JP2888036B2 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JP2888036B2
JP2888036B2 JP4165848A JP16584892A JP2888036B2 JP 2888036 B2 JP2888036 B2 JP 2888036B2 JP 4165848 A JP4165848 A JP 4165848A JP 16584892 A JP16584892 A JP 16584892A JP 2888036 B2 JP2888036 B2 JP 2888036B2
Authority
JP
Japan
Prior art keywords
inner lead
bonding
lead
semiconductor chip
bump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4165848A
Other languages
Japanese (ja)
Other versions
JPH0613428A (en
Inventor
信逸 竹橋
賢造 畑田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4165848A priority Critical patent/JP2888036B2/en
Publication of JPH0613428A publication Critical patent/JPH0613428A/en
Application granted granted Critical
Publication of JP2888036B2 publication Critical patent/JP2888036B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/4826Connecting between the body and an opposite side of the item with respect to the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/50Tape automated bonding [TAB] connectors, i.e. film carriers; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73215Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01039Yttrium [Y]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Landscapes

  • Wire Bonding (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はTABパッケージの製造
方法に関し、特にチップの素子電極と接合するインナー
リードのフォーミングに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a TAB package, and more particularly, to a method for forming an inner lead to be connected to a device electrode of a chip.

【0002】[0002]

【従来の技術】メモリチップは半導体素子の微細加工技
術向上により記憶容量は著しく増大しチップ寸法は大型
化の傾向にある。メモリチップのパッケージは、種類・
寸法および外部端子の配置・位置が半導体メーカー各社
で規格化されており、そのため記憶容量が多くなった大
型のメモリチップは規格統一化されたパッケージへの収
納は極めて困難であった。このような大型のメモリチッ
プを収納するパッケージ形態として(図5−A)に示す
LOC(リード・オン・チップ、以下LOCと称す)方
式のリードフレーム型パッケージ19が用いられてい
る。この方式は従来チップの周辺に設けられていた素子
電極21を(同図B)に示すようにチップ中央に配置し
たメモリチップ(半導体チップ)と素子電極21と相対
したボンディングリード22’を有したリードフレーム
22を用いてパッケージングするもので 1)リードフレーム22のボンディングリード22’と
半導体チップ20の素子電極21とのワイヤボンディン
グ39が半導体チップ20の中央で行なわれるため、
(同図C)に示す従来のパッケージで必要であった半導
体チップ20の周辺のボンディング領域W1、W2が不
要となりパッケージ幅W3を約20%小さくでき、パッ
ケージの小型化をはかることができる。 2)素子電極21(信号、電源、GND電極)の中央配
置で信号、電源の配線長(図示せず)が短くなり、配線
容量と配線抵抗の低減により配線遅延とノイズが低減さ
れメモリアクセスの高速度化と半導体チップ20の電気
特性を大幅に向上することができる。 3)リードフレーム22には半導体チップ20をダイボ
ンドするダイパッド18が存在しないためパッケージモ
ールド後におけるリードフレーム22とモールド樹脂2
3の界面のクラックが発生しにくく耐湿性を向上でき
る。 4)ダイパッドがないリードフレーム22のため半導体
チップ20のセル構造およびセル配置変更等によって生
じた品種変更においてもこれまでのリードフレーム22
およびモールド形成金型が使用でき、製造コストを下げ
ることができる。
2. Description of the Related Art Memory chips have a remarkable increase in storage capacity due to the improvement in microfabrication technology of semiconductor devices, and chip dimensions tend to be larger. The type of memory chip package is
The dimensions and the arrangement and position of the external terminals are standardized by semiconductor manufacturers, so that it is extremely difficult to store a large memory chip having a large storage capacity in a standardized package. As a package form for accommodating such a large-sized memory chip, a lead frame type package 19 of a LOC (lead-on-chip, hereinafter referred to as LOC) system shown in FIG. 5A is used. This method has a memory chip (semiconductor chip) in which element electrodes 21 provided in the periphery of a conventional chip are arranged in the center of the chip as shown in FIG. 1) The wire bonding 39 between the bonding lead 22 ′ of the lead frame 22 and the element electrode 21 of the semiconductor chip 20 is performed in the center of the semiconductor chip 20.
The bonding regions W1 and W2 around the semiconductor chip 20 which are required in the conventional package shown in FIG. 3C are not required, so that the package width W3 can be reduced by about 20%, and the size of the package can be reduced. 2) The wiring length (not shown) of the signal and the power supply is shortened in the central arrangement of the element electrode 21 (signal, power supply, GND electrode), and the wiring delay and the noise are reduced by the reduction of the wiring capacitance and the wiring resistance, so that the memory access is reduced It is possible to increase the speed and significantly improve the electrical characteristics of the semiconductor chip 20. 3) Since the lead frame 22 has no die pad 18 for die bonding the semiconductor chip 20, the lead frame 22 and the molding resin
Cracks at the interface of No. 3 hardly occur, and the moisture resistance can be improved. 4) Since the lead frame 22 does not have a die pad, even when the type of the semiconductor chip 20 is changed due to a change in the cell structure and the cell arrangement of the semiconductor chip 20, the lead frame 22 can be used.
And a mold forming die can be used, and the manufacturing cost can be reduced.

【0003】等の特徴を有するものであった。しかし、
近年電子機器の小型・軽量・高機能化をはかる目的で多
数のメモリパッケージを高密度に実装するためパッケー
ジ厚が薄いフィルムキャリアによるLOC方式のTAB
型パッケージが開発されている。
[0003] It has the following features. But,
In recent years, LOC-type TAB using a thin film carrier for mounting a large number of memory packages at high density for the purpose of reducing the size, weight, and functionality of electronic devices.
A type package has been developed.

【0004】(同図D)にフィルムキャリアによるLO
C方式のTAB型パッケージ24を示す。TAB型パッ
ケージ24のボンディング方式としてはこのようなチッ
プ寸法が大型で素子電極数が20〜40と比較的少ない
メモリチップにおいては従来のギャングボンディング法
(一括接合)ではなくフィルムキャリア25のインナー
リード26とチップの素子電極21との接合を(図6)
に示すようにワイヤボンディングと同様に一点々個々
に、半導体チップ20の素子電極21の寸法に近い圧接
面27を有したボンディングツール28で加圧して行な
うシングルポイント法(個別接合)が用いられる。この
方式はポリイミドから成る可とう性フィルム29に約3
5ミクロン厚の圧延銅でリードが形成されたフィルムキ
ャリア25を用いるものである。半導体チップ20は前
記と同様にチップ中央に素子電極21が設けられ、イン
ナーリード26と素子電極21はAuバンプ31を介し
て接合される。
[0004] (D in the same figure) LO by film carrier
1 shows a C-type TAB type package 24. As a bonding method of the TAB type package 24, in a memory chip having such a large chip size and a relatively small number of device electrodes of 20 to 40, the inner leads 26 of the film carrier 25 are used instead of the conventional gang bonding method (collective bonding). (Fig. 6)
As shown in (1), a single point method (individual bonding) is used, in which each point is individually pressed by a bonding tool 28 having a pressure contact surface 27 close to the size of the element electrode 21 of the semiconductor chip 20, similarly to wire bonding. This method uses a flexible film 29 made of polyimide for approximately 3
This uses a film carrier 25 in which leads are formed of rolled copper having a thickness of 5 microns. As described above, the semiconductor chip 20 has the device electrode 21 provided at the center of the chip, and the inner lead 26 and the device electrode 21 are joined via the Au bump 31.

【0005】このシングルポイント法における接合方法
を(図6)に示す。(同図A)は転写バンプ方式でイン
ナーリード26にバンプ30を形成したフィルムキャリ
ア25と半導体チップ20を示したもので、まずインナ
ーリード26を半導体チップ20の素子電極21と位置
合わせが行なわれる。位置合わせ後、インナーリード2
6を一本ずつボンディングツール28でインナーリード
26の上より圧接31、超音波を印加し、インナーリー
ド26に形成されたバンプ30を塑性変形させ、インナ
ーリード26と半導体チップ20の素子電極21とを接
合する(同図B)。接合は半導体チップ20の素子電極
21の形成分すなわち、インナーリード26の本数分、
上記工程Bを繰り返し行なわれるものである(同図C,
D)。
FIG. 6 shows a joining method in the single point method. FIG. 1A shows a film carrier 25 and a semiconductor chip 20 in which bumps 30 are formed on inner leads 26 by the transfer bump method. First, the inner leads 26 are aligned with the device electrodes 21 of the semiconductor chip 20. . After alignment, inner lead 2
6 are pressed one by one by a bonding tool 28 from above the inner lead 26 and ultrasonic waves are applied to plastically deform the bump 30 formed on the inner lead 26, and the inner lead 26 and the device electrode 21 of the semiconductor chip 20 are (FIG. B). The bonding is performed by the amount of the element electrodes 21 of the semiconductor chip 20, that is, by the number of the inner leads 26.
The above step B is repeatedly performed (FIG.
D).

【0006】これによりリードフレーム厚、ボンディン
グワイヤのループ高さの分だけパッケージ厚を約80%
に薄くすることができ、(図7)に示すようにTABパ
ッケージ24を数段積層して電子機器(図示せず)の回
路基板32へ搭載することにより電子機器を小型・軽量
でかつ高機能化を容易に実現できるものであった。
Accordingly, the package thickness is reduced by about 80% by the lead frame thickness and the bonding wire loop height.
As shown in FIG. 7, several stages of the TAB package 24 are stacked and mounted on a circuit board 32 of an electronic device (not shown), so that the electronic device is small, light, and highly functional. Can be easily realized.

【0007】[0007]

【発明が解決しようとする課題】しかしながらメモリチ
ップをTAB型パッケージする場合、チップの素子面に
は電気的な絶縁とメモリセルの放射性不純物による誤動
作防止のため放射性不純物に対し遮蔽効果のある絶縁材
料38のポリイミドがフィルム状で50〜150ミクロ
ン形成される構造となっている。そのため(図8A)に
示すとおりフィルムキャリアから導出したインナーリー
ド26とチップ20の素子電極21との間には25〜1
25ミクロンの間隔Hが生じる。この間隔Hがインナー
リード26へのバンプ転写工程およびインナーリード2
6と半導体チップ20の素子電極21との接合の際、段
差部が支点Pとなってインナーリード26は孤を描いて
ボンディングされるので素子電極21とインナーリード
26のバンプ30に接合ずれLが必然的に生じる。従来
においては間隔Hが存在しないためインナーリード26
のバンプ30直下に半導体チップ20の素子電極21が
位置するため接合ずれLは発生しない。従ってこの接合
ずれLのため必要接合面積が得られないため接合強度が
著しく低下するものである。また従来フィルムキャリア
のインナーリードをフォーミングする場合フォーミング
形状・状態に合わせた金型で挟み込んで(図示せず)イ
ンナーリードのフォーミングが行なわれる。この時フォ
ーミングは通常フィルムキャリアの製造後フィルムキャ
リアメーカーによって実施されるがインナーリードフォ
ーミング後ユーザーに納品の際の輸送途上で(同図B)
に示すようにフォーミングによってバンプの位置ずれ3
3およびバンプの脱落34が発生し、たとえばバンプ付
きのフィルムキャリアにおいてはこのようなバンプ脱落
等の製品不良を発生させるものであった。一方、ユーザ
ー側でインナーリード26のフォーミングを行なう際に
しても金型設計や、金型のフォーミング条件(圧力、時
間、温度)が不適切な場合同様にバンプ脱落34やバン
プの位置ずれ33による接合不良、そしてフォーミング
金型による強制的なフォーミングによるインナーリード
26の曲がり部分の金属疲労からのリードクラック35
の発生およびリードめっき皮膜36の損傷が生じるもの
であった。これによりインナーリード26の下地である
Cu37が露出し、樹脂モールド工程およびパッケージ
の環境試験の熱ストレスによってインナーリードに断
線、腐食が発生による信頼性低下、さらにはインナーリ
ード用の高精度で高価なフォーミング金型を品種ごとに
用意する必要がありTABパッケージの製造コストを著
しく高めるなどの問題点を有していた。
However, when a memory chip is packaged in a TAB type, an insulating material having a shielding effect on radioactive impurities is provided on the element surface of the chip for electrical insulation and for preventing malfunction due to radioactive impurities in the memory cell. It has a structure in which 38 to 38 microns of polyimide is formed in a film form. Therefore, as shown in FIG. 8A, between the inner lead 26 derived from the film carrier and the element electrode 21 of the chip 20, 25 to 1
A spacing H of 25 microns results. This interval H is determined by the step of transferring bumps to the inner leads 26 and the inner leads 2.
6 and the element electrode 21 of the semiconductor chip 20, the stepped portion serves as a fulcrum P and the inner lead 26 is bonded in an isolated manner, so that a bonding displacement L is generated between the element electrode 21 and the bump 30 of the inner lead 26. Inevitably occurs. In the prior art, the inner lead 26
Since the element electrodes 21 of the semiconductor chip 20 are located directly below the bumps 30, no bonding displacement L occurs. Therefore, the required bonding area cannot be obtained due to the bonding deviation L, so that the bonding strength is significantly reduced. Further, when forming the inner lead of the conventional film carrier, the inner lead is formed by being sandwiched by a mold (not shown) adapted to the forming shape and state. At this time, the forming is usually carried out by the film carrier maker after the production of the film carrier.
As shown in FIG.
3 and bump drop-off 34 occurred. For example, in the case of a film carrier with bumps, product defects such as bump drop-off occurred. On the other hand, even when the inner lead 26 is formed by the user, similarly to the case where the mold design and the forming conditions (pressure, time, temperature) of the mold are inappropriate, the bumps 34 and the displacement 33 of the bumps cause the same. Lead crack 35 due to poor bonding and metal fatigue at the bent portion of the inner lead 26 due to forced forming by a forming die.
And the lead plating film 36 was damaged. As a result, Cu 37 as a base of the inner lead 26 is exposed, disconnection and corrosion occur in the inner lead due to thermal stress in the resin molding process and the environmental test of the package, and the reliability is reduced. It is necessary to prepare a forming die for each type, and there is a problem that the manufacturing cost of the TAB package is significantly increased.

【0008】本発明は上記問題点に鑑み、メモリチップ
をフィルムキャリアによるLOC方式のTAB型パッケ
ージに実装するに際し、インナーリードのフォーミング
をボンディングツールで成形・規整および位置合わせを
行ったのちインナーリードをチップの素子電極と接合す
ることで、接合ずれによる接合強度低下を発生させず、
さらにはフォーミング金型等が不要で低コストなメモリ
チップのTABパッケージを提供するものである。
SUMMARY OF THE INVENTION In view of the above problems, when mounting a memory chip on a TAB type package of a LOC system using a film carrier, the present invention provides a method for forming, regulating, and positioning an inner lead with a bonding tool, and then removing the inner lead. By joining with the chip's device electrode, there is no decrease in joining strength due to joining misalignment,
It is another object of the present invention to provide a low-cost TAB package of a memory chip which does not require a forming die or the like.

【0009】[0009]

【課題を解決するための手段】上記問題点を解決するた
め本発明では、フィルム上のインナーリードにバンプを
接合転写する際およびすでにインナーリードにバンプが
接合転写されたインナーリードのバンプを半導体チップ
の素子電極と接合する際においてボンディングツールを
インナーリードに接触させて絶縁材料の厚さ分インナー
リードを押し下げ、絶縁材料の厚さの段差に沿ってイン
ナーリードを変形させた後、前記インナーリードとバン
プとの接合転写あるいはインナーリードのバンプと半導
体チップの素子電極との接合を行なうものである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention relates to a method of bonding and transferring a bump to an inner lead on a film and a method of connecting a bump of an inner lead to which a bump has been transferred to an inner lead. At the time of bonding with the element electrode of the above, the bonding tool is brought into contact with the inner lead to push down the inner lead by the thickness of the insulating material, and deform the inner lead along the step of the thickness of the insulating material. The bonding transfer with the bump or the bonding between the bump of the inner lead and the device electrode of the semiconductor chip is performed.

【0010】[0010]

【作用】本発明は上記した方法によってフィルムの絶縁
材料によって生じたインナーリードとバンプおよび半導
体チップの素子電極間の間隔をボンディングツールによ
り一本一本インナーリードを規整・変形させたのち前記
ボンディングツールで前記リードを加圧して半導体チッ
プの素子電極へ接合することにより段差によるボンディ
ング時の接合ずれが生じず、バンプと半導体チップの接
合の信頼性が損なわれない。そしてフィルムキャリアの
フォーミング工程が不要となり、著しく高価なフォーミ
ング金型を必要としない。また、素子電極配置位置が異
なるチップにおいて品種ごとのフォーミング金型が不要
となり品種に対する品種変更を迅速かつ容易に行うこと
ができる。さらには、フォーミング金型による強制的な
インナーリードの成形と比較してインナーリードに金属
疲労を生じさせにくくこれにより樹脂モールド等の熱ス
トレスによるインナーリードの断線・接合はがれ等の接
合不良を低減でき信頼性をきわめて向上できることとな
る。
According to the present invention, the spacing between the inner leads and the bumps formed by the insulating material of the film and the device electrodes of the semiconductor chip is regulated and deformed one by one by a bonding tool. Thus, by bonding the leads to the device electrodes of the semiconductor chip by pressurizing the leads, a bonding shift due to a step does not occur at the time of bonding, and the reliability of bonding between the bump and the semiconductor chip is not impaired. Further, a forming step of the film carrier is not required, and a significantly expensive forming mold is not required. In addition, a forming die for each product type is not required for chips having different device electrode arrangement positions, and thus product types can be changed quickly and easily. Furthermore, metal fatigue is less likely to occur in the inner lead than in the case of forced inner lead molding using a forming die, thereby reducing bonding defects such as disconnection and peeling of the inner lead due to thermal stress such as resin molding. The reliability can be greatly improved.

【0011】[0011]

【実施例】以下本発明の実施例を図面を参照しながら説
明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0012】(図1)は本発明の第一の実施例であるフ
ィルムキャリアのインナーリードへのバンプ転写工程時
にインナーリードのフォーミング行なう方法について示
したものである。(同図A)においてバンプ形成基板1
に形成されたバンプ5とフィルムキャリア4のインナー
リード2とを位置合わせを行う。次にフィルムキャリア
4より導出するインナーリード2のAへボンディングツ
ール6を接触させて絶縁フィルム3の側面方向に沿って
ボンディングツール6を降下させインナーリード2をバ
ンプ5近傍へ押し下げる(同図B)。ボンディングツー
ル6をバンプ5と位置合わせされたインナーリード2上
に移動、インナーリード2に加圧、熱を加えてバンプ5
をインナーリード2へ転写形成する(同図C)。他のイ
ンナーリード2のバンプ転写も同様にインナーリード2
のAへボンディングツール6を接触させて絶縁フィルム
3の側面方向に沿ってボンディングツール6を降下させ
インナーリード2をバンプ5の近傍へ押し下げ(同図
D)、ボンディングツール6をバンプ5と位置合わせさ
れたインナーリード2上に移動、インナーリード2に加
圧、熱を加えてバンプ5をインナーリード2へ転写形成
する(同図E)。バンプ転写はこのようにしてインナー
リード2の本数分行なわれるものである。
FIG. 1 shows a first embodiment of the present invention in which a method of forming an inner lead during a step of transferring a bump of a film carrier to an inner lead is shown. In FIG. 1A, the bump-forming substrate 1
The bumps 5 formed on the film carrier 4 and the inner leads 2 of the film carrier 4 are aligned. Next, the bonding tool 6 is brought into contact with A of the inner lead 2 led out from the film carrier 4 to lower the bonding tool 6 along the side surface direction of the insulating film 3 to push down the inner lead 2 to the vicinity of the bump 5 (FIG. B). . The bonding tool 6 is moved onto the inner lead 2 aligned with the bump 5, and the inner lead 2 is pressed and heated to apply the bump 5.
Is transferred to the inner lead 2 (FIG. 2C). The bump transfer of the other inner leads 2 is similarly performed for the inner leads 2.
A, the bonding tool 6 is brought into contact with A, the bonding tool 6 is lowered along the side surface direction of the insulating film 3, and the inner lead 2 is pushed down to the vicinity of the bump 5 (FIG. 3D), and the bonding tool 6 is aligned with the bump 5. The bumps 5 are transferred onto the inner leads 2, and the bumps 5 are transferred and formed on the inner leads 2 by applying pressure and heat to the inner leads 2 (FIG. E). The bump transfer is performed for the number of the inner leads 2 in this manner.

【0013】次に(図2)は本発明の第二の実施例であ
るバンプ転写されたインナーリードと半導体チップの素
子電極とを接合する工程でインナーリードのフォーミン
グを行なう方法について示したものである。(同図A)
においてインナーリード2にバンプ5を形成したインナ
ーリード2を半導体チップ9の素子電極10と位置合わ
せを行なう。次にインナーリード2と半導体チップ9の
素子電極10とを位置合わせ後、フィルムキャリア4よ
り導出するインナーリード2の根元付近Aへボンディン
グツール6を除々に降下させ、絶縁フィルム3の側面方
向に沿って絶縁フィルム3の厚さ分ボンディングツール
6を降下してインナーリード2を整形させる(同図
B)。次にボンディングツール6をインナーリード2の
先端部へ移動させボンディングツール6でインナーリー
ド2の先端部側面をX−Y方向に微動させてバンプ5と
半導体チップ9の素子電極10と位置合わせを行なう。
位置合わせ後ボンディングツール6でインナーリード2
の上からバンプ5を圧接7、超音波を印加して、インナ
ーリード2のバンプ5を塑性変形させ、バンプ5と半導
体チップ9の素子電極10とを接合する(同図C)。接
合は半導体チップ9の素子電極10の形成分すなわち、
インナーリード2の本数分、ボンディングツール6を移
動させて(同図D)、上記A〜Cを繰り返して半導体チ
ップ9の素子電極10とインナーリード2の接合を行な
うものである(同図E)。
Next, FIG. 2 shows a method of forming the inner lead in the step of joining the bump-transferred inner lead and the device electrode of the semiconductor chip according to the second embodiment of the present invention. is there. (A in the figure)
Then, the inner leads 2 having the bumps 5 formed on the inner leads 2 are aligned with the device electrodes 10 of the semiconductor chip 9. Next, after aligning the inner leads 2 with the device electrodes 10 of the semiconductor chip 9, the bonding tool 6 is gradually lowered to the vicinity A of the base of the inner leads 2 led out from the film carrier 4, and along the side direction of the insulating film 3. Then, the bonding tool 6 is lowered by the thickness of the insulating film 3 to shape the inner lead 2 (FIG. 2B). Next, the bonding tool 6 is moved to the tip of the inner lead 2, and the side of the tip of the inner lead 2 is slightly moved in the XY direction by the bonding tool 6 to align the bump 5 with the device electrode 10 of the semiconductor chip 9. .
After alignment, inner lead 2 with bonding tool 6
The bump 5 is pressed from above 7 and ultrasonic waves are applied to plastically deform the bump 5 of the inner lead 2 to join the bump 5 and the element electrode 10 of the semiconductor chip 9 (FIG. C). The bonding is performed by the formation of the device electrode 10 of the semiconductor chip 9, that is,
The bonding tool 6 is moved by the number of the inner leads 2 (FIG. D), and the above A to C are repeated to join the element electrodes 10 of the semiconductor chip 9 and the inner leads 2 (FIG. E). .

【0014】これによりインナーリード2を半導体チッ
プ9の素子電極10へ接合時、接合に使用するボンディ
ングツール6で絶縁フィルム3の厚さで生じるインナー
リード2と半導体チップ9の素子電極10間の間隔Hに
対し絶縁フィルム3の側面に沿うようインナーリード2
をフォーミング出来、さらにはボンディングツール6で
バンプ5の位置規整をすることによって、より高精度な
接合が可能となる。
Thus, when the inner lead 2 is joined to the device electrode 10 of the semiconductor chip 9, the gap between the inner lead 2 and the device electrode 10 of the semiconductor chip 9 occurs due to the thickness of the insulating film 3 by the bonding tool 6 used for joining. Inner leads 2 along the side of insulating film 3 with respect to H
Can be formed, and the position of the bumps 5 can be adjusted by the bonding tool 6, thereby enabling more accurate bonding.

【0015】さらに第三の実施例として(図3)に示す
ようフィルムキャリア4を平坦な面を有するステージ1
1に設置してインナーリード2をボンディングツール6
であらかじめフォーミングのみを行ったのち(同図
A)、インナーリード2と半導体チップ9の素子電極1
0とを位置合わせして、インナーリード2をボンディン
グツール6で圧接(図示せず)、超音波を印可して接合
することも可能である(同図B)。(図4)はインナー
リード2をボンディングツール6で圧接してフォーミン
グする際のボンディングツール6の動作シーケンスを示
した軌跡図である。縦軸Hはボンディングツール6の高
さを示し、横軸Tは経過時間を示したものである。イン
ナーリード2を絶縁フィルム3の側面沿って折り曲げは
一定時間T1の間H2の高さまでボンディングツール6
を降下してインナーリード2のフォーミングを行う。そ
の後わずかな時間T2にボンディングツール6をさらに
H3の高さまで降下する。またT1とT2の加圧力はT
2の方を高く設定するものである。これによりインナー
リード2の折り曲げによる塑性変形が決定的となりイン
ナーリードごとのフォーミング量すなわちインナーリー
ド2の折り曲がり状態の安定化をはかることが出来、ば
らつきのない再現性の優れたフォーミングが可能とな
る。
As a third embodiment (FIG. 3), a film carrier 4 is mounted on a stage 1 having a flat surface as shown in FIG.
1 and the inner lead 2 is attached to the bonding tool 6
After only forming is performed in advance (A in the same figure), the inner leads 2 and the device electrodes 1 of the semiconductor chip 9 are formed.
It is also possible to position the inner lead 2 by pressure bonding (not shown) with a bonding tool 6 and to apply ultrasonic waves to join the inner leads 2 (FIG. B). FIG. 4 is a trajectory diagram showing an operation sequence of the bonding tool 6 when the inner lead 2 is pressed by the bonding tool 6 to form. The vertical axis H indicates the height of the bonding tool 6, and the horizontal axis T indicates the elapsed time. The inner lead 2 is bent along the side surface of the insulating film 3 until the bonding tool 6 reaches the height of H2 for a certain time T1.
To form the inner lead 2. Then, at a short time T2, the bonding tool 6 is further lowered to the height of H3. The pressing force of T1 and T2 is T
2 is set higher. As a result, the plastic deformation due to the bending of the inner lead 2 is decisive, and the forming amount of each inner lead, that is, the bending state of the inner lead 2 can be stabilized, and the forming with excellent reproducibility without variation can be performed. .

【0016】このことにより別工程でフィルムキャリア
4のインナーリード2のフォーミング工程および高価な
フォーミング金型および設備が不要で製造コストが低
減、素子電極に対して常に高精度な接合が可能となる。
また、素子電極配置位置が異なるチップにおいても品種
ごとのフォーミング金型が不要となり品種に対する品種
変更を迅速かつ容易に行うことができる。さらには、フ
ォーミング金型による強制的なインナーリードの成形と
比較してインナーリードに金属疲労を生じさせにくくこ
れにより樹脂モールド等の熱ストレスによるインナーリ
ードの断線・接合はがれ等の接合不良を低減でき信頼性
をきわめて向上できることとなる。なお、インナーリー
ドをフォーミング状態およびインナーリードのフォーミ
ング時のボンディングツールの制御はボンディング装置
において素子電極に対するパターン認識機能および微動
動作機構を設けることにより自由に制御・設定が可能で
ある。本発明でのシングルポイント法によるインナーリ
ードの接合ではあらかじめインナーリードにバンプを転
写、形成された転写バンプ方式でも素子電極21に直接
バンプ30を形成するウェハバンプ方式でもいずれにお
いても適用が可能である。また、バンプはAu以外の材
料、たとえば半田においても本発明の適用が可能なこと
は言うまでもない。
This eliminates the need for a separate step of forming the inner leads 2 of the film carrier 4 and expensive forming dies and equipment, thereby reducing the manufacturing cost and enabling highly accurate bonding to the device electrodes.
In addition, a forming die for each product type is not required even for chips having different element electrode arrangement positions, and thus product types can be changed quickly and easily. Furthermore, metal fatigue is less likely to occur in the inner lead than in the case of forced inner lead molding using a forming die, thereby reducing bonding defects such as disconnection and peeling of the inner lead due to thermal stress such as resin molding. The reliability can be greatly improved. The bonding tool can be freely controlled and set by controlling the bonding tool when the inner lead is formed and when forming the inner lead by providing a pattern recognition function and a fine movement operation mechanism for the element electrode in the bonding apparatus. In the bonding of the inner lead by the single point method in the present invention, any of a transfer bump method in which a bump is transferred to the inner lead in advance and a wafer bump method in which the bump 30 is formed directly on the element electrode 21 can be applied. Needless to say, the present invention can be applied to bumps made of materials other than Au, for example, solder.

【0017】[0017]

【発明の効果】以上のように本発明はボンディングツー
ルによりボンディング前にリードを規整・変形させたの
ち前記ボンディングツールで前記リードを加圧して半導
体チップの素子電極へ接合することによりフィルムキャ
リアのフォーミング工程が不要となり、高価なフォーミ
ング金型を必要としない。また、素子電極配置位置が異
なるチップにおいて品種ごとのフォーミング金型が不要
となり品種に対する品種変更を迅速かつ容易に行うこと
ができる。インナーリードのフォーミング形状はボンデ
ィングツールツールの動かす速度・角度・移動量によっ
て自由に設定出来、自動ボンダにこれらの情報を入力す
ることでフォーミングを正確に実現可能である。さらに
は、フォーミング金型による強制的なインナーリードの
成形と比較してインナーリードに金属疲労を生じさせに
くい樹脂モールド等の熱ストレスによるインナーリード
の断線・接合はがれ等の接合不良を低減でき信頼性をき
わめて向上できる。
As described above, according to the present invention, the leads are regulated and deformed before bonding by a bonding tool, and then the leads are pressed by the bonding tool to be bonded to the device electrodes of the semiconductor chip, thereby forming a film carrier. No process is required, and an expensive forming mold is not required. In addition, a forming die for each product type is not required for chips having different device electrode arrangement positions, and thus product types can be changed quickly and easily. The forming shape of the inner lead can be freely set according to the moving speed, angle and moving amount of the bonding tool, and the forming can be accurately realized by inputting such information to the automatic bonder. Furthermore, compared to the forced molding of the inner lead using a forming mold, it is possible to reduce bonding defects such as disconnection and peeling of the inner lead due to thermal stress of resin mold, etc., which is less likely to cause metal fatigue on the inner lead, and reliability. Can be greatly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第一の実施例における半導体装置の製
造方法の工程断面図
FIG. 1 is a process sectional view of a method for manufacturing a semiconductor device according to a first embodiment of the present invention;

【図2】本発明の第二の実施例を示した半導体装置の製
造方法の工程断面図
FIG. 2 is a process sectional view of a method for manufacturing a semiconductor device according to a second embodiment of the present invention.

【図3】本発明の第三の実施例を示した半導体装置の製
造方法の工程断面図
FIG. 3 is a process sectional view of a method for manufacturing a semiconductor device according to a third embodiment of the present invention.

【図4】本発明におけるボンディングツールの動作シー
ケンスを示した軌跡図
FIG. 4 is a trajectory diagram showing an operation sequence of the bonding tool according to the present invention.

【図5】従来の半導体装置の構成図FIG. 5 is a configuration diagram of a conventional semiconductor device.

【図6】従来の半導体装置の製造方法の工程断面図FIG. 6 is a process sectional view of a conventional semiconductor device manufacturing method.

【図7】従来の同実施例における半導体装置の実装方法
を示した断面図
FIG. 7 is a cross-sectional view showing a conventional semiconductor device mounting method in the embodiment.

【図8】従来の半導体装置の製造方法における課題説明
のための断面図
FIG. 8 is a sectional view for explaining a problem in a conventional method of manufacturing a semiconductor device.

【符号の説明】[Explanation of symbols]

1 バンプ形成基板 2 インナーリード 3 絶縁フィルム 4 フィルムキャリア 5 バンプ 6 ボンディングツール 7 圧接 9 半導体チップ 10 素子電極 11 ステージ DESCRIPTION OF SYMBOLS 1 Bump forming board 2 Inner lead 3 Insulating film 4 Film carrier 5 Bump 6 Bonding tool 7 Pressure welding 9 Semiconductor chip 10 Element electrode 11 Stage

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−13497(JP,A) 特開 平4−334037(JP,A) 特開 昭59−139636(JP,A) 特開 平5−291355(JP,A) 特開 平5−90354(JP,A) 実開 平2−82038(JP,U) (58)調査した分野(Int.Cl.6,DB名) H01L 21/60 311 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-5-13497 (JP, A) JP-A-4-334037 (JP, A) JP-A-59-139636 (JP, A) JP-A-5-139636 291355 (JP, A) JP-A-5-90354 (JP, A) JP-A-2-82038 (JP, U) (58) Fields investigated (Int. Cl. 6 , DB name) H01L 21/60 311

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 基板上に複数個形成された突起電極とフ
ィルム上のリードを位置合わせする工程と、前記フィル
ム上のリードごとにボンディングツールを接触させて前
記リードを突起電極近傍まで押し下げ、前記リードを変
形させる工程と、前記リードを加圧、熱して前記突起電
極を前記リードに転写形成する工程と、前記リードに転
写形成された前記突起電極と半導体チップの電極とを位
置合わせする工程と、ボンディングツールと前記リード
を接触させて前記リードの突起電極と前記半導体チップ
の電極との位置合わせを行ない前記リードに加圧、熱を
加えて前記突起電極と前記半導体チップの電極とを接合
する工程とを備えた半導体装置の製造方法。
A step of aligning a plurality of projecting electrodes formed on a substrate with leads on a film; and contacting a bonding tool with each of the leads on the film to push the leads down to near the projecting electrodes. Deforming the lead, pressurizing and heating the lead, transferring the projecting electrode to the lead, and aligning the projecting electrode transferred to the lead with the electrode of the semiconductor chip. And contacting the bonding tool with the lead to align the projecting electrode of the lead with the electrode of the semiconductor chip, and pressurizing and applying heat to the lead to join the projecting electrode and the electrode of the semiconductor chip. And a method of manufacturing a semiconductor device.
JP4165848A 1992-06-24 1992-06-24 Method for manufacturing semiconductor device Expired - Fee Related JP2888036B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4165848A JP2888036B2 (en) 1992-06-24 1992-06-24 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4165848A JP2888036B2 (en) 1992-06-24 1992-06-24 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH0613428A JPH0613428A (en) 1994-01-21
JP2888036B2 true JP2888036B2 (en) 1999-05-10

Family

ID=15820152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4165848A Expired - Fee Related JP2888036B2 (en) 1992-06-24 1992-06-24 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2888036B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2947073B2 (en) 1994-06-24 1999-09-13 住友電装株式会社 Plastic optical fiber end processing equipment
JP3534583B2 (en) 1997-01-07 2004-06-07 株式会社ルネサステクノロジ Method for manufacturing semiconductor integrated circuit device

Also Published As

Publication number Publication date
JPH0613428A (en) 1994-01-21

Similar Documents

Publication Publication Date Title
US5014111A (en) Electrical contact bump and a package provided with the same
US6388336B1 (en) Multichip semiconductor assembly
US6316822B1 (en) Multichip assembly semiconductor
US6133637A (en) Semiconductor device having a plurality of semiconductor chips
US7176570B2 (en) Method for forming bump, semiconductor element having bumps and method of manufacturing the same, semiconductor device and method of manufacturing the same, circuit board, and electronic equipment
US6414381B1 (en) Interposer for separating stacked semiconductor chips mounted on a multi-layer printed circuit board
US6624059B2 (en) Method of improving interconnect of semiconductor devices by utilizing a flattened ball bond
US7314818B2 (en) Semiconductor device and method of manufacturing the same, circuit board, and electronic equipment
US6310395B1 (en) Electronic component with anodically bonded contact
US5118370A (en) LSI chip and method of producing same
KR930004246B1 (en) Resin seal type semiconductor device
US6927095B2 (en) Low cost and compliant microelectronic packages for high I/O and fine pitch
US5650667A (en) Process of forming conductive bumps on the electrodes of semiconductor chips using lapping and the bumps thereby created
JP2558976B2 (en) Method of joining electrodes and leads of electronic parts
US20100044861A1 (en) Semiconductor die support in an offset die stack
US9520374B2 (en) Semiconductor device, substrate and semiconductor device manufacturing method
US6921016B2 (en) Semiconductor device and method of manufacturing the same, circuit board, and electronic equipment
US5569956A (en) Interposer connecting leadframe and integrated circuit
US20020003308A1 (en) Semiconductor chip package and method for fabricating the same
KR100198682B1 (en) Semiconductor device manufacturing method
JP2888036B2 (en) Method for manufacturing semiconductor device
US20020182778A1 (en) Flexible package fabrication method
JP2001015627A (en) Semiconductor device and manufacture thereof
JPH05291260A (en) Forming method for bump
JP3706519B2 (en) Mounting method of semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees