JP2886850B1 - Flow path switching device for refrigerant gas in air conditioner - Google Patents

Flow path switching device for refrigerant gas in air conditioner

Info

Publication number
JP2886850B1
JP2886850B1 JP10090461A JP9046198A JP2886850B1 JP 2886850 B1 JP2886850 B1 JP 2886850B1 JP 10090461 A JP10090461 A JP 10090461A JP 9046198 A JP9046198 A JP 9046198A JP 2886850 B1 JP2886850 B1 JP 2886850B1
Authority
JP
Japan
Prior art keywords
pressure
heat exchanger
switching
refrigerant gas
connection port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10090461A
Other languages
Japanese (ja)
Other versions
JPH11287535A (en
Inventor
勇 外山
Original Assignee
富士インジェクタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士インジェクタ株式会社 filed Critical 富士インジェクタ株式会社
Priority to JP10090461A priority Critical patent/JP2886850B1/en
Application granted granted Critical
Publication of JP2886850B1 publication Critical patent/JP2886850B1/en
Publication of JPH11287535A publication Critical patent/JPH11287535A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sliding Valves (AREA)
  • Multiple-Way Valves (AREA)

Abstract

【要約】 【課題】切換えローターを弁座に押し付けるための格別
の装置や機構を付設することなく、高圧導入口と高圧導
出口間の差圧によって切換ローターを押圧して移動しつ
つシーリング材を圧着し、高圧導出口と熱交換器接続口
との気密状態を確実にし、構造簡単にして信頼性の高い
ロータリー型の流路切換装置を提供する。 【解決手段】ハウジング1内に内蔵する切換ローター4
の一方向又は他方向への回動にて高圧冷媒ガスの流路を
切換えるようにした冷暖房装置における冷媒ガスの流路
切換装置において、上記切換ローターにおける高圧導入
口14の有効受圧面積S1と上記高圧導出口の有効受圧
面積S2とをS2<S1の関係に設定し、該S2とS1
の受圧面積差に基づく印加圧力の差圧により切換ロータ
ー4を押圧して、高圧導出口15,16と熱交換器接続
口12,13間に介在するシーリング材19,20を圧
着し気密状態を形成する。
Kind Code: A1 Abstract: A sealing material is pressed and moved by a pressure difference between a high-pressure inlet and a high-pressure outlet without a special device or mechanism for pressing a switching rotor against a valve seat. The present invention provides a rotary type flow path switching device that has a simple structure and high reliability by performing pressure bonding to ensure an airtight state between a high-pressure outlet and a heat exchanger connection port. A switching rotor (4) built in a housing (1).
In the refrigerant gas flow path switching device in the cooling and heating device in which the flow path of the high pressure refrigerant gas is switched by turning in one direction or the other direction, the effective pressure receiving area S1 of the high pressure inlet 14 in the switching rotor and the effective pressure receiving area S1 The effective pressure receiving area S2 of the high-pressure outlet is set in a relationship of S2 <S1, and S2 and S1
The switching rotor 4 is pressed by the differential pressure of the applied pressure based on the pressure receiving area difference, and the sealing materials 19 and 20 interposed between the high pressure outlets 15 and 16 and the heat exchanger connection ports 12 and 13 are pressed and the airtight state is established. Form.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はコンプレッサーから
吐出される高圧冷媒ガスを熱交換器の一端と他端に選択
的に供給する冷暖房装置における冷媒ガスの流路切換装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerant gas flow switching device in a cooling and heating apparatus for selectively supplying high-pressure refrigerant gas discharged from a compressor to one end and the other end of a heat exchanger.

【0002】[0002]

【従来の技術】一例として特開平8−327183号に
おいては、ハウジング内に切換ローターを内蔵し、該ハ
ウジングにコンプレッサーの高圧出口と接続せるコンプ
レッサー接続口と熱交換器の一端と他端に接続する二つ
の熱交換器接続口とを設け、他方上記切換ローターには
コンプレッサー接続口と連通する高圧導入口と、上記熱
交換器接続口の何れか一方と選択的に連通する高圧導出
口とを設け、切換ローターをハウジングと一体の弁座表
面において一方向又は他方向に摺接回動させることによ
り、該摺接面において開口せる上記高圧導出口を、同摺
接面において開口せる上記二つの熱交換器接続口と選択
的に連通切換えが図られるようにした冷暖房装置におけ
る冷媒ガスの流路切換装置を開示している。
2. Description of the Related Art As an example, in Japanese Patent Application Laid-Open No. 8-327183, a switching rotor is built in a housing, and the housing is connected to a compressor connection port for connecting to a high pressure outlet of a compressor and to one end and the other end of a heat exchanger. Two heat exchanger ports are provided, while the switching rotor is provided with a high-pressure inlet port communicating with the compressor port and a high-pressure outlet port selectively communicating with one of the heat exchanger ports. By rotating the switching rotor in one direction or the other direction on the valve seat surface integral with the housing, the two high-pressure outlets opened on the sliding contact surface are opened on the sliding contact surface. Disclosed is a refrigerant gas flow path switching device in a cooling and heating device that can selectively switch communication with an exchanger connection port.

【0003】[0003]

【発明が解決しようとする課題】而して上記切換装置に
おいては上記高圧導出口に弁座表面に密接せるシーリン
グ材を設け、高圧導出口と上記各熱交換器接続口との気
密を図ることを教示しているが、単にシーリング材を介
在させたのみでは気密性の確保が難しく、高圧冷媒ガス
をハウジング内へ漏洩し冷暖房の切換えが適正に保証し
難い問題点を内在している。
In the switching device, a sealing material is provided at the high-pressure outlet so as to be in close contact with the valve seat surface, so that the high-pressure outlet and each of the heat exchanger connection ports are air-tight. However, it is difficult to secure airtightness by merely interposing a sealing material, and there is a problem that high-pressure refrigerant gas leaks into the housing and switching between cooling and heating is not properly guaranteed.

【0004】上記気密瑕疵は切換ローターの傾きや弁座
の表面精度等によっても招来される。
[0004] The airtight defect is also caused by the inclination of the switching rotor, the surface accuracy of the valve seat, and the like.

【0005】[0005]

【課題を解決するための手段】本発明は上記切換ロータ
ーと弁座の摺接回動面における高圧導出口と熱交換器接
続口との気密性を確保し、上記切換ローターによる冷暖
房切換目的を適切に達成できるようにしたものである。
SUMMARY OF THE INVENTION The present invention secures the airtightness between the high-pressure outlet and the heat exchanger connection port on the sliding rotation surface of the switching rotor and the valve seat, and aims at switching between cooling and heating by the switching rotor. It has been achieved appropriately.

【0006】要述すると本発明は、上記切換ローターの
一方向又は他方向への定角回動にて上記高圧導出口と二
つの熱交換器接続口との選択的連通を図る構成とした冷
暖房装置における冷媒ガスの流路切換装置において、上
記高圧導入口の高圧冷媒ガスに対する有効受圧面積S1
と上記高圧導出口の高圧冷媒ガスに対する有効受圧面積
S2とをS2<S1の関係に設定し、該S2とS1の受
圧面積差に基づく印加圧力の差圧により切換ローターを
熱交換器接続口方向に押圧して微小移動させ、高圧導出
口と熱交換器接続口間に介在するシーリング材を高圧導
出口又は/及び熱交換器接続口の周縁に圧着し気密状態
を形成するようにした。
In short, the present invention provides a cooling and heating system in which selective communication between the high-pressure outlet and the two heat exchanger ports is achieved by rotating the switching rotor in one direction or the other at a fixed angle. In the apparatus for switching the flow path of the refrigerant gas in the apparatus, an effective pressure receiving area S1 for the high-pressure refrigerant gas at the high-pressure inlet is provided.
And the effective pressure receiving area S2 of the high-pressure outlet with respect to the high-pressure refrigerant gas is set in a relationship of S2 <S1, and the switching rotor is moved in the direction of the heat exchanger connection port by a differential pressure of the applied pressure based on the pressure receiving area difference between S2 and S1. The sealing material interposed between the high-pressure outlet and the heat exchanger connection port is pressed against the periphery of the high-pressure outlet and / or the heat exchanger connection port to form an airtight state.

【0007】又実施に応じ上記シーリング材は切換ロー
ターの高圧導出口と熱交換器接続口間に、非圧着下にお
いて圧着方向とその反対方向とに微小量だけ自由動可に
配し、上記受圧面積差に基づく印加圧力の差圧により切
換ローターを回動軸線方向へ移動させて、該シーリング
材の両端面を同切換ローターの高圧導出口周縁部と熱交
換器接続口周縁部に押し付け密着を図るように構成す
る。
According to an embodiment of the present invention, the sealing material is disposed between the high-pressure outlet of the switching rotor and the heat exchanger connection port by a small amount in a crimping direction and a direction opposite thereto in a non-crimping manner. The switching rotor is moved in the direction of the rotation axis by the differential pressure of the applied pressure based on the area difference, and both end faces of the sealing material are pressed against the peripheral edge of the high-pressure outlet and the peripheral edge of the heat exchanger connection port of the switching rotor. Configure as shown.

【0008】又実施に応じ上記切換ローターを熱交換器
接続口側へ向け弾力的に押圧する補圧ばねを設け、上記
差圧と協働してより確実な気密状態が図られるようにす
る。
Further, according to the embodiment, a supplementary pressure spring for elastically pressing the switching rotor toward the heat exchanger connection port side is provided so that a more reliable airtight state can be achieved in cooperation with the differential pressure.

【0009】更に上記切換ローターの回動軸をハウジン
グを貫通して外部へ突出させ、この貫通孔内側周縁に配
したシーリング材に上記印加圧力の差圧によりローター
を押し付け上記回動軸貫通孔の気密を図る構成を併用で
きる。
Further, the rotating shaft of the switching rotor penetrates through the housing and protrudes to the outside, and the rotor is pressed against the sealing material disposed on the inner peripheral edge of the through-hole by the pressure difference of the applied pressure, so that the rotating shaft has a through-hole. A configuration for airtightness can be used together.

【0010】[0010]

【発明の実施の形態】以下本発明の実施形態例を図1乃
至図8に基づいて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to FIGS.

【0011】図1乃至図4に示すように、カップ形カバ
ー2の開口面を平板から成る弁座3により気密的に閉鎖
し、低圧室7を持ったハウジング1を形成する。
As shown in FIGS. 1 to 4, the opening surface of the cup-shaped cover 2 is hermetically closed by a valve seat 3 made of a flat plate to form a housing 1 having a low-pressure chamber 7.

【0012】上記カップ形カバー2は金属板に絞りプレ
ス加工を施して円形に形成され、弁座3は金属板から円
形に打ち抜かれ、これをカップ形カバー2の開口部に内
嵌めし、この嵌合部において環状に溶接等して気密を図
ると共に、両者2,3を一体化する。
The cup-shaped cover 2 is formed in a circular shape by subjecting a metal plate to a drawing press process, and the valve seat 3 is punched out of a circular shape from the metal plate, and is fitted into an opening of the cup-shaped cover 2. At the fitting portion, airtightness is achieved by welding or the like in an annular shape, and the two and the two are integrated.

【0013】他方ハウジング1と同様、カップ形カバー
5の開口面を平板から成る弁座6により気密的に閉鎖し
高圧室8を持った切換ローター4を形成する。
On the other hand, similarly to the housing 1, the opening surface of the cup-shaped cover 5 is hermetically closed by a valve seat 6 made of a flat plate to form a switching rotor 4 having a high-pressure chamber 8.

【0014】上記カップ形カバー5は金属板に絞りプレ
ス加工を施して略四角形の箱形に形成され、弁座6は金
属板から略四角形に打ち抜かれ、これをカップ形カバー
5の開口部に内嵌めし、この嵌合部において環状に溶接
等して気密を図ると共に、両者5,6を一体化する。
The cup-shaped cover 5 is formed into a substantially square box shape by subjecting a metal plate to drawing press processing, and the valve seat 6 is punched into a substantially square shape from the metal plate. At the same time, airtightness is achieved by annularly welding or the like at this fitting portion, and the two 5 and 6 are integrated.

【0015】上記切換ローター4をハウジング1の低圧
室7内に内蔵する。
The switching rotor 4 is housed in the low-pressure chamber 7 of the housing 1.

【0016】上記ハウジング1にコンプレッサー9の高
圧出口と接続せるコンプレッサー接続口10と熱交換器
11の一端と他端に接続する第1,第2熱交換器接続口
12,13とを設ける。
The housing 1 is provided with a compressor connection port 10 connected to the high pressure outlet of the compressor 9 and first and second heat exchanger connection ports 12 and 13 connected to one end and the other end of the heat exchanger 11.

【0017】他方上記切換ローター4にはコンプレッサ
ー接続口10と常時連通する高圧導入口14と、上記熱
交換器接続口12,13の何れか一方と選択的に連通す
る第1,第2高圧導出口15,16とを設ける。
On the other hand, the switching rotor 4 has a high-pressure inlet 14 constantly communicating with the compressor connection port 10 and first and second high-pressure introduction ports selectively communicating with one of the heat exchanger connection ports 12 and 13. Exits 15 and 16 are provided.

【0018】上記切換ローター4はその中心部にハウジ
ング1の中心を通る回動軸線zを有する。従ってこの回
動軸線zはカップ形カバー5,2と弁座6,3の中心を
通る。
The switching rotor 4 has a rotation axis z passing through the center of the housing 1 at the center thereof. Therefore, this rotation axis z passes through the centers of the cup-shaped covers 5, 2 and the valve seats 6, 3.

【0019】上記コンプレッサー接続口10は上記カッ
プ形カバー2の中心即ち回動軸線zを中心として開設
し、同様に上記高圧導入口14はカップ形カバー5の中
心即ち回動軸線zを中心として開設し、両者10,14
を回動軸線zを中心にして同芯に連通せしめる。
The compressor connection port 10 is opened around the center of the cup-shaped cover 2, that is, the rotation axis z, and similarly, the high-pressure inlet 14 is opened around the center of the cup-shaped cover 5, that is, the rotation axis z. And both 10,14
Are concentrically connected about the rotation axis z.

【0020】他方上記第1,第2熱交換器接続口12,
13を弁座3に設け、両接続口12,13を回動軸線z
から等距離に一定の開角を以て配し、同様に上記第1,
第2高圧導出口15,16を弁座6に設け、両高圧導出
口15,16を回動軸線zから等距離に一定の開角を以
て配設する。
On the other hand, the first and second heat exchanger connection ports 12,
13 is provided on the valve seat 3, and both connection ports 12, 13 are connected to the rotation axis z.
Are arranged at an equal distance from each other with a constant angle of opening.
The second high-pressure outlets 15 and 16 are provided in the valve seat 6, and the two high-pressure outlets 15 and 16 are disposed equidistantly from the rotation axis z with a constant opening angle.

【0021】例えば上記第1熱交換器接続口12と第2
熱交換器接続口13とは180度より小さな開角を以て
配置し、上記第1高圧導出口15と第2高圧導出口16
とは180度の開角を以て配置する。切換ローター4は
上記軸線zを中心にした左右対称形状にし、その一端側
に上記第1高圧導出口15を、他端に第2高圧導出口1
6を対称に配置し、高圧に対しバランス配置する。
For example, the first heat exchanger connection port 12 and the second
The heat exchanger connection port 13 is arranged with an opening angle smaller than 180 degrees, and the first high-pressure outlet 15 and the second high-pressure outlet 16 are arranged.
Is arranged with an opening angle of 180 degrees. The switching rotor 4 has a symmetrical shape about the axis z, and has the first high-pressure outlet 15 at one end and the second high-pressure outlet 1 at the other end.
6 are arranged symmetrically and balanced with respect to high pressure.

【0022】上記高圧導入口14と第1,第2高圧導出
口15,16とは高圧室8を介して連通され、コンプレ
ッサー接続口10及び高圧導入口14を通じて導入され
た高圧冷媒ガスは高圧室8内を満たし、上記第1高圧導
出口15又は第2高圧導出口16へ供給される。
The high-pressure inlet 14 and the first and second high-pressure outlets 15 and 16 communicate with each other via a high-pressure chamber 8. The high-pressure refrigerant gas introduced through the compressor connection port 10 and the high-pressure inlet 14 is supplied to the high-pressure chamber. 8 and is supplied to the first high-pressure outlet 15 or the second high-pressure outlet 16.

【0023】図1に示すように、切換ローター4が回動
軸線zを中心に所定角度一方向へ回動した時に、上記第
1高圧導出口15と第1熱交換器接続口12とが連通さ
れ、高圧室8内を満たす高圧冷媒ガスは第1高圧導出口
15と第1熱交換器接続口12を通じて熱交換器11の
一端に供給される。
As shown in FIG. 1, when the switching rotor 4 rotates in one direction at a predetermined angle about the rotation axis z, the first high-pressure outlet 15 and the first heat exchanger connection port 12 communicate with each other. The high-pressure refrigerant gas filling the high-pressure chamber 8 is supplied to one end of the heat exchanger 11 through the first high-pressure outlet 15 and the first heat exchanger connection port 12.

【0024】又上記切換ローター4の回動によって、第
2高圧導出口16が弁座表面を摺接回動して第2熱交換
器接続口13を開放し、熱交換器11の他端から導出さ
れる低圧冷媒ガスはこの開放された第2熱交換器接続口
13を通じて低圧室7内へ導入され、該低圧室7内を満
たす低圧冷媒ガスは弁座3に設けた低圧導出口17を通
じてコンプレッサー9の低圧入口へ供給される。よって
暖房サイクルを形成する。
The rotation of the switching rotor 4 causes the second high-pressure outlet 16 to slide and rotate on the valve seat surface to open the second heat exchanger connection port 13. The low-pressure refrigerant gas to be led out is introduced into the low-pressure chamber 7 through the open second heat exchanger connection port 13, and the low-pressure refrigerant gas filling the low-pressure chamber 7 passes through a low-pressure outlet 17 provided in the valve seat 3. It is supplied to the low pressure inlet of the compressor 9. Thus, a heating cycle is formed.

【0025】図2に示すように、切換ローター4が回動
軸線zを中心に所定角度他方向へ回動した時に上記第2
高圧導出口16と第2熱交換器接続口13とが連通さ
れ、高圧室8内を満たす高圧冷媒ガスは第2高圧導出口
16と第2熱交換器接続口13を通じて熱交換器11の
他端に供給される。
As shown in FIG. 2, when the switching rotor 4 rotates in the other direction by a predetermined angle about the rotation axis z, the second rotation is performed.
The high-pressure outlet 16 and the second heat exchanger connection port 13 communicate with each other, and the high-pressure refrigerant gas filling the high-pressure chamber 8 passes through the second high-pressure outlet 16 and the second heat exchanger connection port 13 to the other ends of the heat exchanger 11. Supplied to the end.

【0026】又上記切換ローター4の回動によって、第
1高圧導出口15が弁座表面を摺接回動して第1熱交換
器接続口12を開放し、熱交換器11の一端から導出さ
れる低圧冷媒ガスはこの開放された第1熱交換器接続口
12を通じて低圧室7内へ導入され、該低圧室7内を満
たす低圧冷媒ガスは弁座3に設けた低圧導出口17を通
じてコンプレッサー9の低圧入口へ供給される。よって
冷房サイクルを形成する。
The rotation of the switching rotor 4 causes the first high-pressure outlet 15 to slide and rotate on the valve seat surface to open the first heat exchanger connection port 12 and to be led out from one end of the heat exchanger 11. The low-pressure refrigerant gas to be introduced is introduced into the low-pressure chamber 7 through the opened first heat exchanger connection port 12, and the low-pressure refrigerant gas filling the low-pressure chamber 7 is supplied to the compressor through a low-pressure outlet 17 provided in the valve seat 3. 9 low pressure inlet. Thus, a cooling cycle is formed.

【0027】上記コンプレッサー接続口10と高圧導入
口14間と、第1高圧導出口15と第1熱交換器接続口
12間と、第2高圧導出口16と第2熱交換器接続口1
3間の気密連通を図るため、第1,第2,第3シーリン
グ材18,19.20を配する。
[0027] Between the compressor connection port 10 and the high pressure inlet port 14, between the first high pressure outlet port 15 and the first heat exchanger connection port 12, and between the second high pressure outlet port 16 and the second heat exchanger connection port 1.
In order to achieve airtight communication between the three, first, second, and third sealants 18, 19 and 20 are provided.

【0028】図3に示すように、第1シーリング材18
は高圧導入口14を筒形口14′にすると共に、コンプ
レッサー接続口10も筒形にし、両筒形口を対向方向か
ら入れ子構造にし、両筒形口の周面間にリング形シーリ
ングを介在し気密を図ると共に、両筒形口の入れ子状態
を保ちながら筒形口14′を案内として切換ローター4
の軸線方向への移動を可能とする。
As shown in FIG. 3, the first sealing material 18
Has a high-pressure inlet 14 with a cylindrical port 14 ', a compressor connection port 10 with a cylindrical shape, a nested structure with both cylindrical ports facing each other, and a ring-shaped sealing interposed between the peripheral surfaces of both cylindrical ports. In addition to airtightness, the switching rotor 4 is guided by the cylindrical port 14 'while maintaining the nested state of the two cylindrical ports.
Can be moved in the axial direction.

【0029】又第2,第3シーリング材19,20は筒
形シーリングを用い、第1,第2高圧導出口15,16
を弁座3と対向する側において拡口し、該拡口部内周面
に同シーリング材19,20を入れ込み拡口部底部の環
状段部21にその内端面を密接に衝止し、同シーリング
材19,20の外端面を弁座3の内表面に密接状態にす
る。
The second and third sealing members 19 and 20 use cylindrical sealing, and the first and second high-pressure outlets 15 and 16 are used.
Is opened on the side facing the valve seat 3, and the sealing materials 19 and 20 are inserted into the inner peripheral surface of the opening, and the inner end surface thereof is closely abutted against the annular step portion 21 at the bottom of the opening. The outer end surfaces of the members 19 and 20 are brought into close contact with the inner surface of the valve seat 3.

【0030】上記第2,第3シーリング材19,20は
拡口部内周面に接着剤等にて一体に取り付けるか、又は
拡口部内周面に沿って移動可に密嵌する。即ち第2,第
3シーリング材19,20を弁座3に対し圧着方向とそ
の反対方向、即ち回動軸線z方向に移動可に保有せしめ
る。
The second and third sealing members 19 and 20 are integrally attached to the inner peripheral surface of the opening with an adhesive or the like, or are movably tightly fitted along the inner peripheral surface of the opening. That is, the second and third sealing members 19 and 20 are movably held on the valve seat 3 in the crimping direction and the opposite direction, that is, in the direction of the rotation axis z.

【0031】図3,図6に示すように、上記高圧導入口
14の高圧冷媒ガスに対する有効受圧面積S1と上記第
1,第2高圧導出口15,16の高圧冷媒ガスに対する
総和有効受圧面積S2とをS2<S1の関係に設定す
る。該有効受圧面積S2とS1の受圧面積差により切換
ローター4に対する印加圧力に差圧を生じ、この差圧に
より切換ローター4を第1,第2熱交換器接続口12,
13に向け押圧し、この押圧力にて切換ローター4を同
方向に微小移動し、第1,第2高圧導出口15,16と
第1,第2熱交換器接続口12,13間に介在する第
2,第3シーリング材19,20を高圧導出口15,1
6又は/及び熱交換器接続口12,13の周縁に圧着し
気密状態を形成する。即ち第2,第3シーリング材1
9,20の外端面を第1,第2熱交換器接続口12,1
3の周縁部において弁座3の表面に押し付け密接せしめ
る。
As shown in FIGS. 3 and 6, an effective pressure receiving area S1 of the high-pressure inlet 14 for the high-pressure refrigerant gas and a total effective pressure-receiving area S2 of the first and second high-pressure outlets 15 and 16 for the high-pressure refrigerant gas. Are set in a relationship of S2 <S1. The pressure difference between the effective pressure receiving areas S2 and S1 causes a pressure difference to be applied to the switching rotor 4, and the switching pressure causes the switching rotor 4 to connect the first and second heat exchanger connection ports 12,
13, the switching rotor 4 is slightly moved in the same direction by this pressing force, and is interposed between the first and second high-pressure outlets 15 and 16 and the first and second heat exchanger connection ports 12 and 13. The second and third sealing materials 19 and 20 are connected to the high-pressure outlets 15 and 1.
6 and / or by press-fitting to the periphery of the heat exchanger connection ports 12 and 13 to form an airtight state. That is, the second and third sealing materials 1
9 and 20 are connected to the first and second heat exchanger connection ports 12 and 1.
3 is pressed against the surface of the valve seat 3 at the peripheral edge of the valve seat 3 so that the valve seat 3 is in close contact.

【0032】前記の通り、上記第2,第3シーリング材
19,20を切換ローター4の第1,第2高圧導出口1
5,16と第1,第2熱交換器接続口12,13間に、
非圧着下において圧着方向とその反対方向に微小移動可
に配した場合には、同シーリング材19,20は上記差
圧により切換ローター4が回動軸線z方向へ微小移動す
るに伴い、その内端面を環状段部21に圧着すると共
に、同外端面を弁座3の内表面に圧着する。
As described above, the second and third sealing members 19 and 20 are connected to the first and second high-pressure outlets 1 of the switching rotor 4.
5, 16 and the first and second heat exchanger connection ports 12 and 13,
When the switching members 4 are minutely moved in the direction of the rotation axis z due to the differential pressure, when the switching rotor 4 is minutely moved in the crimping direction and the opposite direction under the non-crimping direction, The end face is crimped to the annular step portion 21 and the outer end face is crimped to the inner surface of the valve seat 3.

【0033】図5に示すように、本発明の実施形態例と
して、上記切換ローター4を第1,第2熱交換器接続口
12,13側へ向け弾力的に押圧する補圧ばね22を設
けることができる。
As shown in FIG. 5, as an embodiment of the present invention, a supplementary pressure spring 22 for elastically pressing the switching rotor 4 toward the first and second heat exchanger connection ports 12 and 13 is provided. be able to.

【0034】この補圧ばね22は例えばカップ形カバー
2のコンプレッサー接続口10を設けた側の壁と切換ロ
ーター4のカップ形カバー5の高圧導入口15を設けた
側の壁との間に介在し、切換ローター4を第1,第2熱
交換器接続口12,13側へ向け弾力的に押圧する。尚
この補圧ばね22の設置位置はローター4を上記の如き
弾持力を与えることができれば、その場所に拘束されな
い。
The supplementary pressure spring 22 is interposed, for example, between the wall of the cup-shaped cover 2 where the compressor connection port 10 is provided and the wall of the switching rotor 4 where the high-pressure inlet 15 is provided. Then, the switching rotor 4 is elastically pressed toward the first and second heat exchanger connection ports 12 and 13. The position of the pressure-supplying spring 22 is not restricted to the position as long as the rotor 4 can be provided with the above-described elastic force.

【0035】この補圧ばね22は前記差圧効果を補うも
のであって、それ自体で第2,第3シーリング材19,
20の密着性を確保するものではなく、より小さなばね
定数のものを使用する。
The supplementary pressure spring 22 supplements the above-mentioned differential pressure effect, and as such, includes the second and third sealing members 19,
The one having a smaller spring constant is not used to ensure the close contact of 20.

【0036】上記切換ローター4の回動軸23はハウジ
ング1、即ちハウジング1の弁座3を貫通して外部へ突
出させ、この貫通孔24の内側周縁に回動軸23を包囲
するように取り付けた第4シーリング材25に上記印加
圧力の差圧により切換ローター4を押し付け、上記回動
軸23の貫通孔24の気密を図る。又は上記第4シーリ
ング材25を切換ローター4の弁座3と対向する面に回
動軸23を包囲するように一体に取り付けるか、又は第
2,第3シーリング材19,20と同様、軸線z方向へ
移動可に保有せしめる。上記差圧により切換ローター4
が微小移動するに伴い同シーリング材25の外端面を貫
通孔24周縁において弁座3表面に押し付ける。
The rotating shaft 23 of the switching rotor 4 penetrates through the housing 1, that is, the valve seat 3 of the housing 1, and protrudes to the outside, and is mounted on the inner peripheral edge of the through hole 24 so as to surround the rotating shaft 23. The switching rotor 4 is pressed against the fourth sealing material 25 by the differential pressure of the applied pressure, and the through hole 24 of the rotating shaft 23 is air-tight. Alternatively, the fourth sealing material 25 is integrally attached to the surface of the switching rotor 4 facing the valve seat 3 so as to surround the rotating shaft 23, or, similarly to the second and third sealing materials 19 and 20, the axis z. Hold it movably in the direction. Switching rotor 4 by the above differential pressure
Presses the outer end surface of the sealing material 25 against the surface of the valve seat 3 at the periphery of the through hole 24 as the micro-movement moves.

【0037】上記回動軸23は切換ローター4の弁座6
の中心に取り付け、回動軸線z上に延ばし弁座3の外方
へ突出させ、ソレノイドやモーター等の駆動源によって
定角回動し、上記切換ローター4を往復回動せしめる。
従って回動軸23とコンプレッサー接続口10と高圧導
入口14とは互いに回動軸線zを中心に同芯に配され
る。
The rotating shaft 23 is connected to the valve seat 6 of the switching rotor 4.
, Is extended on the rotation axis z and protrudes outward from the valve seat 3, is rotated at a fixed angle by a drive source such as a solenoid or a motor, and causes the switching rotor 4 to reciprocately rotate.
Therefore, the rotation shaft 23, the compressor connection port 10, and the high-pressure introduction port 14 are arranged concentrically with each other about the rotation axis z.

【0038】又前記説明から理解できるように、切換ロ
ーター4の回動軸線zの一端側に上記高圧導入口14を
配し、同他端側に第1,第2高圧導出口15,16を配
する。
As can be understood from the above description, the high-pressure inlet 14 is disposed at one end of the rotation axis z of the switching rotor 4, and the first and second high-pressure outlets 15 and 16 are disposed at the other end. Distribute.

【0039】同様にハウジング1の回動軸線z上の一端
側に上記コンプレッサー接続口10を配し、同他端側に
第1,第2熱交換器接続口12,13を配する。
Similarly, the compressor connection port 10 is provided at one end of the housing 1 on the rotation axis z, and the first and second heat exchanger connection ports 12 and 13 are provided at the other end.

【0040】上記切換装置においては、高圧導入口14
と対面する、即ち高圧導入口14の投影面となる弁座3
の中央部領域が受圧面Pとなる。他方高圧導出口15,
16の投影面となるカップ形カバー5の内面領域が受圧
面P′となる。
In the switching device, the high pressure inlet 14
, Which is the projection surface of the high pressure inlet 14
Is a pressure receiving surface P. On the other hand, high pressure outlet 15,
The inner surface area of the cup-shaped cover 5 serving as the projection surface 16 is a pressure receiving surface P '.

【0041】前記の通り、上記高圧導入口14の高圧冷
媒ガスに対する有効受圧面積S1と上記第1,第2高圧
導出口15,16の高圧冷媒ガスに対する総和有効受圧
面積S2とをS2<S1の関係に設定したが、この設定
による前記差圧は上記受圧面Pに印加され、切換ロータ
ー4を第1,第2熱交換器接続口12,13側へ向け微
小移動し、前記第2,3,4シーリング材19,20,
25の圧着を得る。
As described above, the effective pressure receiving area S1 of the high-pressure inlet 14 for the high-pressure refrigerant gas and the total effective pressure-receiving area S2 of the first and second high-pressure outlets 15 and 16 for the high-pressure refrigerant gas satisfy S2 <S1. Although the relationship is set, the differential pressure due to this setting is applied to the pressure receiving surface P, and the switching rotor 4 is slightly moved toward the first and second heat exchanger connection ports 12 and 13, and the second and third heat exchangers are connected. , 4 sealing materials 19,20,
Obtain 25 crimps.

【0042】上記受圧面Pは回動軸線z上の切換ロータ
ー4の中心部に配され同ローター4をバランス良く押圧
する。
The pressure receiving surface P is arranged at the center of the switching rotor 4 on the rotation axis z and presses the rotor 4 in a well-balanced manner.

【0043】以上述べた実施形態例は切換ローター4の
回動軸線z方向の一端側に一個の高圧導入口14を設
け、同他端側に二個の高圧導出口15,16を設けた形
式の流路切換装置について示しているが、次に述べる実
施形態例は図7,図8に示すように、切換ローター4の
回動軸線z方向の一端側に一個の高圧導入口14を設
け、同他端側に一個の高圧導出口15を設け、前記第
1,第2熱交換器接続口12,13との選択的切換えを
図るようにした場合を示している。
In the embodiment described above, one high-pressure inlet 14 is provided at one end of the switching rotor 4 in the direction of the rotation axis z, and two high-pressure outlets 15 and 16 are provided at the other end. In the embodiment described below, one high pressure inlet 14 is provided at one end of the switching rotor 4 in the direction of the rotation axis z as shown in FIGS. 7 and 8. One high-pressure outlet 15 is provided on the other end side to selectively switch between the first and second heat exchanger connection ports 12 and 13.

【0044】前記実施形態例との関係でいえば、第2高
圧導出口16を有しないだけで、その他の構造原理は前
記実施形態例と全く同じである。
Speaking of the relationship with the above-described embodiment, the other structural principle is exactly the same as that of the above-described embodiment except that the second high-pressure outlet 16 is not provided.

【0045】即ちこの切換ローター4は回動軸線zを中
心とする高圧導入口14を有し、該回動軸線zから所定
寸法だけ離間した位置に高圧導出口15を有し、切換え
ローター4を一方向に定角回動することにより高圧導出
口15を第1熱交換器接続口12に連通せしめ、同他方
向へ定角回動することにより高圧導出口15を第2熱交
換器接続口13に連通せしめ、前記冷房サイクル又は暖
房サイクルを形成する。
That is, the switching rotor 4 has a high-pressure inlet 14 centered on the rotation axis z, and has a high-pressure outlet 15 at a position separated from the rotation axis z by a predetermined dimension. The high-pressure outlet 15 is connected to the first heat exchanger connection port 12 by rotating the same in one direction, and the high-pressure outlet 15 is connected to the second heat exchanger connection port by rotating the same in the other direction. 13 to form the cooling cycle or the heating cycle.

【0046】前記と同様、図7,図8に示すように、上
記高圧導入口14の高圧冷媒ガスに対する有効受圧面積
S1と上記高圧導出口15の高圧冷媒ガスに対する有効
受圧面積S2とをS2<S1の関係に設定する。
As described above, as shown in FIGS. 7 and 8, the effective pressure receiving area S1 of the high pressure inlet 14 for the high pressure refrigerant gas and the effective pressure receiving area S2 of the high pressure outlet 15 for the high pressure refrigerant gas are represented by S2 < Set to the relationship of S1.

【0047】該有効受圧面積S2とS1の受圧面積差に
より切換ローター4に対する印加圧力に差圧を生じ、こ
の差圧により切換ローター4を第1,第2熱交換器接続
口12,13に向け押圧し、この押圧力にて切換ロータ
ー4を同方向に微小移動し、高圧導出口15と第1,第
2熱交換器接続口12,13間に介在する第2シーリン
グ材19を高圧導出口15又は/及び熱交換器接続口1
2,13の周縁に圧着し気密状態を形成する。即ち第2
シーリング材19の外端面を第1,第2熱交換器接続口
12,13の周縁部において弁座3の表面に押し付け密
接せしめる。
The pressure difference between the effective pressure receiving areas S2 and S1 causes a pressure difference between the pressure applied to the switching rotor 4 and the switching pressure of the switching rotor 4 toward the first and second heat exchanger connection ports 12 and 13. The switching rotor 4 is slightly moved in the same direction by this pressing force, and the second sealing material 19 interposed between the high-pressure outlet 15 and the first and second heat exchanger connection ports 12 and 13 is moved to the high-pressure outlet. 15 and / or heat exchanger connection port 1
It is press-bonded to the peripheral edges of 2 and 13 to form an airtight state. That is, the second
The outer end surface of the sealing material 19 is pressed against the surface of the valve seat 3 at the peripheral edges of the first and second heat exchanger connection ports 12 and 13 so as to be brought into close contact therewith.

【0048】前記の通り、上記第2シーリング材19を
切換ローター4の高圧導出口15と第1,第2熱交換器
接続口12,13間に、非圧着下において圧着方向とそ
の反対方向(回動軸線z方向)に微小移動可に配した場
合には、同シーリング材19は上記差圧により切換ロー
ター4が回動軸線z方向へ微小移動するに伴い、その内
端面を環状段部21に圧着すると共に、同外端面を弁座
3の内表面に圧着する。
As described above, the second sealing material 19 is applied between the high-pressure outlet 15 of the switching rotor 4 and the first and second heat exchanger connection ports 12 and 13 in a crimping direction and a direction opposite to the crimping direction (not crimping). When the switching member 4 is minutely moved in the direction of the rotation axis z due to the above-mentioned differential pressure, the inner end surface of the sealing member 19 is annularly stepped. And the outer end face is pressed against the inner surface of the valve seat 3.

【0049】本発明の実施形態例として、上記切換ロー
ター4を第1,第2熱交換器接続口12,13側へ向け
弾力的に押圧する補圧ばね22を設けることができるこ
とは前記の通りである。
As described above, as an embodiment of the present invention, it is possible to provide a supplementary pressure spring 22 for elastically pressing the switching rotor 4 toward the first and second heat exchanger connection ports 12 and 13 as described above. It is.

【0050】又回動軸23の貫通孔24の気密を図るシ
ーリング材25を上記差圧により圧着できることも前記
の通りである。
As described above, the sealing member 25 for sealing the through hole 24 of the rotating shaft 23 can be press-bonded by the differential pressure.

【0051】有効受圧面積S1,S2により発生する差
圧の一般式は、図1乃至図6の例では、数式1であり、
The general formula of the differential pressure generated by the effective pressure receiving areas S1 and S2 is expressed by Formula 1 in the examples of FIGS.

【0052】[0052]

【数1】 図7,図8に示す例では数式2である。(Equation 1) Equations 2 are used in the examples shown in FIGS.

【0053】[0053]

【数2】 数式1,2において、 P1=高圧(kg/cm2 ) P2=低圧(kg/cm2 ) φD=大径(cm2)(高圧導入口側) φd=小径(cm2)(高圧導出口側) である。(Equation 2)In Equations 1 and 2, P1 = high pressure (kg / cmTwo ) P2 = low pressure (kg / cmTwo ) ΦD = large diameter (cmTwo) (High pressure inlet side) φd = small diameter (cmTwo) (High-pressure outlet side).

【0054】具体例として数式1,2において、 P1=15kg/cm2 P2=5kg/cm2 φD=φ18 φd=φ9.5 とした場合、前者においては数式3である。As a specific example, in equations 1 and 2, P1 = 15 kg / cmTwo  P2 = 5kg / cmTwo  In the case where φD = φ18 φd = φ9.5, Equation 3 is used in the former case.

【0055】[0055]

【数3】 又後者においては数式4である。(Equation 3) In the latter case, Equation 4 is used.

【0056】[0056]

【数4】 (Equation 4)

【0057】[0057]

【発明の効果】以上の通り、本発明によれば切換えロー
ターを弁座に押し付けるための格別の装置や機構を付設
することなく、前記差圧によって切換ローターを押圧し
て移動しつつシーリング材を圧着し、高圧導出口と熱交
換器接続口との気密状態が確実に図れ、構造簡単にして
信頼性の高いロータリー型の流路切換装置を提供でき
る。
As described above, according to the present invention, the sealing material is pressed and moved while the switching rotor is pressed by the differential pressure without providing any special device or mechanism for pressing the switching rotor against the valve seat. By press-fitting, the airtight state between the high-pressure outlet and the heat exchanger connection can be reliably ensured, and the structure can be simplified to provide a highly reliable rotary type flow switching device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Aは本発明の一実施形態例である冷暖房装置に
おける冷媒ガスの流路切換装置の暖房切換時の高圧ガス
の流れを説明する横断面図、Bは同縦断面図。
FIG. 1A is a cross-sectional view illustrating the flow of high-pressure gas at the time of heating switching of a refrigerant gas flow switching device in a cooling and heating device according to an embodiment of the present invention, and FIG.

【図2】Aは本発明の一実施形態例である冷暖房装置に
おける冷媒ガスの流路切換装置の冷房切換時の高圧ガス
の流れを説明する横断面図、Bは同縦断面図。
FIG. 2A is a cross-sectional view illustrating the flow of high-pressure gas at the time of cooling switching of a refrigerant gas flow switching device in a cooling and heating device according to an embodiment of the present invention, and FIG.

【図3】上記切換装置の具体構造を示す切換ローターを
縦断せる縦断面図。
FIG. 3 is a longitudinal sectional view showing a specific structure of the switching device, in which a switching rotor can be longitudinally cut.

【図4】同切換ローターを横断せる横断面図。FIG. 4 is a transverse cross-sectional view of the switching rotor.

【図5】補圧ばねを設けた例を示す上記装置の縦断面
図。
FIG. 5 is a longitudinal sectional view of the above-described device showing an example in which a supplementary pressure spring is provided.

【図6】上記切換装置における高圧導入口と高圧導出口
の有効受圧面積を説明する平面図。
FIG. 6 is a plan view illustrating an effective pressure receiving area of a high-pressure inlet and a high-pressure outlet in the switching device.

【図7】上記切換装置の他例を示す縦断面図。FIG. 7 is a longitudinal sectional view showing another example of the switching device.

【図8】図7における切換装置における高圧導入口と高
圧導出口の有効受圧面積を説明する平面図
8 is a plan view illustrating effective pressure receiving areas of a high-pressure inlet and a high-pressure outlet in the switching device in FIG. 7;

【符号の説明】[Explanation of symbols]

1 ハウジング 3 弁座 4 切換ローター 6 弁座 7 低圧室 8 高圧室 9 コンプレッサー 11 熱交換器 12 第1熱交換器接続口 13 第2熱交換器接続口 14 高圧導入口 15 第1高圧導出口 16 第2高圧導出口 18 第1シーリング材 19 第2シーリング材 20 第3シーリング材 22 補圧ばね 23 回動軸 25 第4シーリング材 P 受圧面 P′ 受圧面 S1 高圧導入口の高圧冷媒ガスに対する有効受
圧面積 S2 高圧導出口の高圧冷媒ガスに対する有効受
圧面積 z 回動軸線
DESCRIPTION OF SYMBOLS 1 Housing 3 Valve seat 4 Switching rotor 6 Valve seat 7 Low-pressure chamber 8 High-pressure chamber 9 Compressor 11 Heat exchanger 12 First heat exchanger connection port 13 Second heat exchanger connection port 14 High pressure inlet 15 First high pressure outlet 16 Second high-pressure outlet 18 First sealing material 19 Second sealing material 20 Third sealing material 22 Supplementary pressure spring 23 Rotating shaft 25 Fourth sealing material P Pressure receiving surface P 'Pressure receiving surface S1 Effective against high pressure refrigerant gas at high pressure inlet Pressure receiving area S2 Effective pressure receiving area for high-pressure refrigerant gas at high-pressure outlet port z Rotation axis

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ハウジング内に切換ローターを内蔵し、該
ハウジングにコンプレッサーの高圧出口と接続せるコン
プレッサー接続口と熱交換器の一端と他端に接続する二
つの熱交換器接続口とを有し、他方上記切換ローターに
はコンプレッサー接続口と連通する高圧導入口と、上記
熱交換器接続口の何れか一方と選択的に連通する高圧導
出口とを有し、上記切換ローターの一方向又は他方向へ
の回動にて上記選択的連通を図る構成とした冷暖房装置
における冷媒ガスの流路切換装置において、上記高圧導
入口の高圧冷媒ガスに対する有効受圧面積S1と上記高
圧導出口の高圧冷媒ガスに対する有効受圧面積S2とを
S2<S1の関係に設定し、該S2とS1の受圧面積差
に基づく印加圧力の差圧により切換ローターを熱交換器
接続口方向へ微小移動させ、高圧導出口と熱交換器接続
口間に介在するシーリング材を高圧導出口又は/及び熱
交換器接続口の周縁に圧着し気密状態を形成することを
特徴とする冷暖房装置における冷媒ガスの流路切換装
置。
1. A switching rotor is built in a housing, and the housing has a compressor connection port connected to a high-pressure outlet of a compressor and two heat exchanger connection ports connected to one end and the other end of the heat exchanger. On the other hand, the switching rotor has a high-pressure inlet communicating with a compressor connection port, and a high-pressure outlet selectively communicating with any one of the heat exchanger connection ports. In the cooling gas passage switching device in the cooling and heating device configured to achieve the selective communication by rotating in the direction, an effective pressure receiving area S1 for the high-pressure refrigerant gas at the high-pressure inlet and the high-pressure refrigerant gas at the high-pressure outlet are provided. And the effective pressure receiving area S2 with respect to the pressure is set in a relationship of S2 <S1, and the switching rotor is minutely moved in the direction of the heat exchanger connection port by the differential pressure of the applied pressure based on the pressure receiving area difference between S2 and S1. A sealing material interposed between the high-pressure outlet and the heat exchanger connection port is pressed against the periphery of the high-pressure outlet and / or the heat exchanger connection port to form an airtight state. Channel switching device.
【請求項2】上記シーリング材が切換ローターの高圧気
体導出口と熱交換器接続口間に、非圧着下において圧着
方向とその反対方向に微小移動可に配されていることを
特徴とする請求項1記載の冷暖房装置における冷媒ガス
の流路切換装置。
2. The method according to claim 1, wherein the sealing material is disposed between the high-pressure gas outlet of the switching rotor and the heat exchanger connection port so as to be able to move slightly in the crimping direction and in the opposite direction under non-crimping. Item 2. A refrigerant gas flow switching device in the cooling and heating device according to Item 1.
【請求項3】上記切換ローターを熱交換器接続口側へ向
け弾力的に押圧する補圧ばねを設けたことを特徴とする
請求項1記載の冷暖房装置における冷媒ガスの流路切換
装置。
3. A refrigerant gas flow switching device in a cooling and heating device according to claim 1, further comprising a pressurizing spring for elastically pressing said switching rotor toward a heat exchanger connection port.
【請求項4】上記切換ローターの回動軸をハウジングを
貫通して外部へ突出させ、この貫通孔内側周縁に配した
シーリング材に上記印加圧力の差圧によりローターを押
し付け上記回動軸貫通孔の気密を図る構成としたことを
特徴とする請求項1記載の冷暖房装置における冷媒ガス
の流路切換装置。
4. The rotating shaft of the switching rotor is projected outside through the housing, and the rotor is pressed against the sealing material disposed on the inner peripheral edge of the through-hole by the pressure difference of the applied pressure. 2. A flow path switching device for a refrigerant gas in a cooling and heating device according to claim 1, wherein the airtightness of the refrigerant gas is maintained.
JP10090461A 1998-04-02 1998-04-02 Flow path switching device for refrigerant gas in air conditioner Expired - Lifetime JP2886850B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10090461A JP2886850B1 (en) 1998-04-02 1998-04-02 Flow path switching device for refrigerant gas in air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10090461A JP2886850B1 (en) 1998-04-02 1998-04-02 Flow path switching device for refrigerant gas in air conditioner

Publications (2)

Publication Number Publication Date
JP2886850B1 true JP2886850B1 (en) 1999-04-26
JPH11287535A JPH11287535A (en) 1999-10-19

Family

ID=13999258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10090461A Expired - Lifetime JP2886850B1 (en) 1998-04-02 1998-04-02 Flow path switching device for refrigerant gas in air conditioner

Country Status (1)

Country Link
JP (1) JP2886850B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113375332A (en) * 2021-05-18 2021-09-10 青岛海尔空调器有限总公司 A dismouting structure for air conditioner

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6234207B1 (en) 1998-06-23 2001-05-22 Fuji Injector Corporation Device for changing flow of operating medium in air conditioning system
JP3172916B2 (en) * 1998-06-23 2001-06-04 富士インジェクタ株式会社 Flow switching device for working medium in air conditioner
WO2003071851A2 (en) * 2002-02-27 2003-09-04 Aser Tech Co., Ltd Vaned spool type directional control valve and four-way reversible valve for cooling cycle system using the same
CN201034178Y (en) * 2006-12-11 2008-03-12 克拉玛依市金牛信泰工业控制有限公司 Fan-shaped flow passage sealing pair multiple-way valve
JP6462336B2 (en) * 2014-11-26 2019-01-30 株式会社不二工機 Flow path switching valve
CN111207229B (en) * 2019-12-30 2022-05-20 武昌船舶重工集团有限公司 Balance regulating valve for upward floating of underwater vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113375332A (en) * 2021-05-18 2021-09-10 青岛海尔空调器有限总公司 A dismouting structure for air conditioner
CN113375332B (en) * 2021-05-18 2022-07-05 重庆海尔空调器有限公司 A dismouting structure for air conditioner

Also Published As

Publication number Publication date
JPH11287535A (en) 1999-10-19

Similar Documents

Publication Publication Date Title
US7819948B2 (en) Rotary valve
JP4805658B2 (en) Pump using unimorph diaphragm
JP2886850B1 (en) Flow path switching device for refrigerant gas in air conditioner
JP4013730B2 (en) Scroll compressor
JPH08210528A (en) Valve
JPS63109295A (en) Vane type rotary compressor
JPH10281310A (en) Valve
JPH11325293A (en) Pressure regulating valve for variable displacement compressor
US6837442B2 (en) Expansion valve
EP3660309B1 (en) Diaphragm pump
JP2020173028A (en) Flow channel switch valve
JP2866837B2 (en) Device for switching flow path of warm refrigerant gas in air conditioner
EP1462696A1 (en) Control valve and method of making the same
JP2999971B2 (en) Flow switching device for high and low pressure gas in air conditioner
JPS61189371A (en) Sealing device
JP2763282B2 (en) Pressure regulating valve
JPH0132389B2 (en)
JP3501494B2 (en) Vacuum pressure regulator
WO2023139882A1 (en) Flow passage switching valve, and flow passage switching valve assembly method
JPH0227184A (en) Scroll compressor
JP2731746B2 (en) Switching valve
JP4170776B2 (en) Pressure control valve
JPH02125989A (en) Scroll type hydraulic machine
JP2003028329A (en) Valve for tire
JP2006021076A (en) Hollow fiber membrane dryer