JP2884963B2 - Damping device - Google Patents

Damping device

Info

Publication number
JP2884963B2
JP2884963B2 JP31886492A JP31886492A JP2884963B2 JP 2884963 B2 JP2884963 B2 JP 2884963B2 JP 31886492 A JP31886492 A JP 31886492A JP 31886492 A JP31886492 A JP 31886492A JP 2884963 B2 JP2884963 B2 JP 2884963B2
Authority
JP
Japan
Prior art keywords
lever
mass
building
damper
buildings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31886492A
Other languages
Japanese (ja)
Other versions
JPH06167140A (en
Inventor
満 蔭山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OOBAYASHIGUMI KK
Original Assignee
OOBAYASHIGUMI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OOBAYASHIGUMI KK filed Critical OOBAYASHIGUMI KK
Priority to JP31886492A priority Critical patent/JP2884963B2/en
Publication of JPH06167140A publication Critical patent/JPH06167140A/en
Application granted granted Critical
Publication of JP2884963B2 publication Critical patent/JP2884963B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、建物の振動を減衰させ
る減衰装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a damping device for damping the vibration of a building.

【0002】[0002]

【従来の技術】大地震時の耐震に結びつく減衰装置とし
て、2つの建物の間に、或は1つの建物を2重構造とし
た各構造体の間にダンパーなどを設けたものが存在す
る。この装置は他の装置に比べ、大きな減衰力が得られ
る。例えば、他の装置としては、建物の重量の1%程度
の付加質量を用いたパッシブ型の装置、或はアクティブ
型の動吸振器を備えた装置があり、その減衰力は付加質
量の慣性力(質量と加速度の積)を反力として得るもの
であり、建物の屋上に設置する付加質量の重量に限界が
あるため、減衰のパワーに限界があることになる。しか
し、前記の2つの建物の間等に設けられる減衰装置で
は、減衰力は双方の建物の慣性力及び剛性を反力とする
ため、大きな減衰力を比較的小さな装置変位で得られ
る。このような装置のモデルを図4及び図5に示す。
2. Description of the Related Art As a damping device linked to earthquake resistance at the time of a large earthquake, there is a damping device provided between two buildings or between each structure having a double structure of one building. This device provides a larger damping force than other devices. For example, as another device, there is a passive type device using an additional mass of about 1% of the weight of a building or a device having an active type dynamic vibration absorber, and the damping force is the inertial force of the additional mass. (Product of mass and acceleration) is obtained as a reaction force, and there is a limit to the weight of the additional mass installed on the roof of the building, so there is a limit to the attenuation power. However, in the damping device provided between the two buildings or the like, since the damping force is a reaction force between the inertial force and the rigidity of both buildings, a large damping force can be obtained with a relatively small device displacement. A model of such a device is shown in FIGS.

【0003】これらの図を使用して建物の質量比と剛性
比の最適値は以下のように誘導される。即ち、図4のよ
うに2質点間をダンパーで連結した場合、各質点の応答
伝達率は特定振動数でダンパーの大きさに関係なく同じ
値となるという定点理論があることはよく知られてい
る。その定点は、ダンパーがない場合(C=0)とダン
パーが無限大(C=∞)の場合の伝達関数の交点、P,
Qとして求まる(図示せず)。その交点P,Qを同じ高
さ(伝達率)にそろえ、そのP,Q点を伝達率のピーク
になるようにダンパーを設定した場合が、最適設計とな
る。
Using these figures, the optimum values of the mass ratio and rigidity ratio of a building are derived as follows. That is, when two mass points are connected by a damper as shown in FIG. 4, it is well known that there is a fixed point theory that the response transmissibility of each mass point has the same value at a specific frequency regardless of the size of the damper. I have. The fixed points are the intersections of the transfer functions when there is no damper (C = 0) and when the damper is infinite (C = ∞), P,
It is obtained as Q (not shown). The optimum design is obtained when the intersections P and Q are aligned at the same height (transmittance) and the damper is set so that the points P and Q are at the peak of the transmissivity.

【0004】今、ダンパーがない場合の2個の独立な1
質点系(質量m1 ,m2 ,バネ定数k1 ,K2 )の伝達
率のピーク振動数をω1 ,ω2 とし、ダンパーが無限大
の場合の伝達率のピーク振動数をω0 で表すと、伝達率
の交点P,Qを同じ高さ(伝達率)にそろえるための条
件は、対数振動数を用いて表した図形上で、ω0 がω1
とω2 の中央にあることである。この関係を式で表すと
次の式(1)となる。 log ω1 +log ω2 =2log ω0 (1) ここで、ω1 =(k1 /m1 1/2 (2) ω2 =(k2 /m2 1/2 (3) ω0 ={(k1 /k2 )/(m1 +m2 )}1/2 (4) を示す。次に質量比μと剛性比αを次のように定義す
る。
[0004] Now, two independent ones without a damper.
The peak frequency of the transmissivity of the mass system (mass m 1 , m 2 , spring constant k 1 , K 2 ) is ω 1 , ω 2, and the peak frequency of the transmissivity when the damper is infinite is ω 0 . In other words, the condition for aligning the intersection points P and Q of the transmissivity to the same height (transmissivity) is that ω 0 becomes ω 1 on the figure expressed using the logarithmic frequency.
Is that to be in the middle of ω 2. This relationship is represented by the following expression (1). log ω 1 + log ω 2 = 2 log ω 0 (1) where ω 1 = (k 1 / m 1 ) 1/2 (2) ω 2 = (k 2 / m 2 ) 1/2 (3) ω 0 = {(K 1 / k 2 ) / (m 1 + m 2 )} 1/2 (4) Next, the mass ratio μ and the rigidity ratio α are defined as follows.

【0005】 μ=m2 /m1 (5) α=k2 /k1 (6) 式(2)〜(6)を用いて、式(1)の関係をμとαで
表すと、 α/μ={(1+α)/(1+μ)}2 (7) 式(7)を満たすμとαの関係は次の式(8)と式
(9)の2つの場合として求まる。
Μ = m 2 / m 1 (5) α = k 2 / k 1 (6) By using the equations (2) to (6), the relationship of the equation (1) can be expressed by μ and α. / Μ = {(1 + α) / (1 + μ)} 2 (7) The relationship between μ and α that satisfies Expression (7) is obtained as the following two cases of Expressions (8) and (9).

【0006】 α=μ (8) α=1/μ(最適値) (9) 式(8)のα=μの場合は、ダンパーがない場合とダン
パーが無限大の場合との伝達率が完全に一致する場合
で、制振できない場合を示しており、式(9)の場合が
最適な質量比μと剛性比αの関係を示すことになる。
Α = μ (8) α = 1 / μ (optimum value) (9) In the case of α = μ in equation (8), the transmission rate between the case where there is no damper and the case where the damper is infinite is perfect. And the case where vibration cannot be suppressed, and the case of equation (9) indicates the optimal relationship between the mass ratio μ and the rigidity ratio α.

【0007】ダンパーのみで連結するとした場合の最適
条件である式(9)では、質量比μと剛性比αとの関係
が一義的に決定され、他に調整手段を持たないことにな
ってしまう。そこで次に連結要素として、ダンパーのみ
でなく、図5のようにダンパーと並列にバネ要素(新た
な調整手段となる)を加えた場合についての最適条件の
誘導を示す。
In the equation (9), which is the optimum condition when the connection is made only by the damper, the relationship between the mass ratio μ and the rigidity ratio α is uniquely determined, and there is no other adjusting means. . Therefore, next, guidance of the optimum conditions in the case where not only the damper but also a spring element (which serves as a new adjusting means) is added in parallel with the damper as shown in FIG. 5 will be described.

【0008】連結部にバネがある場合、ダンパーがない
場合でも双方の質点の伝達率特性は連成するため、ダン
パーを無限大とした伝達特性と形状が同じではない。そ
のため、P点とQ点を同じ高さ(伝達率)にそろえる方
法として、ω0 をω1 とω2の対数振動数軸の中央に設
定する先の方法は、ここでは近似的な方法となる。この
近似の度合いは実用上問題となることは少ないと考えら
れるので、この近似的な方法を用いる。
When the connecting portion has a spring, the transmission characteristics of both mass points are coupled even when there is no damper, so that the shape of the transmission characteristic is not the same as that of the infinite damper. Therefore, as a method of aligning the P point and the Q point to the same height (transmittance), the method of setting ω 0 at the center of the logarithmic frequency axis of ω 1 and ω 2 is an approximate method here. Become. Since the degree of this approximation is considered to hardly cause a problem in practical use, this approximate method is used.

【0009】バネで連結された場合でも、先の式(1)
と式(3)の関係は成立するので、式(1)を式(3)
に代入し、まとめると、次の式(10)が導かれる。 (ω1・ω2)2={(K1+K2)/(m1+m2)}2 (10) この場合のω1とω2は連結部のバネによって連成した
場合の非減衰の固有振動数を意味するものであり、式
(10)では未知数である。そこで式(10)の左辺を
求める。バネ剛性k3によって連結された場合の系の振
動の特性方程式は次の式(11)で表される。m1m2
ω4−(m1k2+m1k3+m2k1+m2k3)ω
2+(k1+ k2)k3+k1k2=0 (11) 式(10)のω1とω2は式(11)のωの根であり、
根と係数の関係より、式(12)が導かれる。(ω1・
ω2)2={(k1+k2)k3+k1k2}/(m1
m2) (12) ここで β=k3/k1 (13) と定義し、式(12)を式(11)に代入し、最適連結
バネの剛性比βをμとαの関係でまとめると、剛性比β
は式(14)として示される。 β={μα2−(μ2+1)α+μ}/{(1+μ)2(1+α)} (14) この連結バネを用いることによって、構造物の質量比μ
と剛性比αの関係が一義的に決定されず、連結バネk3
によって最適条件に調整できるため、最適設計が可能な
μとαの範囲が広がり有利である。
Even when connected by a spring, the above equation (1)
And Equation (3) hold, so Equation (1) is replaced by Equation (3).
And summing up, the following equation (10) is derived. (Ω1 · ω2) 2 = { (K1 + K2) / (m1 + m2)} 2 (10) ω1 and .omega.2 in this case is intended to mean a natural frequency of the undamped in the case of Coupled by the spring of the connecting portion, In equation (10), the value is unknown. Therefore, the left side of Expression (10) is obtained. The characteristic equation of the vibration of the system when connected by the spring stiffness k3 is expressed by the following equation (11). m1m2
ω4- (m1k2 + m1k3 + m2k1 + m2k3) ω
2+ (k1 + k2) k3 + k1k2 = 0 (11) ω1 and ω2 in Expression (10) are the roots of ω in Expression (11),
Equation (12) is derived from the relationship between the root and the coefficient. (Ω1 ・
ω2) 2 = {(k1 + k2) k3 + k1k2} / (m1
m2) (12) Here, β = k3 / k1 (13) is defined, equation (12) is substituted into equation (11), and the rigidity ratio β of the optimal connection spring is summarized by the relationship between μ and α. Ratio β
Is shown as equation (14). β = {μα2- (μ2 + 1) α + μ} / {(1 + μ) 2 (1 + α)} (14) By using this connection spring, the mass ratio μ of the structure is
And the rigidity ratio α is not uniquely determined, and the connection spring k3
Therefore, the range of μ and α that can be optimally designed is advantageously widened.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、前記図
5の減衰装置において、剛性比αが1/μとμの間にな
い場合、連結バネのバネ剛性k3 は正となるが、このα
が1/μとμの間にある場合、このバネ剛性k3 は負と
なってしまう。このような負のバネ剛性を有するバネは
技術的に実現できないため、最適条件を満たす減衰装置
は設計できないことになってしまう。
However, in the damping device shown in FIG. 5, when the rigidity ratio α is not between 1 / μ and μ, the spring rigidity k 3 of the connecting spring is positive.
Is between 1 / μ and μ, the spring stiffness k 3 becomes negative. Since a spring having such a negative spring stiffness cannot be technically realized, a damping device satisfying the optimum condition cannot be designed.

【0011】本発明は、以上の問題点を解決するために
成されたもので、剛性比αが質量比μと1/μの間にあ
る場合であっても最適条件を満たすことができる減衰装
置を提供することを目的とする。
The present invention has been made in order to solve the above problems, and a damping member capable of satisfying the optimum condition even when the rigidity ratio α is between the mass ratio μ and 1 / μ. It is intended to provide a device.

【0012】[0012]

【課題を解決するための手段】以上の目的を達成するた
めに、本発明の減衰装置は、剛性比がα、質量比がμで
あって、かつこれら比が1/μ<α<μの関係にある
つの建物を、又は1つの建物を2重構造とした各構造体
を、1つの梃で連結し、一方の建物又は一方の構造体に
は梃の支点を他方には梃の作用点を設け、梃の力点には
質量を取付け、梃の回動方向にダンパーを取付けて、建
物が互いに移動方向とは逆方向に移動しようとするのを
当該質量の慣性力によって抵抗させるようにしたことを
特徴とする。
In order to achieve the above object, the present invention provides a damping device having a rigidity ratio α and a mass ratio μ.
And these ratios have a relationship of 1 / μ <α <μ2
One building or each structure having a double structure of one building is connected by one lever, and one building or one structure is provided with a lever fulcrum and the other is provided with a lever action point, Attach a mass to the lever's force point, attach a damper in the direction of the lever's rotation ,
Objects move in opposite directions to each other
It is characterized in that the resistance is made by the inertial force of the mass .

【0013】[0013]

【作用】梃の力点には、質量とその加速度の積の力が、
梃比で増幅され、前記加速度の方向に作用する。加速度
の方向に作用することで、あたかも負のバネ剛性を有す
る連結バネを設けたのと同様の作用を得ることができ、
すなわち、2つの建物の間に質量を取り付けた梃子を設
けることによって、移動方向とは逆方向に移動しようと
するのを当該質量の慣性力によって抵抗させるという、
いわゆる正のバネとは全く反対の機能を得て、例えば2
つの建物が接近する方向に移動した場合にその接近を助
長させることができ、これにより、2つの建物または構
造体の剛性比αが質量比μと1/μとの間にある場合で
あっても最適条件を満たす減衰装置とすることができ
る。
[Function] At the point of leverage, the product of the mass and its acceleration is
It is amplified by leverage and acts in the direction of the acceleration. By acting in the direction of acceleration, it is possible to obtain the same effect as if a connecting spring having negative spring stiffness was provided ,
That is, a lever with mass attached between two buildings
To move in the opposite direction to the moving direction.
To resist by the inertia force of the mass,
It has a function completely opposite to the so-called positive spring, for example, 2
If two buildings move in the approaching direction,
Length, which allows two buildings or structures
When the rigidity ratio α of the structure is between the mass ratio μ and 1 / μ
Even if there is, it can be a damping device that satisfies the optimum conditions
You.

【0014】[0014]

【実施例】以下、本発明の1実施例を図1に示す。図は
2つの建物の屋上部分を上方から見た平面図である。そ
れぞれの建物の質量をm1 ,m2 とし、剛性をk1 ,k
2とする。そして質量比μ=m2 /m1 (前記式(5)
参照)と剛性比α=k2 /k1 (前記式(6)参照)と
の関係において、αがμと1/μとの間にあるため、通
常のバネによっては2つの建物を連結できないものとす
る。
FIG. 1 shows an embodiment of the present invention. The figure is a plan view of the roof part of the two buildings viewed from above. The mass of each building is m 1 and m 2 , and the rigidity is k 1 and k
Assume 2 . Then, the mass ratio μ = m 2 / m 1 (the above formula (5)
) And the rigidity ratio α = k 2 / k 1 (see equation (6)), since α is between μ and 1 / μ, two buildings cannot be connected by a normal spring. Shall be.

【0015】さて、2つの建物1,2は1つの梃3で連
結されている。即ち、一方の建物2には梃の支点4が設
けられ、他方の建物1には梃の作用点5が設けられてい
る。また、梃3の力点、本実施例においては梃3の端部
に質量m3 を取付ける。また、梃3の回動方向、即ち梃
3と直角な方向にダンパー6を取付ける。梃のダンパー
6は、一方の建物2と梃3との間に配置される。尚、前
記支点4は回動支点であり、前記作用点5は建物1に対
し水平方向に、かつ梃3の長手方向に滑りつつ回動でき
る構造で支持されている。
The two buildings 1 and 2 are connected by one lever 3. That is, one building 2 is provided with a lever fulcrum 4, and the other building 1 is provided with a lever action point 5. In addition, a mass m 3 is attached to the power point of the lever 3, in this embodiment, to the end of the lever 3. In addition, the damper 6 is mounted in the rotation direction of the lever 3, that is, in a direction perpendicular to the lever 3. The lever damper 6 is disposed between one building 2 and the lever 3. Note that the fulcrum 4 is a pivot fulcrum, and the action point 5 is supported by a structure that can rotate while sliding horizontally with respect to the building 1 and in the longitudinal direction of the lever 3.

【0016】以下、本実施例の作用について説明する。
大地震などが発生すると、2つの建物1,2はそれぞれ
異なる質量m1 ,m2 及び異なる剛性k1 ,k2 を有し
ているので、相対的な振動を生ずる。この相対的な振動
が仮に図1中の上下方向である場合に、梃3は支点4回
りに回動する。この回動により、梃3の作用点には質量
3 と、振動に伴う加速度aの積m×aの力が作用す
る。この力は梃比(b/a)で増幅される。また作用の
方向は、前記加速度aの方向と同一方向であるため、2
つの建物1,2はあたかも負のバネ剛性を有する連結バ
ネにより連結されたものと同じ挙動をする。
The operation of this embodiment will be described below.
When a large earthquake or the like occurs, the two buildings 1 and 2 have different masses m 1 and m 2 and different stiffnesses k 1 and k 2 , so that relative vibration occurs. If this relative vibration is in the vertical direction in FIG. 1, the lever 3 rotates around the fulcrum 4. Due to this rotation, a force m × a, which is a product of the mass m 3 and the acceleration a due to vibration, acts on the action point of the lever 3. This force is amplified by the lever ratio (b / a). Since the direction of action is the same as the direction of the acceleration a, 2
The two buildings 1 and 2 behave as if they were connected by a connecting spring having negative spring stiffness.

【0017】建物1の作用点5は滑る構造となってお
り、梃3の回動(図1中質量m3 が上下動する動き)に
伴い、斜めになる梃3の支点4と作用点5の図中左右方
向の距離の変化を吸収する。
The operating point 5 of the building 1 has a sliding structure, and the fulcrum 4 and the operating point 5 of the lever 3 become oblique with the rotation of the lever 3 (the movement of the mass m 3 up and down in FIG. 1). The change in distance in the left-right direction in FIG.

【0018】またダンパー6は梃3の回動に抵抗を与
え、従って2つの建物1,2の相対的な振動に抵抗を与
える。
The damper 6 also provides resistance to the rotation of the lever 3 and therefore to the relative vibration of the two buildings 1,2.

【0019】以上のように、2つの建物1,2はあたか
も負のバネ剛性を有するバネにより連結されたような挙
動を行うので、剛性比αが質量比μと1/μとの間にあ
る場合であっても、実質上式(14)ひいては式(1)
を満たすことができ、最適条件を満たすことになる。従
って、従来では減衰装置を設計し得ないとされていた条
件のα及びμを備えた2つの建物1,2に対しても充分
に減衰装置の設計が可能で、これを提供できる。
As described above, since the two buildings 1 and 2 behave as if they are connected by a spring having a negative spring rigidity, the rigidity ratio α is between the mass ratio μ and 1 / μ. Even in this case, the expression (14) is substantially equal to the expression (1).
And the optimal condition is satisfied. Therefore, it is possible to sufficiently design the damping device even for the two buildings 1 and 2 provided with α and μ under the condition that the damping device cannot be designed conventionally, and this can be provided.

【0020】以上の第1実施例においては、減衰される
振動の方向が図1中上下方向であったが、第2実施例を
示す図2のように図中上下方向にみならず図中左右方向
の振動も減衰できる装置とすることができる。即ち、梃
3を予め斜め方向に配置しておけば、図中上下方向及び
図中左右方向のどちらの成分を備えた振動に対しても減
衰を行うことができる。
In the above-described first embodiment, the direction of vibration to be attenuated is the vertical direction in FIG. 1. However, as shown in FIG. 2 showing the second embodiment, the direction of vibration is not limited to the vertical direction in the figure. A device that can also attenuate vibration in the left-right direction can be provided. That is, if the lever 3 is arranged in an oblique direction in advance, it is possible to attenuate vibrations having components in both the vertical direction in the figure and the horizontal direction in the figure.

【0021】また第3実施例を示す図3のように、図中
左右方向即ち2つの建物1,2の並列する方向の振動の
みを減衰できる装置とすることもできる。即ち、本実施
例では梃3の支点4にはアーム7の一端が設けられ、ア
ーム7の他端が一方の建物1に対し水平方向(図中上下
方向)に滑る構造で設けられている。本実施例によれ
ば、図中左右方向即ち2つの建物2,2の並列する方向
の振動は、梃3に直角に入力され、減衰が行われる。
Further, as shown in FIG. 3 showing the third embodiment, a device which can attenuate only the vibration in the left-right direction in the figure, that is, in the direction in which the two buildings 1 and 2 are arranged in parallel, can be used. That is, in the present embodiment, one end of the arm 7 is provided at the fulcrum 4 of the lever 3, and the other end of the arm 7 is provided so as to slide horizontally (up and down in the drawing) with respect to one of the buildings 1. According to the present embodiment, the vibration in the left-right direction in the figure, that is, the direction in which the two buildings 2 and 2 are arranged in parallel is input to the lever 3 at right angles, and is damped.

【0022】更に、以上の実施例においては、支点4は
他方の建物2に滑らず固定されているものであったが、
図示しない他の実施例においてはこの支点4が建物2に
対し水平方向に滑ることができるように支持されるもの
とすることができる。この場合に、一方の建物1の作用
点5は水平方向には滑らず固定したものとすることが可
能である。
Further, in the above embodiment, the fulcrum 4 is fixed to the other building 2 without slipping.
In another embodiment, not shown, the fulcrum 4 can be supported so as to be able to slide horizontally with respect to the building 2. In this case, the action point 5 of one building 1 can be fixed without sliding in the horizontal direction.

【0023】[0023]

【発明の効果】以上説明したように、本考案の減衰装置
によれば、梃の力点には、質量とその加速度の積による
力が、梃比で増幅され、前記加速度の方向に作用し、あ
たかも負のバネ剛性を有する連結バネを用いたのと同等
の効果を得ることができ、すなわち、2つの建物の間に
質量を取り付けた梃子を設けることによって、移動方向
とは逆方向に移動しようとするのを当該質量の慣性力に
よって抵抗させるという、いわゆる正のバネとは全く反
対の機能を得て、例えば2つの建物が接近する方向に移
動した場合にその接近を助長させることができ、これに
より、2つの建物または構造体の剛性比αは質量比μと
1/μとの間にある場合であっても最適条件を満たす減
衰装置とすることができる。
As described above, according to the damping device of the present invention, at the lever force point, the force due to the product of the mass and its acceleration is amplified by the lever ratio and acts in the direction of the acceleration. It is possible to obtain the same effect as using a connecting spring having a negative spring stiffness, that is, between the two buildings.
Moving direction by providing a lever with mass attached
To move in the opposite direction to the inertia force of the mass
Therefore, it is completely opposite to the so-called positive spring
Obtain a pair function and move, for example, in the direction where two buildings approach.
Movement can encourage that approach,
More, the stiffness ratio of the two buildings or structures α can be optimized satisfies damping device even when in between the mass ratio mu and 1 / mu.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例を示す平面図である。FIG. 1 is a plan view showing a first embodiment of the present invention.

【図2】第2実施例を示す平面図である。FIG. 2 is a plan view showing a second embodiment.

【図3】第3実施例を示す平面図である。FIG. 3 is a plan view showing a third embodiment.

【図4】第1従来例を示す減衰装置の概略正面図であ
る。
FIG. 4 is a schematic front view of a damping device showing a first conventional example.

【図5】第2従来例を示す概略正面図である。FIG. 5 is a schematic front view showing a second conventional example.

【符号の説明】[Explanation of symbols]

1,2 建物 3 梃 4 支点 5 作用点 6 ダンパー 1, 2 building 3 lever 4 fulcrum 5 point of action 6 damper

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 剛性比がα、質量比がμであって、かつ
これら比が1/μ<α<μの関係にある2つの建物を、
又は1つの建物を2重構造とした各構造体を、1つの梃
で連結し、一方の建物又は一方の構造体には梃の支点
を、他方には梃の作用点を設け、梃の力点には質量を取
付け、梃の回動方向にダンパーを取付けて、建物が互い
に移動方向とは逆方向に移動しようとするのを当該質量
の慣性力によって抵抗させるようにしたことを特徴とす
る減衰装置。
1. A rigidity ratio is α, a mass ratio is μ, and
Two buildings whose ratio is 1 / μ <α <μ
Alternatively, each structure having a double structure of one building is connected with one lever, and a lever or a fulcrum is provided on one building or one structure, and a lever operation point is provided on the other. To the building , mount the damper in the direction of lever rotation, and
To move in the opposite direction to the moving direction
A damping device characterized in that the damping device is made to resist by an inertia force of the damper .
JP31886492A 1992-11-27 1992-11-27 Damping device Expired - Fee Related JP2884963B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31886492A JP2884963B2 (en) 1992-11-27 1992-11-27 Damping device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31886492A JP2884963B2 (en) 1992-11-27 1992-11-27 Damping device

Publications (2)

Publication Number Publication Date
JPH06167140A JPH06167140A (en) 1994-06-14
JP2884963B2 true JP2884963B2 (en) 1999-04-19

Family

ID=18103817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31886492A Expired - Fee Related JP2884963B2 (en) 1992-11-27 1992-11-27 Damping device

Country Status (1)

Country Link
JP (1) JP2884963B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6233884B1 (en) * 1997-10-20 2001-05-22 Steven B. Tipping Method and apparatus to control seismic forces, accelerations, and displacements of structures
DE102004044208B4 (en) * 2004-09-06 2006-08-17 Gerb Schwingungsisolierungen Gmbh & Co Kg Arrangement for stabilizing supporting structures

Also Published As

Publication number Publication date
JPH06167140A (en) 1994-06-14

Similar Documents

Publication Publication Date Title
US6405493B1 (en) Motion-magnifying seismic shock-absorbing construction
US3445080A (en) Dynamic antiresonant vibration isolator
CN108253084B (en) Six degree of freedom superlow frequency vibration isolating device and its control system of the one kind based on zero stiffness system
JP2884963B2 (en) Damping device
JP2884966B2 (en) Damping device
JPH1151111A (en) Vibration control device
JP2003227540A (en) Vibration isolating device
JPH023067B2 (en)
JP6726381B2 (en) Installation structure of rotary mass damper
JP6636383B2 (en) Seismic isolation structure and method of designing seismic isolation structure
JPH0925740A (en) Vibration control device and vibration control method
JPS62251543A (en) Balance type vibration absorber
JP2884965B2 (en) Damping device
JP3055127B2 (en) Active vibration suppression device
Rosenblueth Tall buildings under five-component earthquakes
JPH0686776B2 (en) Seismic isolation device
JP4337393B2 (en) Vibration control method
JPS60242267A (en) Tower like structure
JPS6246042A (en) Spring loaded pendulum-type dynamic vibration reducer
JP7423431B2 (en) dynamic vibration absorber
JP3068302B2 (en) Pendulum damping device
CN114662241A (en) TMDI and TMD unified design method based on Kramers-Kronig relation
JP2553180Y2 (en) Inverted pendulum type vibration damping device
JPS63147072A (en) Vibration damper
JP2886463B2 (en) Damping device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees