JP2890654B2 - Distributed optical fiber temperature sensor - Google Patents

Distributed optical fiber temperature sensor

Info

Publication number
JP2890654B2
JP2890654B2 JP2101744A JP10174490A JP2890654B2 JP 2890654 B2 JP2890654 B2 JP 2890654B2 JP 2101744 A JP2101744 A JP 2101744A JP 10174490 A JP10174490 A JP 10174490A JP 2890654 B2 JP2890654 B2 JP 2890654B2
Authority
JP
Japan
Prior art keywords
optical fiber
light
measured
optical
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2101744A
Other languages
Japanese (ja)
Other versions
JPH042933A (en
Inventor
俊宏 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2101744A priority Critical patent/JP2890654B2/en
Publication of JPH042933A publication Critical patent/JPH042933A/en
Application granted granted Critical
Publication of JP2890654B2 publication Critical patent/JP2890654B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、光源部からのレーザーパルスを増幅せしめ
た分布型光ファイバー温度センサーに関するものであ
る。
Description: BACKGROUND OF THE INVENTION The present invention relates to a distributed optical fiber temperature sensor in which a laser pulse from a light source is amplified.

[従来の技術] 従来の分布型光ファイバー温度センサーのブロック図
を第2図に示す。
[Prior Art] FIG. 2 shows a block diagram of a conventional distributed optical fiber temperature sensor.

光源部のパルス光源(LD等)11から発振したレーザー
パルスは、被測定光ファイバー13へ入射され、光ファイ
バー13中で発生した後方ラマン散乱光が入射端へ戻って
くる。該後方ラマン散乱光は光方向性結合器12により測
定装置へ導光され、まず後方ラマン散乱光中のストーク
ス光(S)と反ストークス光(AS)が分離検出され、各
々検出器14でその強度に比例した電気信号に変換され
る。該電気信号は各々アベレージャー15にて所定回数平
均化処理がなされる。平均化処理された信号はコンピュ
ーター16等の信号処理部へ伝送され、ストークス光と反
ストークス光の信号の比をとり、温度分布への換算等の
処理がなされる。ここで、パルス光源11からはアベレー
ジャー15との測定の同期をとるためトリガー信号も発振
される。
The laser pulse oscillated from the pulse light source (LD or the like) 11 of the light source unit enters the optical fiber 13 to be measured, and the backward Raman scattered light generated in the optical fiber 13 returns to the incident end. The backward Raman scattered light is guided to the measuring device by the optical directional coupler 12, and first, Stokes light (S) and anti-Stokes light (AS) in the backward Raman scattered light are separated and detected. It is converted into an electric signal proportional to the intensity. Each of the electric signals is averaged a predetermined number of times by an averager 15. The signal subjected to the averaging process is transmitted to a signal processing unit such as the computer 16, where the ratio of the signal of the Stokes light to the signal of the anti-Stokes light is calculated, and a process such as conversion into a temperature distribution is performed. Here, a trigger signal is also oscillated from the pulse light source 11 in order to synchronize measurement with the averager 15.

従来、パルス光源11には高出力のパルス半導体レーザ
ー(波長850nm)やQスイッチングにより得られた半導
体レーザー励起YAGレーザー(以下、QSW・DPYと略す。
波長1.06μm、1.32μm)が用いられている。
Conventionally, a pulsed light source 11 is a high-output pulsed semiconductor laser (wavelength 850 nm) or a semiconductor laser-pumped YAG laser (hereinafter abbreviated as QSW / DPY) obtained by Q switching.
Wavelengths of 1.06 μm and 1.32 μm) are used.

[発明が解決しようとする課題] 従来のパルス光源での問題点を記す。[Problems to be Solved by the Invention] Problems with the conventional pulse light source will be described.

1)高出力パルス半導体レーザーの場合 一般に、半導体レーザーでは、電流及び温度制御を行
なえば、比較的安定したパルス光を得られるが、発光面
からの放射角が広いこと、又高出力パルス半導体レーザ
ーは発光面が普通のCW(連続発振)用半導体レーザーに
比べ大きいことなどから、光ファイバーとの結合の点で
問題があった。
1) High-power pulsed semiconductor laser In general, a relatively stable pulsed light can be obtained by controlling the current and temperature in a semiconductor laser. However, the radiation angle from the light emitting surface is wide, and the high-powered pulsed semiconductor laser is generally used. Has a problem in connection with an optical fiber because the light emitting surface is larger than that of an ordinary CW (continuous wave) semiconductor laser.

又、波長が850nm近辺という限定があり長距離測定に
は、ファイバー中の損失の関係上あまり向いていないの
が現状である。
In addition, the wavelength is limited to around 850 nm, and it is not suitable for long distance measurement due to the loss in the fiber at present.

2)QSW・DPYの場合 DPYでは、直進性の良いビームが得られる為、光ファ
イバーとの結合にはそれほど問題はないが、Qスイッチ
ングにてパルス動作させると、第3図に示すようなパル
ス位置ジッターや、ピーク値ゆらぎが問題となることが
あった。
2) QSW ・ DPY In DPY, a beam with good straightness can be obtained, so there is not much problem in coupling with the optical fiber. However, when pulse operation is performed by Q switching, the pulse position as shown in FIG. Jitter and fluctuations in peak values sometimes became a problem.

本発明は、両光源のメリットを持ち、かつデメリット
を解決するものである。
The present invention has the advantages of both light sources and solves the disadvantages.

[課題を解決する為の手段] 本発明は、前述の問題点を解決すべくなされたもので
あり、被測定光ファイバーへレーザーパルスを入射する
信号用光源と光増幅器へ励起光を入射する励起光源とよ
りなる光源部と、該レーザーパルスと該励起光を合波し
被測定光ファイバーへ導光する光方向性結合器と、被測
定光ファイバーからの後方ラマン散乱光を測定装置へ導
光する光方向性結合器と、後方ラマン散乱光中のストー
クス光と反ストークス光を検出し各々強度に比例した電
気信号に光電変換する検出器と、該検出器よりの電気信
号を所定回数平均化処理する平均化処理部と、所定回数
平均化処理されたデータを処理し被測定光ファイバーの
温度分布を測定する信号処理部と、該光源部と該被測定
光ファイバーとの間に該レーザーパルスを増幅する光増
幅器を設けたことを特徴とする分布型光ファイバーの温
度センサーを提供するものである。
[Means for Solving the Problems] The present invention has been made to solve the above-mentioned problems, and is a signal light source for inputting a laser pulse to an optical fiber to be measured and an excitation light source for inputting excitation light to an optical amplifier. And a light directional coupler that combines the laser pulse and the excitation light and guides the light to the measured optical fiber, and a light direction that guides backward Raman scattered light from the measured optical fiber to the measurement device. Sexual coupler, a detector that detects Stokes light and anti-Stokes light in the backward Raman scattered light, and photoelectrically converts the Stokes light and the anti-Stokes light into electric signals proportional to the respective intensities, and an average that averages a predetermined number of electric signals from the detector. Processing section, a signal processing section for processing the data averaged a predetermined number of times to measure the temperature distribution of the optical fiber to be measured, and amplifying the laser pulse between the light source section and the optical fiber to be measured. The present invention provides a distributed optical fiber temperature sensor characterized in that an optical amplifier is provided.

本発明の分布型光ファイバー温度センサーの要部ブロ
ック図を第1図に示す。
FIG. 1 shows a block diagram of a main part of the distributed optical fiber temperature sensor of the present invention.

信号用半導体レーザー(以下、LD)1、励起用LD2
を、光方向性結合器4及び希土類ドープ光ファイバー5
と光学的に結合させる。LD1,2のそれぞれの波長は、ド
ープする希土類によって異なるが、例えばエルビウム
(Er)をドープ源とする場合信号用には1.55μm、励起
用には1.48μmを使用する。ドープする希土類は他にS
m,Ho等が用いられる。
Semiconductor laser for signal (hereinafter, LD) 1, LD2 for excitation
With the optical directional coupler 4 and the rare earth-doped optical fiber 5
And optically coupled. The wavelengths of the LDs 1 and 2 differ depending on the rare earth to be doped. For example, when erbium (Er) is used as a doping source, 1.55 μm is used for a signal and 1.48 μm is used for excitation. The rare earth to be doped is S
m, Ho, etc. are used.

両波長光は希土類ドープ光ファイバー5に入射され、
光ファイバー5中の希土類が励起光により励起されその
軌道電子がより上位のエネルギー準位との間を遷移し、
信号光と同波長の光を放出し信号光が増幅される。
Both wavelength lights are incident on the rare earth doped optical fiber 5,
The rare earth in the optical fiber 5 is excited by the excitation light, and its orbital electrons transition between higher energy levels,
Light having the same wavelength as the signal light is emitted and the signal light is amplified.

被測定光ファイバー中で信号光により発生した後方ラ
マン散乱光は、光ファイバーカプラー、音響光学素子等
の光方向性結合器4により測定装置へ導光される。後方
ラマン散乱光と励起光はハーフミラー6等のフィルター
により分離され、各々信号用パワーモニター(PD)7と
励起用パワーモニター(PD)8によりモニターされ、光
パワーの不足等の発生を監視しフィードバックして調整
する。後方ラマン散乱光は、図示はしないが希土類ドー
プ光ファイバー5と被測定光ファイバーとの間に設けた
光方向性結合器によって測定装置へ導光され、第2図で
示したと同様の処理がなされ、温度分布が測定される。
よって、光方向性結合器はモニター用と温度分布測定用
それぞれに対して設けてもよいし、1つで兼用してもよ
い。
The backward Raman scattered light generated by the signal light in the measured optical fiber is guided to the measuring device by the optical directional coupler 4 such as an optical fiber coupler or an acousto-optic device. The backward Raman scattered light and the excitation light are separated by a filter such as a half mirror 6, and are monitored by a signal power monitor (PD) 7 and an excitation power monitor (PD) 8, respectively, to monitor the occurrence of insufficient optical power and the like. Adjust with feedback. Although not shown, the backward Raman scattered light is guided to the measuring device by an optical directional coupler provided between the rare earth-doped optical fiber 5 and the optical fiber to be measured, and the same processing as shown in FIG. The distribution is measured.
Therefore, the optical directional coupler may be provided for each of the monitor and the temperature distribution measurement, or may be used alone.

[作用] 希土類ドープ光ファイバー5のコア径及びNA(開口
数)を被測定光ファイバーのそれらに近く設計、製作す
れば、光学的結合は容易に行えるし、又光源はLDを用い
るとパルススタビリティーも比較的簡単に得ることがで
きるので、光学的損失も少なく、安定したパルス位置、
パルス振幅を有し、光量も大きい入射レーザーパルスが
得られる。
[Operation] If the core diameter and NA (numerical aperture) of the rare-earth-doped optical fiber 5 are designed and manufactured close to those of the optical fiber to be measured, optical coupling can be easily performed, and if an LD is used as a light source, pulse stability will be improved. Since it can be obtained relatively easily, there is little optical loss, stable pulse position,
An incident laser pulse having a pulse amplitude and a large light amount can be obtained.

[実施例] 実施例として、希土類にErを用いた場合を記す。[Example] As an example, a case where Er is used as a rare earth will be described.

信号光波長は1.55μm、励起光波長は1.48μmであ
る。この場合光ファイバー中での損失及び波長分散が少
ない波長なので、長距離測定が可能である。
The signal light wavelength is 1.55 μm, and the pump light wavelength is 1.48 μm. In this case, since the loss and the chromatic dispersion in the optical fiber are small, long distance measurement is possible.

光ファイバー中での増幅率は、励起光パワーと光ファ
イバー長により左右されるが、励起光パワー70〜80mW、
光ファイバー長90mで20〜30(dB)(増幅率100〜1000
倍)である。出力光として数W得る場合、信号光入力パ
ワーは数mW〜数十mW程度の低出力であり、通信用として
も信頼性があり、又光源として安価なLDの使用が可能と
なる。又、光パワーは光ファイバー中にてかせぐ為、信
号光パワーはそれほど大きくなくてもよいことから、通
信用高速変調レーザー(DFBレーザー)を用い距離分解
能向上も可能である。
The amplification factor in the optical fiber depends on the pump light power and the optical fiber length, but the pump light power is 70 to 80 mW,
20 to 30 (dB) at 90m optical fiber length (Amplification factor 100 to 1000
Times). When several watts are obtained as output light, the signal light input power has a low output of about several mW to several tens of mW, which makes it possible to use an inexpensive LD which is reliable for communication and as a light source. Also, since the optical power is gained in the optical fiber, the signal light power does not need to be so large, so that the distance resolution can be improved by using a communication high-speed modulation laser (DFB laser).

この光源による計測可能距離は、ダイナミックレンジ
10(dB)、光ファイバー中の損失を0.2dB/kmとすれば、
片道25km、往復50kmの測長距離となる。
The distance measurable by this light source is the dynamic range
If 10 (dB) and the loss in the optical fiber is 0.2 dB / km,
The distance will be 25km one way and 50km round trip.

[発明の効果] 本発明は、前述のような優れた効果を有し又、特にド
ープする希土類元素を選択することによりいろいろな波
長光の増幅が可能となる。
[Effects of the Invention] The present invention has the above-mentioned excellent effects, and can amplify light of various wavelengths, particularly by selecting a rare earth element to be doped.

また、被測定光ファイバーへ入射するレーザーパルス
の光量も増加し、測定可能距離も長くなる。
In addition, the amount of laser pulse incident on the optical fiber to be measured also increases, and the measurable distance increases.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例を示し、要部ブロック図であ
り、第2図と第3図は従来例を示し、従来例のブロック
図とレーザーパルスのパルス位置ジッターとパルスのピ
ーク値ゆらぎの説明をした波形図である。 1……信号用LD 2……励起用LD 5……希土類ドープ光ファイバー
FIG. 1 shows an embodiment of the present invention and is a block diagram of a main part. FIGS. 2 and 3 show a conventional example. FIG. 1 is a block diagram of a conventional example, and pulse position jitter and peak value fluctuation of a laser pulse. FIG. 6 is a waveform diagram illustrating the above. 1. LD for signal 2. LD for excitation 5. Rare-earth doped optical fiber

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G01K 11/12 G01K 11/32 G02B 6/00 G01M 11/02 ──────────────────────────────────────────────────続 き Continued on the front page (58) Fields surveyed (Int.Cl. 6 , DB name) G01K 11/12 G01K 11/32 G02B 6/00 G01M 11/02

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】被測定光ファイバーへレーザーパルスを入
射する信号用光源と光増幅器へ励起光を入射する励起光
源とよりなる光源部と、該レーザーパルスと該励起光を
合波し被測定光ファイバーへ導光する光方向性結合器
と、被測定光ファイバーからの後方ラマン散乱光を測定
装置へ導光する光方向性結合器と、後方ラマン散乱光中
のストークス光と反ストークス光を検出し各々強度に比
例した電気信号に光電変換する検出器と、該検出器より
の電気信号を所定回数平均化処理する平均化処理部と、
所定回数平均化処理されたデータを処理し被測定光ファ
イバーの温度分布を測定する信号処理部と、該光源部と
該被測定光ファイバーとの間に該レーザーパルスを増幅
する光増幅器を設けたことを特徴とする分布型光ファイ
バー温度センサー。
1. A light source section comprising a signal light source for injecting a laser pulse into an optical fiber to be measured and an excitation light source to inject excitation light into an optical amplifier, and multiplexing the laser pulse and the excitation light into an optical fiber to be measured. An optical directional coupler that guides light, an optical directional coupler that guides backward Raman scattered light from the optical fiber to be measured to the measuring device, and detects Stokes light and anti-Stokes light in the backward Raman scattered light and detects respective intensity. A detector that photoelectrically converts the electric signal into a proportional electric signal, and an averaging processing unit that averages the electric signal from the detector a predetermined number of times,
A signal processing unit for processing the data averaged a predetermined number of times to measure the temperature distribution of the optical fiber to be measured, and an optical amplifier for amplifying the laser pulse between the light source unit and the optical fiber to be measured. Characteristic distributed optical fiber temperature sensor.
【請求項2】該光増幅器は希土類ドープ光ファイバーで
ある請求項1記載の分布型光ファイバー温度センサー。
2. The distributed optical fiber temperature sensor according to claim 1, wherein said optical amplifier is a rare earth doped optical fiber.
JP2101744A 1990-04-19 1990-04-19 Distributed optical fiber temperature sensor Expired - Lifetime JP2890654B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2101744A JP2890654B2 (en) 1990-04-19 1990-04-19 Distributed optical fiber temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2101744A JP2890654B2 (en) 1990-04-19 1990-04-19 Distributed optical fiber temperature sensor

Publications (2)

Publication Number Publication Date
JPH042933A JPH042933A (en) 1992-01-07
JP2890654B2 true JP2890654B2 (en) 1999-05-17

Family

ID=14308757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2101744A Expired - Lifetime JP2890654B2 (en) 1990-04-19 1990-04-19 Distributed optical fiber temperature sensor

Country Status (1)

Country Link
JP (1) JP2890654B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60116101T2 (en) 2000-07-10 2006-08-31 Mpb Technologies Inc., Pointe Claire CASCADED PUMP SYSTEM FOR DISTRIBUTING RAMANIUM REINFORCEMENT IN FIBER OPTIC TRANSMISSION SYSTEMS

Also Published As

Publication number Publication date
JPH042933A (en) 1992-01-07

Similar Documents

Publication Publication Date Title
US7881566B2 (en) Optical pulse generator for distributed temperature sensing operating at a characteristic wavelength in a range between 1050 nm and 1090 nm
KR100265788B1 (en) Optical fiber amplifier having high small signal gain
US4720684A (en) Optical amplifier
US7693194B2 (en) Fundamental-wave light source and wavelength converter
CN206993129U (en) The Chaotic Wideband Signal generating means that centre wavelength is tunable
US20020118715A1 (en) Semiconductor laser module and Raman amplifier using the module
US6330384B1 (en) High-power and wide-band fiber optic light source
CN107785771B (en) Single-longitudinal-mode multi-wavelength tunable laser system and method for improving wavelength output efficiency
US6507429B1 (en) Article comprising a high power/broad spectrum superfluorescent fiber radiation source
US8565277B2 (en) Pulse modulation method and optical fiber laser
Dagenais et al. Wavelength stability characteristics of a high-power, amplified superfluorescent source
CA2200269C (en) High power broadband source with stable and equalized spectrum output
US20050078714A1 (en) High power fiber laser with eye safe wavelengths
JP2890654B2 (en) Distributed optical fiber temperature sensor
KR100488193B1 (en) Multi-channel light source with high-power and highly flattened output
US20060018007A1 (en) System and method for dynamic range extension and stable low power operation of optical amplifiers using pump laser pulse modulation
EP1030415A2 (en) Optical fiber amplifier and method of amplifying an optical signal
KR20190067631A (en) Semiconductor laser diode light source package
RU2192081C2 (en) Long-strip fiber-optic laser amplifier
JP2736385B2 (en) Optical amplifier
JP2694803B2 (en) Optical semiconductor laser device wavelength stabilization method
Kuznetsov et al. Beam cleaning effects in multimode GRIN-fiber Raman lasers and amplifiers
CN112490829B (en) Method for generating GHz-level white noise electric signal
KR20110133150A (en) System for high power and continuous wave laser beam
JPS61102081A (en) Frequency stabilization of semiconductor laser