JPH042933A - Distribution-type optical fiber temperature sensor - Google Patents

Distribution-type optical fiber temperature sensor

Info

Publication number
JPH042933A
JPH042933A JP2101744A JP10174490A JPH042933A JP H042933 A JPH042933 A JP H042933A JP 2101744 A JP2101744 A JP 2101744A JP 10174490 A JP10174490 A JP 10174490A JP H042933 A JPH042933 A JP H042933A
Authority
JP
Japan
Prior art keywords
light
optical fiber
signal
measured
laser pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2101744A
Other languages
Japanese (ja)
Other versions
JP2890654B2 (en
Inventor
Toshihiro Imai
今井 俊宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2101744A priority Critical patent/JP2890654B2/en
Publication of JPH042933A publication Critical patent/JPH042933A/en
Application granted granted Critical
Publication of JP2890654B2 publication Critical patent/JP2890654B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a stable incident laser pulse by providing a photoamplifier for amplifying the laser pulse between a light source part and a optical fiber to be measured. CONSTITUTION:A wavelength light from a signal LD (semiconductor laser) 1 and an exciting LD 2 enters, through a directional photocoupler 4, an optical fiber 5 into which a rare earth substance is doped. The rare earth substance in the optical fiber 5 is excited by the light, and its orbital electrons make transition to and from a higher energy potential. Accordingly, a light of the same wavelength as the signal light is emitted, and the signal light is amplified. Subsequently, the rear Raman scattering light generated by the signal light in the optical fiber to be measured is guided by the coupler 4 to a measuring apparatus. Then, the rear Raman scattering light and exciting light are separated by a half mirror 6 and monitored by a signal power and an exciting power monitors 7, 8. The lack of power of the light or the like is monitored, fed back and adjusted. The rear Raman scattering light is guided to the measuring apparatus by a directional photocoupler between the optical fiber 5 and optical fiber to be measured to measure the temperature distribution.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、光源部からのレーザーパルスを増幅せしめた
分布型光ファイバー温度センサーに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a distributed optical fiber temperature sensor that amplifies laser pulses from a light source.

[従来の技術] 従来の分布型光ファイバー温度センサーのブロック図を
第2図に示す。
[Prior Art] A block diagram of a conventional distributed optical fiber temperature sensor is shown in FIG.

光源部のパルス光源(LD等)11から発振したレーザ
ーパルスは、被測定用光ファイバー13へ入射され、光
ファイバー13中で発生した後方ラマン散乱光が入射端
へ戻ってくる。該後方ラマン散乱光は光方向性結合器1
2により測定装置へ導光され、まず後方ラマン散乱光中
のストークス光(S)と反ストークス光(AS)が分離
検出され、各々検出器14でその強度に比例した電気信
号に変換される。該電気信号は各々アベレージや−15
にて所定回数平均化処理がなされる。
A laser pulse emitted from a pulsed light source (such as an LD) 11 in the light source section is incident on the optical fiber to be measured 13, and backward Raman scattered light generated in the optical fiber 13 returns to the input end. The backward Raman scattered light is transmitted to the optical directional coupler 1.
2, the light is guided to the measuring device, and first, Stokes light (S) and anti-Stokes light (AS) in the backward Raman scattered light are separated and detected, and each is converted into an electric signal proportional to the intensity by the detector 14. The electrical signals are each average or -15
Averaging processing is performed a predetermined number of times.

平均化処理された信号はコンピューター16等の信号処
理部へ伝送され、ストークス光と反ストークス光の信号
の比をとり、温度分布への換算等の処理がなされる。こ
こで、パルス光源11からはアベレージヤ−15との測
定の同期をとるためトリガー信号も発振される。
The averaged signal is transmitted to a signal processing unit such as the computer 16, where the ratio of the signals of Stokes light and anti-Stokes light is calculated, and processing such as conversion to temperature distribution is performed. Here, a trigger signal is also generated from the pulse light source 11 in order to synchronize the measurement with the averager 15.

従来、パルス光源11には高出力のパルス半導体レーザ
ー(波長850nm)やQスイッチングにより得られた
半導体レーザー励起YAGレーザ−(以下、QSW−D
PYと略す。波長1.06μm 、 1.32μm)が
用いられている。
Conventionally, the pulsed light source 11 uses a high-power pulsed semiconductor laser (wavelength: 850 nm) or a semiconductor laser-excited YAG laser (hereinafter referred to as QSW-D) obtained by Q-switching.
Abbreviated as PY. Wavelengths of 1.06 μm and 1.32 μm) are used.

[発明の解決しようとする課題] 従来のパルス光源での問題点を記す。[Problem to be solved by the invention] This section describes the problems with conventional pulsed light sources.

1)高出力パルス半導体レーザーの場合一般に、半導体
レーザーでは、電流及び温度制御を行なえば、比較的安
定したパルス光を得られるが、発光面からの放射角が広
いこと、又高出力パルス半導体レーザーは発光面が普通
のCW(連続発振)用半導体レーザーに比べ大きいこと
などから、光ファイバーとの結合の点で問題があった。
1) In the case of high-power pulsed semiconductor lasers In general, semiconductor lasers can provide relatively stable pulsed light if current and temperature are controlled, but the radiation angle from the light emitting surface is wide, and high-power pulsed semiconductor lasers Since the light-emitting surface of the laser is larger than that of a normal CW (continuous wave) semiconductor laser, there were problems in coupling it with an optical fiber.

又、波長が850nm近辺という限定があり長距離測定
には、ファイバー中の損失の関係上あまり向いていない
のが現状である。
In addition, the wavelength is limited to around 850 nm, and currently it is not suitable for long-distance measurements due to loss in the fiber.

2)QSW−DPYの場合 DPYでは、直進性の良いビームが得られる為、光ファ
イバーとの結合にはそれほど問題はないが、QSWにて
パルス動作させると、第3図に示すようなパルスジッタ
ーや、ピーク値のゆらぎが問題となることがあった。
2) In the case of QSW-DPY With DPY, a beam with good straightness is obtained, so there is no problem in coupling with an optical fiber, but when pulse operation is performed with QSW, pulse jitter and the like shown in Figure 3 occur. , peak value fluctuations sometimes became a problem.

本発明は、両光源のメリットを持ち、かつデメリットを
解決するものである。
The present invention has the advantages of both light sources and solves the disadvantages.

[課題を解決する為の手段] 本発明は、前述の問題点を解決すべくなされたものであ
り、被測定光ファイバーへレーザーパルスを入射する信
号用光源と光増幅器へ励起光を入射する励起光源とより
なる光源部と、該レーザーパルスと該励起光を合波し被
測定光ファイバーへ導光する光方向性結合器と、被測定
光ファイバーからの後方ラマン散乱光を測定装置へ導光
する光方向性結合器と、後方ラマン散乱光中のストーク
ス光と反ストークス光を検出し各々強度に比例した電気
信号に光電変換する検出器と、該検出器よりの電気信号
を所定回数平均化処理する平均化処理部と、所定回数平
均化処理されたデータを処理し被測定光ファイバーの温
度分布を測定する信号処理部と、該光源部と該被測定光
ファイバーとの間に該レーザーパルスを増幅する光増幅
器を設けたことを特徴とする分布型光ファイバーの温度
センサーを提供するものである。
[Means for Solving the Problems] The present invention has been made to solve the above-mentioned problems, and includes a signal light source that injects a laser pulse into an optical fiber to be measured, and an excitation light source that injects excitation light into an optical amplifier. a light source section consisting of a light source section, a light directional coupler that combines the laser pulse and the excitation light and guides the light to the optical fiber to be measured, and a light direction that guides the backward Raman scattered light from the optical fiber to be measured to the measurement device. a detector that detects Stokes light and anti-Stokes light in the backward Raman scattered light and photoelectrically converts them into electrical signals proportional to their respective intensities; and an averager that averages the electrical signals from the detector a predetermined number of times. a signal processing unit that processes data averaged a predetermined number of times to measure the temperature distribution of the optical fiber to be measured, and an optical amplifier that amplifies the laser pulse between the light source unit and the optical fiber to be measured. A distributed optical fiber temperature sensor is provided.

本発明の分布型光ファイバー温度センサーの要部ブロッ
ク図を第1図に示す。
FIG. 1 shows a block diagram of the main parts of the distributed optical fiber temperature sensor of the present invention.

信号用半導体レーザー(以下、LD)1、励起用LD2
を、光方向性結合器4及び希土類ドープ光ファイバー5
と光学的に結合させる。
Semiconductor laser for signal (hereinafter referred to as LD) 1, LD for excitation 2
, an optical directional coupler 4 and a rare earth doped optical fiber 5
optically combine with

LDI、2のそれぞれの波長は、ドープする希土類によ
って異なるが、例えばエルビウム(Er)をドープ源と
する場合信号用には1.55μm、励起用には1.48
μmを使用する。ドープする希土類は他にSm、Ho等
が用いられる。
The respective wavelengths of LDI, 2 differ depending on the rare earth doped, but for example, when using erbium (Er) as the doping source, the wavelength for the signal is 1.55 μm, and the wavelength for the excitation is 1.48 μm.
Use μm. Other rare earth elements used for doping include Sm and Ho.

同波長光は希土類ドープ光ファイバー5に入射され、光
ファイバー5中の希土類が励起光により励起されその軌
導電子がより上位のエネルギー準位との間を遷移し、信
号光と同波長の光を放出し信号光が増幅される。
The light of the same wavelength enters the rare earth doped optical fiber 5, and the rare earth in the optical fiber 5 is excited by the excitation light, and its orbital electrons transit between higher energy levels and emit light of the same wavelength as the signal light. The signal light is then amplified.

被測定光ファイバー中で信号光により発生した後方ラマ
ン散乱光は、光ファイ7バーカプラー、音響光学素子等
の光方向性結合器4により測定装置へ導光される。後方
ラマン散乱光と励起光はハーフミラ−6等のフィルター
により分離され、各々信号用パワーモニター(PD)7
と励起用パワーモニター(PD)8によりモニターされ
、光パワーの不足等の発生を監視しフィードバックして
調整する。後方ラマン散乱光は、図示はしないが希土類
ドープ光ファイバー5と被測定光ファイバーとの間に設
けた光方向性結合器によって測定装置へ導光され、第2
図で示したと同様の処理がなされ、温度分布が測定され
る。よって、光方向性結合器はモニター用と温度分布測
定用それぞれに対して設けてもよいし、1つで兼用して
もよい。
Backward Raman scattered light generated by the signal light in the optical fiber to be measured is guided to the measuring device by the optical directional coupler 4 such as an optical fiber 7 coupler or an acousto-optic element. The backward Raman scattering light and the excitation light are separated by a filter such as a half mirror 6, and each is connected to a signal power monitor (PD) 7.
This is monitored by an excitation power monitor (PD) 8, and the occurrence of an optical power shortage or the like is monitored and feedback is provided for adjustment. Although not shown, the backward Raman scattered light is guided to the measurement device by an optical directional coupler provided between the rare earth-doped optical fiber 5 and the optical fiber to be measured, and is guided to the second measurement device.
Processing similar to that shown in the figure is performed, and the temperature distribution is measured. Therefore, an optical directional coupler may be provided for monitoring and temperature distribution measurement, or one optical directional coupler may be used for both purposes.

[作用] 希土類ドープ光ファイバー5のコア径及び、NAを被温
度測定ファイバーのそれに近く設計、製作すれば、光学
的結合は容易に行えるし、又光源はLDを用いるとパル
ススタビリテイ−も比較的簡単に得ることができるので
、光学的損失も少な(、安定したパルス位置、パルス振
幅を有し、光量も大きい入射レーザーパルスが得られる
[Function] If the core diameter and NA of the rare earth-doped optical fiber 5 are designed and manufactured close to those of the fiber to be temperature measured, optical coupling can be easily performed, and if an LD is used as the light source, the pulse stability can be relatively improved. Since it is easy to obtain, an incident laser pulse with a stable pulse position, pulse amplitude, and large light intensity can be obtained with little optical loss.

[実施例] 実施例として、希土類にErを用いた場合を記す。[Example] As an example, a case where Er is used as the rare earth element will be described.

信号光波長は155μm、励起光波長は1.48μmで
ある。この場合光ファイバー中での損失及び波長分散が
少ない波長なので、長距離測定が可能である。
The signal light wavelength is 155 μm, and the excitation light wavelength is 1.48 μm. In this case, since the wavelength causes less loss and chromatic dispersion in the optical fiber, long-distance measurement is possible.

ファイバー中での増幅率は、励起光パワーと光ファイバ
ー長により左右されるが、励起光パワー70〜80mW
、光ファイバー長90mで20〜30(dB) (増幅
率100〜1000倍)である。出力光として数W得る
場合、信号光入力パワーは数mW〜数十mW程度の低出
力であり、通信用としても信頼性があり、又光源として
安価なLDの使用が可能となる。又、光パワーは光ファ
イバー中にてかせぐ為、信号光パワーはそれほど太き(
なくてもよいことから、通信用高速変調レーザー(DF
Bレーザー)を用い距離分解能向上も可能である。
The amplification factor in the fiber depends on the pump light power and optical fiber length, but the pump light power is 70 to 80 mW.
, 20 to 30 (dB) (amplification factor of 100 to 1000 times) with an optical fiber length of 90 m. When obtaining several watts of output light, the signal light input power is a low output of several mW to several tens of mW, which is reliable for communication purposes, and allows the use of an inexpensive LD as a light source. Also, since the optical power is stored in the optical fiber, the signal optical power is not very thick (
Since it is not necessary to use high-speed modulated laser (DF) for communication,
It is also possible to improve the distance resolution using the B laser.

この光源による計測可能距離は、ダイナミックレンジ1
0(dB)、光ファイバー中の損失を0.2dB/km
とすれば、片道25km、往復50kmの測長距離とな
る・。
The measurable distance with this light source is a dynamic range of 1
0 (dB), loss in optical fiber 0.2 dB/km
If so, the measurement distance will be 25km one way and 50km round trip.

[発明の効果] 本発明は、前述のような優れた効果を有し又、特にドー
プする希土類元素を選択することによりいろいろな波長
光の増幅が可能となる。
[Effects of the Invention] The present invention has the above-mentioned excellent effects, and by particularly selecting a rare earth element to be doped, light of various wavelengths can be amplified.

また、被測定光ファイバーへ入射するレーザーパルスの
光量も増加し、測定可能距離も長くなる。
Furthermore, the amount of laser pulses incident on the optical fiber to be measured increases, and the measurable distance also increases.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示し、要部ブロック図であり
、第2図と第3図は従来例を示し、従来例のブロック図
とレーザーパルスのパルス位置ジッターとパルスピーク
値ゆらぎの説明をした波形図である。 1・・ 信号用LD 2・・・・励起用LD 5・・・希土類ドープ光ファイバー
FIG. 1 shows an embodiment of the present invention and is a block diagram of the main part, and FIGS. 2 and 3 show a conventional example. FIG. 3 is a waveform diagram for explanation. 1... LD for signal 2... LD for excitation 5... Rare earth doped optical fiber

Claims (2)

【特許請求の範囲】[Claims] (1)被測定光ファイバーへレーザーパルスを入射する
信号用光源と光増幅器へ励起光を入射する励起光源とよ
りなる光源部と、該 レーザーパルスと該励起光を合波し被測定光ファイバー
へ導光する光方向性結合器と、被測定光ファイバーから
の後方ラマン散乱光を測定装置へ導光する光方向性結合
器と、後方ラマン散乱光中のストークス光と反ストーク
ス光を検出し各々強度に比例した電気信号に光電変換す
る検出器と、該検出器よりの電気信号を所定回数平均化
処理する平均化処理部と、所定回数平均化処理されたデ
ータを処理し被測定光ファイバーの温度分布を測定する
信号処理部と、該光源部と該被測定光ファイバーとの間
に該レーザーパルスを増幅する光増幅器を設けたことを
特徴とする分布型光 ファイバー温度センサー。
(1) A light source section consisting of a signal light source that inputs a laser pulse to the optical fiber under test and a pump light source that inputs pump light to the optical amplifier, and combines the laser pulse and the pump light and guides the light to the optical fiber under test. an optical directional coupler that guides the backward Raman scattered light from the optical fiber under test to the measuring device, and a light directional coupler that detects the Stokes light and anti-Stokes light in the backward Raman scattered light, each of which is proportional to the intensity. a detector that photoelectrically converts the electrical signal into an electrical signal; an averaging processing unit that averages the electrical signal from the detector a predetermined number of times; and measures the temperature distribution of the optical fiber to be measured by processing the data that has been averaged a predetermined number of times. What is claimed is: 1. A distributed optical fiber temperature sensor, comprising: a signal processing section for amplifying the laser pulse; and an optical amplifier for amplifying the laser pulse between the light source section and the optical fiber to be measured.
(2)該光増幅器は希土類ドープ光ファイバーである請
求項1記載の分布型光ファイバー温度センサー。
(2) The distributed optical fiber temperature sensor according to claim 1, wherein the optical amplifier is a rare earth doped optical fiber.
JP2101744A 1990-04-19 1990-04-19 Distributed optical fiber temperature sensor Expired - Lifetime JP2890654B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2101744A JP2890654B2 (en) 1990-04-19 1990-04-19 Distributed optical fiber temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2101744A JP2890654B2 (en) 1990-04-19 1990-04-19 Distributed optical fiber temperature sensor

Publications (2)

Publication Number Publication Date
JPH042933A true JPH042933A (en) 1992-01-07
JP2890654B2 JP2890654B2 (en) 1999-05-17

Family

ID=14308757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2101744A Expired - Lifetime JP2890654B2 (en) 1990-04-19 1990-04-19 Distributed optical fiber temperature sensor

Country Status (1)

Country Link
JP (1) JP2890654B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6480326B2 (en) 2000-07-10 2002-11-12 Mpb Technologies Inc. Cascaded pumping system and method for producing distributed Raman amplification in optical fiber telecommunication systems

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6480326B2 (en) 2000-07-10 2002-11-12 Mpb Technologies Inc. Cascaded pumping system and method for producing distributed Raman amplification in optical fiber telecommunication systems

Also Published As

Publication number Publication date
JP2890654B2 (en) 1999-05-17

Similar Documents

Publication Publication Date Title
Stewart et al. An investigation of an optical fibre amplifier loop for intra-cavity and ring-down cavity loss measurements
US7283216B1 (en) Distributed fiber sensor based on spontaneous brilluoin scattering
CN108512023B (en) System for realizing high-brightness narrow-linewidth ytterbium-doped fiber laser amplification
US20190288475A1 (en) Long-distance fiber optic distributed acoustic sensing amplification system and method thereof
CN206993129U (en) The Chaotic Wideband Signal generating means that centre wavelength is tunable
CN101861684A (en) Laser light source and method of operating the same
CN103983428B (en) The method measuring all-fiber pulse laser ASE noise
CN107785771B (en) Single-longitudinal-mode multi-wavelength tunable laser system and method for improving wavelength output efficiency
US6507429B1 (en) Article comprising a high power/broad spectrum superfluorescent fiber radiation source
Sanders et al. Reduction of the intensity noise from an erbium‐doped fiber laser to the standard quantum limit by intracavity spectral filtering
WO2003096106A1 (en) Scanning light source
JP2659554B2 (en) Light intensity correlator
JP2890654B2 (en) Distributed optical fiber temperature sensor
Roxlo et al. Synchronously pumped mode‐locked CdS platelet laser
US7164699B1 (en) Compact, high-power, low-jitter, semiconductor modelocked laser module
JP3236661B2 (en) Optical pulse tester
Becher et al. Intensity noise properties of Nd: YVO4 microchip lasers pumped with an amplitude squeezed diode laser
Rodrigo et al. Comparative study of the performance of semiconductor laser based coherent Doppler lidars
CN113375655A (en) Ultra-low noise wide-spectrum light source for fiber-optic gyroscope based on SOA
KR101194900B1 (en) System for High Power and Continuous Wave Laser Beam
Sanders et al. Measurements of the intensity noise of a broadly tunable, erbium‐doped fiber ring laser, relative to the standard quantum limit
JP3295148B2 (en) Fiber optical amplifier
JPH0769351B2 (en) Electrical signal observation device
Horiguchi et al. Stimulated Raman amplification of 1.6-mu m-band pulsed light in optical fibers
JP2665458B2 (en) Optical circuit for optical fiber analyzer