteristics after demodulation. The reason for this is first characterized in that amplitude and phase error events are not independent. Next, the reason why the characteristics and
To detect the next received symbol r k based on the amplitude and phase of only the previous received symbol r k-1 ,
This is because both the noise component received symbol r k is received trying to detection and the noise component received before one symbol is superimposed. For this reason, there is a drawback that the noise component is about twice that of the ideal synchronous detection in the sense that the carrier can be completely reproduced. However, if the average value of the noise component is zero, deterioration of characteristics due to noise can be suppressed to a minimum by observing the received signal for a long time.

【0013】このような観点から、前述のように、位相
変調方式においては複数受信シンボルにわたる遅延検波
方式がD.Divsalarらの論文で提案されている。この技術
をスター16QAM方式に代表される振幅位相変調方式に
応用することは可能である。即ち前述の従来技術による
遅延検波方式の特徴に起因する誤り率特性の劣化は改
善することができる。すなわち時間的に連なったN 個の
受信シンボル系列(rk-N+1 ,rk-N+2 ,……,rk
から、送信位相差系列(Δφk-N+2 ,Δφk-N+3 ,…
…,ΔφK )を推定する方法が(1)式による値Aを最
大とするように選ぶものである。
[0013] From such a viewpoint, as described above, in the phase modulation system, a differential detection system over a plurality of received symbols has been proposed in a paper by D. Divsalar et al. This technique can be applied to an amplitude and phase modulation system represented by a star 16QAM system. That is, it is possible to improve the deterioration of the error rate characteristic caused by the feature of the above-described conventional delay detection method. That temporally continuous with N received symbol sequence (r k-N + 1, r k-N + 2, ......, r k)
From the transmission phase difference sequence (Δφ k−N + 2 , Δφ k−N + 3 ,.
, Δφ K ) is selected so as to maximize the value A according to the equation (1).

【0014】[0014]

【数4】 (Equation 4)

【0015】(1)式は送信シンボルは全て等振幅であ
るという仮定のもとで導出されている。また特徴に起
因する特性劣化の改善は、1シンボル前の受信シンボル
のみを基準とする遅延検波方式に限れば、従来技術によ
って可能である。しかし特徴に起因する誤り率特性の
劣化を改善する方式は発明されていない。特徴は振幅
比情報の誤り率特性劣化の要因であり、改善が望まれ
る。
Equation (1) is derived on the assumption that all transmission symbols have the same amplitude. In addition, the improvement of the characteristic deterioration caused by the characteristic can be achieved by the conventional technique as long as the method is limited to the differential detection method based on only the received symbol one symbol before. However, no method has been invented for improving the deterioration of the error rate characteristic caused by the feature. The feature is a factor of deterioration of the error rate characteristic of the amplitude ratio information, and improvement is desired.

【0016】[0016]

【発明が解決しようとする課題】一シンボル前の受信シ
ンボルのみを次の受信シンボルを検波する際の基準とす
るような遅延検波方式では、理想的な同期検波方式に比
べ雑音が約2倍に増え特性が劣化する。即ち一シンボル
前に受けた雑音成分と次に検波しようとしている受信シ
ンボルが受けた雑音成分の両方が重畳されてしまうため
である。また既に知られている位相復調方式における複
数シンボル遅延検波方式を、振幅位相変復調方式におけ
る位相情報の検波に適用することも可能であるが、振幅
情報の検波特性は改善されない。
In a delay detection system in which only a received symbol before one symbol is used as a reference for detecting a next received symbol, noise is about twice as large as that in an ideal synchronous detection system. The characteristics increase. That is, both the noise component received one symbol before and the noise component received by the next received symbol to be detected are superimposed. In addition, a known multi-symbol delay detection method in the phase demodulation method can be applied to the detection of phase information in the amplitude / phase modulation / demodulation method, but the detection characteristic of the amplitude information is not improved.

【0017】本発明の遅延検波方式は上記欠点を克服す
るものであり、特に振幅部の検波特性を改善し雑音成分
による特性の劣化を軽減し誤り率特性を改善することを
目的とする。
The delay detection system of the present invention overcomes the above-mentioned drawbacks, and in particular, aims to improve the detection characteristics of the amplitude section, reduce the deterioration of the characteristics due to noise components, and improve the error rate characteristics.

【0018】[0018]

【課題を解決するための手段】本発明は差動符号化され
た振幅位相変調信号を遅延検波するときに、二つ以上の
受信シンボルの振幅を基準として検波することを特徴と
する。
SUMMARY OF THE INVENTION The present invention is characterized in that when differentially coded amplitude-phase modulated signals are subjected to delay detection, detection is performed based on the amplitudes of two or more received symbols.

【0019】〔原理〕複数の受信シンボルにわたる振幅
成分信号の検波方法について以下に述べる。まず簡単の
ために受信シンボル数を3とする。時間的に連なった3
個の送信シンボル系列をS=(Sk-2 ,Sk-1
K )、受信シンボル系列をr=(rK-2 ,rk-1 ,r
k )とし、Si =ai exp (jφi ),ri =|ri
exp (jθi)と表す。ai は送信振幅、φi は送信位
相、θi は受信位相を表し、Si ,ri はそれぞれiシ
ンボル目の送信,受信シンボルを表す。ここで送信シン
ボルの振幅系列をベクトルa=(ak-2 ,ak-1
k ),送信シンボルの位相差系列をベクトルΔφ=
(Δφk-1 、Δφk ),=(φk-1 −φk-2 ,φk −φ
k-1 ),受信シンボルの振幅比系列をベクトルγ=(γ
k-1 ,γk )=(|rk-1 /rk-2 |,|rk /rk-1
|) 受信シンボルの位相差系列をベクトルΔθ=(Δ
θk-1 ,Δθk )=(θk-1 −θk-2 ,θk −θk-1 ) とすると、ベクトルa及びベクトルΔφが送られたとい
う条件のもとでベクトルγ及びベクトルΔθが受信され
る条件付き確率密度関数p(ベクトルγ, ベクトルΔθ
|ベクトルa, ベクトルΔφ) は(2)式で与えられ
る。
[Principle] A method of detecting an amplitude component signal over a plurality of received symbols will be described below. First, assume that the number of received symbols is three for simplicity. Time series 3
The transmitted symbol sequences are represented by S = (S k−2 , S k−1 ,
S K ) and the received symbol sequence is represented by r = (r K−2 , r k−1 , r
k ), and S i = a i exp (jφ i ), r i = | r i |
expressed as exp (jθ i ). a i represents the transmission amplitude, φ i represents the transmission phase, θ i represents the reception phase, and S i and r i represent the transmission and reception symbols of the ith symbol, respectively. Here, the amplitude sequence of the transmission symbol is represented by a vector a = (a k−2 , a k−1 ,
a k ), the phase difference sequence of the transmission symbol
(Δφ k−1 , Δφ k ), = (φ k−1 −φ k−2 , φ k −φ
k-1 ), and the amplitude ratio sequence of the received symbol is represented by a vector γ = (γ
k−1 , γ k ) = (| r k−1 / r k−2 |, | r k / r k−1
|) The phase difference sequence of the received symbol is represented by a vector Δθ = (Δ
θ k−1 , Δθ k ) = (θ k−1 −θ k−2 , θ k −θ k−1 ), and the vector γ and the vector γ under the condition that the vector a and the vector Δφ have been sent The conditional probability density function p (vector γ, vector Δθ
| Vector a, vector Δφ) is given by equation (2).

【0020】[0020]

【数5】 ここにσN は1シンボル当たりのガウス雑音の標準偏差
である。(2)式のpを最大にすることは、σN が十分
小さいという条件下で(3)式のp’を最大にすること
と等価である。
(Equation 5) Where σ N is the standard deviation of Gaussian noise per symbol. Maximizing p in equation (2) is equivalent to maximizing p 'in equation (3) under the condition that σ N is sufficiently small.

【0021】[0021]

【数6】 一般にNa個(Na≧3 )の受信シンボル数に渡って復調す
る場合には、(3)式は(4)式に拡張される。(4)
(Equation 6) In general, when demodulating over the number of received symbols of Na (Na ≧ 3), equation (3) is extended to equation (4). (4)
formula

【0022】[0022]

【数7】 (Equation 7)

【0023】[0023]

【実施例1】図1は本発明によって実現された、3シン
ボルに渡って尤度を求める遅延検波方式の構成図であ
る。包絡線検波器200 ,2個の1シンボル遅延回路300
,301,7個の位相検波器100 ,101 ,102 ,110 ,11
2 ,120 ,121 ,判定器400 及びセレクタ800 より構成
される。この方式は振幅レベルが2つであるような被変
調信号を検波するための構成である。以後の説明では、
2つの振幅レベルをA1,A2とする。受信波形はシンボル
タイミングに同期してサンプリングされ、離散的な時刻
kにおける受信シンボル01(rk )が包絡線検波器200
及び位相検波器100 ,101,102 ,110 ,112 ,120 ,1
21 に入力される。ここにrk は複素数で表される。包
絡線検波器200 からは受信シンボル01(rk )の振幅10
(|rk |)が出力される。受信振幅10は1シンボルタ
イミングだけ出力を遅らせる遅延回路300 へ入力され
る。1段目の遅延回路300 の出力11は|rk-1 , 2段
目の遅延回路301 の出力12は|rk-2 |である。判定器
400 には時間的に連なった3シンボルの受信振幅10(|
k |),受信振幅11(|rk-1 |),受信振幅12(|
k-2 |)が入力される。
[Embodiment 1] FIG. 1 is a block diagram of a differential detection system for realizing likelihood over three symbols realized by the present invention. Envelope detector 200, two 1-symbol delay circuits 300
, 301, 7 phase detectors 100, 101, 102, 110, 11
2, 120, 121, a decision unit 400 and a selector 800. This system is a configuration for detecting a modulated signal having two amplitude levels. In the following description,
Two amplitude levels and A 1, A 2. The received waveform is sampled in synchronization with the symbol timing, and the received symbol 01 (r k ) at discrete time k is detected by the envelope detector 200.
And phase detectors 100, 101, 102, 110, 112, 120, 1
Entered in 21. Here r k is expressed by a complex number. From the envelope detector 200, the amplitude 10 of the received symbol 01 (r k ) is obtained.
(| R k |) is output. The reception amplitude 10 is input to a delay circuit 300 which delays the output by one symbol timing. The output 11 of the first-stage delay circuit 300 is | r k-1 | , and the output 12 of the second-stage delay circuit 301 is | r k-2 |. Judge
400 is the received amplitude of three consecutive symbols 10 (|
r k |), reception amplitude 11 (| r k-1 |), reception amplitude 12 (|
r k−2 |).

【0024】位相検波器100 ,101 ,102 ,110 ,112
,120 ,121 はそれぞれ異なった尤度の計算法を基に
最も尤度の高い位相差とその尤度値を出力する。位相検
波器の尤度値41, 42, 43, 44, 45, 46, 47は判定器400
へ、位相出力21, 22, 23, 24,25, 26, 27はセレクタ800
へそれぞれ入力される。7つの位相検波器は3個の時
間的に連なった受信シンボル系列(rk-2 ,rk-1 ,r
k )から(5)式に基づいて、考えられる全ての位相差
系列(Δφk-1 ,Δφk )の尤度算出を行い、最も大き
な尤度値となる位相差情報及びその尤度値を出力する。
Phase detectors 100, 101, 102, 110, 112
, 120 and 121 output the phase difference with the highest likelihood and the likelihood value based on the different likelihood calculation methods. The likelihood value 41 , 42 , 43 , 44 , 45 , 46 , 47 of the phase detector is the decision unit 400.
Phase outputs 21 , 22 , 23 , 24 , 25 , 26 , 27
Are input respectively. The seven phase detectors receive three temporally consecutive received symbol sequences (rk -2 , rk -1 , r).
k ) to (5), the likelihood of all possible phase difference sequences (Δφ k−1 , Δφ k ) is calculated, and the phase difference information having the largest likelihood value and the likelihood value are calculated. Output.

【0025】[0025]

【数8】 (Equation 8)

【0026】(5)式中の送信振幅系列ベクトルa=
(ak-2 ,ak-1 ,ak )は各位相検波器毎に異なり、
次の値をとる。 位相検波器100においては(A2,A2,A2),位相検波
器101においては(A1,A1,A2),位相検波器102
においては(A2,A2,A1),位相検波器110において
は(A1,A2,A2),位相検波器112においては(A1
A2,A1),位相検波器120においては(A2,A1
A1),位相検波器121においては(A2,A1,A2) 判定器400 にはこれら7つの位相検波器から出力された
最大尤度値及び3シンボルに渡る受信振幅(|r
k-2 |,|rk-1 |,|rk |)を基に、7つの考えら
れる送信振幅系列について(3)式に基づく尤度計算を
行い、最も尤度の高い送信振幅系列を判定する。
In the equation (5), the transmission amplitude sequence vector a =
(A k-2 , a k-1 , a k ) is different for each phase detector,
Takes the following values: In the phase detector 100, (A 2 , A 2 , A 2 ), in the phase detector 101, (A 1 , A 1 , A 2 ), the phase detector 102
In (A 2, A 2, A 1), in the phase detector 110 (A 1, A 2, A 2), in the phase detector 112 (A 1,
A 2 , A 1 ), and in the phase detector 120, (A 2 , A 1 ,
A 1 ), in the phase detector 121, (A 2 , A 1 , A 2 ) The decision unit 400 provides the maximum likelihood value output from these seven phase detectors and the reception amplitude (| r
k−2 |, | r k−1 |, | r k |), the likelihood calculation based on the equation (3) is performed for seven possible transmission amplitude sequences, and the transmission amplitude sequence with the highest likelihood is determined. judge.

【0027】(3)式を最大にする送信振幅系列に基づ
いて位相差系列の尤度計算を行っている位相検波器の出
力位相差情報を位相差情報40として出力するための選択
信号50を、判定器400 からセレクタ800 に出力する。例
えば(3)式を最大にする送信振幅系列が(A2,A1
A1)であれば、位相差情報20として位相検波器120 の出
力位相差情報26を選択する。また判定器400 で判定され
た送信振幅系列から振幅比情報30を出力する。ここに振
幅比情報とは時間的に連続している2つのシンボルの振
幅が変化したか否かにによって一意に決まるもので、例
えば送信振幅系列が(A2,A1,A1)であれば、振幅比情
報は“10”である。
A selection signal 50 for outputting as output phase difference information 40 phase difference information of a phase detector that performs likelihood calculation of a phase difference sequence based on a transmission amplitude sequence that maximizes equation (3). Are output from the decision unit 400 to the selector 800. For example, if the transmission amplitude sequence that maximizes equation (3) is (A 2 , A 1 ,
If A 1 ), the output phase difference information 26 of the phase detector 120 is selected as the phase difference information 20. The amplitude ratio information 30 is output from the transmission amplitude sequence determined by the determiner 400. Here, the amplitude ratio information is uniquely determined by whether or not the amplitude of two temporally continuous symbols has changed. For example, if the transmission amplitude sequence is (A 2 , A 1 , A 1 ) For example, the amplitude ratio information is “10”.

【0028】[0028]

【実施例2】図2は本発明によって実施された、3個の
シンボルに渡って尤度を求める遅延検波方式の構成図で
ある。包絡線検波器200 、2個の1シンボル遅延回路30
0 ,301 、1個の位相検波器190 及び判定器500 より構
成される。実施例1との違いは位相検波器が一つしかな
いことである。即ち実施例1では判定器が振幅比情報と
位相差情報の判定を行っていたのに対し、本実施例では
判定器500 は振幅比情報のみの判定を行う。これにより
実施例1に比べ構成が簡略化される。この方式は実施例
1と同様、振幅レベルが2つある被変調信号を検波する
ための構成であり、2つの振幅レベルをA1, A2とする。
[Embodiment 2] FIG. 2 is a configuration diagram of a differential detection method for obtaining likelihood over three symbols, implemented according to the present invention. Envelope detector 200, two 1-symbol delay circuits 30
0, 301, one phase detector 190 and a decision unit 500. The difference from the first embodiment is that there is only one phase detector. That is, in the first embodiment, the determiner determines the amplitude ratio information and the phase difference information, whereas in the present embodiment, the determiner 500 determines only the amplitude ratio information. Thus, the configuration is simplified as compared with the first embodiment. This system is a configuration for detecting a modulated signal having two amplitude levels, as in the first embodiment, and the two amplitude levels are A 1 and A 2 .

【0029】包絡線検波器200 からは受信シンボル01
(rk )の振幅10である|rk |が出力される。受信振
幅10(|rk |)は1シンボルタイミングだけ出力を遅
らせる遅延回路300 へ入力される。1段目の遅延回路30
0 の出力11は|rk-1 |、2段目の出力12は|rk-2
である。判定器500 には時間的に連なった3つの受信振
幅10(|rk |),受信振幅11(|rk-1 |),受信振
幅12(|rk-2 |)が同時に入力される。また受信シン
ボル01は位相検波器190 へ入力される。位相検波器190
は位相差情報20を出力する。位相検波器190 は、従来技
術によって実現できる差動位相変調信号用の遅延検波器
をそのまま用いることができる。位相検波器190 からの
出力は、位相差情報20として出力されるとともに判定器
500 へ入力される。判定器500 では3シンボルに渡る受
信振幅系列(|rk-2 |,|rk-1 |,|rk |)及び
位相差情報20から、(A1,A1,A1)を除く全ての考えら
れる送信振幅系列(ak-2 ,ak-1 ,ak )について
(3)式に基づいた尤度の計算を行い、最も尤度の高い
送信振幅系列を判定し、振幅比情報30として出力され
る。
From the envelope detector 200, the received symbol 01
| R k | which is the amplitude 10 of (r k ) is output. The reception amplitude 10 (| r k |) is input to a delay circuit 300 that delays the output by one symbol timing. First stage delay circuit 30
The output 11 of 0 is | r k-1 | The output 12 of the second stage is | r k-2 |
It is. Three reception amplitudes 10 (| r k |), 11 (| r k-1 |), and 12 (| r k-2 |) reception amplitudes, which are consecutive in time, are simultaneously input to the decision unit 500. . The received symbol 01 is input to the phase detector 190. Phase detector 190
Outputs the phase difference information 20. As the phase detector 190, a differential detector for a differential phase modulation signal which can be realized by a conventional technique can be used as it is. The output from the phase detector 190 is output as the phase difference information 20 and the
Entered into 500. The decision unit 500 removes (A 1 , A 1 , A 1 ) from the received amplitude sequence (| r k−2 |, | r k−1 |, | r k |) and the phase difference information 20 over three symbols. The likelihood is calculated for all possible transmission amplitude sequences ( ak-2 , ak-1 , ak ) based on equation (3), the transmission amplitude sequence having the highest likelihood is determined, and the amplitude ratio is determined. Output as information 30.

【0030】[0030]

【発明の効果】以上述べたように、本発明を用いれば、
差動振幅位相変復調方式を用いた通信チャネルに白色雑
音が加わるような条件下で、複数シンボル振幅を遅延検
波することにより復調後の誤り率を改善できる。一般に
尤度計算の対象となるシンボル数が多ければ多いほど誤
り率特性が改善されるが、本実施例1または2のように
3シンボル程度でもビット誤り率が10-3で約1dB 改善さ
れる。
As described above, according to the present invention,
The error rate after demodulation can be improved by performing delay detection on the amplitudes of a plurality of symbols under the condition that white noise is added to a communication channel using the differential amplitude phase modulation / demodulation method. In general, the more the number of symbols to be subjected to likelihood calculation, the more the error rate characteristics are improved. However, as in the first or second embodiment, the bit error rate is improved by about 1 dB at 10 -3 even with about 3 symbols. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明で構成された遅延検波方式の実施例1で
ある。
FIG. 1 is a first embodiment of a differential detection system configured according to the present invention.

【図2】本発明で構成された遅延検波方式の実施例2で
ある。
FIG. 2 is a second embodiment of the differential detection system configured according to the present invention.

【図3】従来技術による遅延検波方式の構成である。FIG. 3 shows a configuration of a conventional differential detection system.

【符号の説明】[Explanation of symbols]

01 時刻k における受信シンボルrk 10 時刻k における受信シンボルrk の振幅|rk | 11 時刻k-1 における受信シンボルrk-1 の振幅|r
k-1 | 12 時刻k-2 における受信シンボルrk-2 の振幅|r
k-2 | 20,21,22,23,24,25,26,27 位相差情報 30 振幅比情報 41,42,43,44,45,46,47 位相差情報の尤度 50 選択信号 100,101,102,110,112,120,121 位相検波器 190 位相検波器(従来技術) 200 包絡線検波器 300,301 1シンボル遅延回路 400,500,700 尤度判定器 800 セレクタ
The amplitude of the received symbol r k in the received symbols r k 10 time k at 01 time k | r k | 11 time k-1 received symbol r k-1 of the amplitude at | r
k-1 | 12 Amplitude of received symbol r k-2 at time k-2 | r
k-2 | 20,21,22,23,24,25,26,27 Phase difference information 30 Amplitude ratio information 41,42,43,44,45,46,47 Phase difference information likelihood 50 Selection signal 100,101,102,110,112,120,121 phase Detector 190 Phase detector (prior art) 200 Envelope detector 300,301 One symbol delay circuit 400,500,700 Likelihood determinator 800 Selector

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H04L 27/00 - 27/38 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int. Cl. 6 , DB name) H04L 27/00-27/38

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 振幅及び位相が差動符号化された振幅位
相変調信号を搬送波の再生を必要とせずに復調する遅延
検波方式において、 受信シンボルの包絡線レベル及び位相を検出する手段を
有し、二シンボル分以上の包絡線レベルを基準として、
最も確からしい送信シンボルを推定することを特徴とす
る遅延検波方式。
1. A delay detection system for demodulating an amplitude and phase modulated signal whose amplitude and phase are differentially encoded without the need of reproducing a carrier, comprising means for detecting an envelope level and a phase of a received symbol. , Based on the envelope level of two or more symbols,
A differential detection method that estimates the most likely transmission symbol.
【請求項2】 二シンボル分以上の位相量をも同時に考
慮して、最も確からしい送信シンボルを推定することを
特徴とする請求項1に記載の遅延検波方式。
2. The differential detection method according to claim 1, wherein a most probable transmission symbol is estimated by simultaneously considering a phase amount of two or more symbols.
JP5037273A 1993-02-03 1993-02-03 Delay detection method Expired - Fee Related JP2891444B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5037273A JP2891444B2 (en) 1993-02-03 1993-02-03 Delay detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5037273A JP2891444B2 (en) 1993-02-03 1993-02-03 Delay detection method

Publications (2)

Publication Number Publication Date
JPH06232938A JPH06232938A (en) 1994-08-19
JP2891444B2 true JP2891444B2 (en) 1999-05-17

Family

ID=12493080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5037273A Expired - Fee Related JP2891444B2 (en) 1993-02-03 1993-02-03 Delay detection method

Country Status (1)

Country Link
JP (1) JP2891444B2 (en)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
1992年電子情報通信学会秋季大会講演論文集,分冊2,p.2−250
信学技報CS93−58

Also Published As

Publication number Publication date
JPH06232938A (en) 1994-08-19

Similar Documents

Publication Publication Date Title
US6580705B1 (en) Signal combining scheme for wireless transmission systems having multiple modulation schemes
US4707841A (en) Digital data receiver for preamble free data transmission
JP2001274855A (en) Receiver and method for detecting and demodulating received signal subjected to dqpsk modulation and channel encoding
US20010033621A1 (en) Method of differential coding and modulation
Adachi et al. Decision feedback differential detection of differentially encoded 16APSK signals
JP2000165341A (en) Ofdm demodulation circuit
KR100626103B1 (en) Receiver for a digital transmission system
JPH0969862A (en) Digital radio communication receiver
US6353913B2 (en) Modulation detection method and apparatus
Makrakis et al. Optimal decoding in fading channels: A combined envelope, multiple differential and coherent detection approach
Makrakis et al. Novel receiver structures for systems using differential detection
EP0793370B1 (en) Phase ambiguity resolution circuit for BPSK communication system
US20030123595A1 (en) Multi-pass phase tracking loop with rewind of future waveform in digital communication systems
JP2891444B2 (en) Delay detection method
JP2002247003A (en) Transmission device using orthogonal frequency division multiplexing modulation system
US6781447B2 (en) Multi-pass phase tracking loop with rewind of current waveform in digital communication systems
CN111130703B (en) Coherent demodulation method and device for ASM (amplitude shift modulation) signals
Hwang et al. Multi-h phase-coded modulations with asymmetric modulation indexes
Miller Detection of imperfectly synchronized data streams in physical layer network coding
Abrardo et al. Multiple-symbols differential detection of GMSK
EP0942565A2 (en) Phase estimation for fading channels
JPH06232939A (en) Frame synchronization circuit
EP1037439A1 (en) Receiver structure for Offset Differential Quadrature Phase Shift Keying
JP2518502B2 (en) Equalizer
Davis et al. DPSK versus pilot-aided PSK MAP equalization for fast-fading channels

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees