JP2884050B2 - Selective nuclear hydrogenation over ruthenium-supported metal oxide catalysts. - Google Patents

Selective nuclear hydrogenation over ruthenium-supported metal oxide catalysts.

Info

Publication number
JP2884050B2
JP2884050B2 JP7290599A JP29059995A JP2884050B2 JP 2884050 B2 JP2884050 B2 JP 2884050B2 JP 7290599 A JP7290599 A JP 7290599A JP 29059995 A JP29059995 A JP 29059995A JP 2884050 B2 JP2884050 B2 JP 2884050B2
Authority
JP
Japan
Prior art keywords
catalyst
ruthenium
nuclear hydrogenation
metal oxide
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7290599A
Other languages
Japanese (ja)
Other versions
JPH09111252A (en
Inventor
毅 小谷川
光義 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP7290599A priority Critical patent/JP2884050B2/en
Publication of JPH09111252A publication Critical patent/JPH09111252A/en
Application granted granted Critical
Publication of JP2884050B2 publication Critical patent/JP2884050B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、石炭液化油等の多
環芳香属化合物を選択的に核水素化反応させる方法に関
するものであり、更に詳しくは、ニッケル、マンガン、
亜鉛、ランタンの酸化物から成る複合酸化物を担体とす
るルテニウム担持金属酸化物を用いて石炭液化油等の多
環芳香属化合物を高選択率で核水素化反応させる方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for selectively subjecting a polycyclic aromatic compound such as coal liquefied oil to a nuclear hydrogenation reaction.
The present invention relates to a method for causing a nuclear hydrogenation reaction of a polycyclic aromatic compound such as coal liquefied oil at a high selectivity using a ruthenium-supported metal oxide having a composite oxide composed of an oxide of zinc and lanthanum as a carrier.

【0002】[0002]

【従来の技術】石炭液化は、ガソリンやジーゼル油等の
石油代替液体燃料製造を目的としている。このために
は、石炭を、一旦、液化し、生成した液化油からナフサ
留分や軽油留分を蒸留分別し、得られた留分を二次的に
水素化処理して、液化油留分中の硫黄、窒素、酸素等を
含むヘテロ化合物を水素化分解して液体燃料にアップグ
レードしなければならない。この場合、市販の脱硫触媒
を使用したとしても、脱ヘテロ深度を高めようとすれば
それだけ、液化油留分の水素化分解によるメタン、エタ
ン、1プロパン、ブタン等の低級炭化水素類から成るガ
ス化が進行し、液収率が著しく低下する。更に、ガソリ
ンやジーゼル等の液体燃料の化学構造は直鎖炭化水素で
あるため、水素化されて生成した脂環化合物は、ここで
もガス化反応の抑制という課題は存在するものの、比較
的容易に水素化開裂されて、直鎖炭化水素類を生成す
る。これまで、二次水素化用触媒に関する研究は、国内
外を含めて数多い。例えば、Bulletin of Chemical Soc
iety of Japan (日本化学会欧文誌)Vol. 62, 3994 (1
989) Sakanishi, K., Ohara, M., Mochida, I.には、ピ
レン、フルオランテン、アントラセン、フルオレン、ア
クリジン、カルバゾール等の3環化合物に対するRh、
Pd、Pt、Ruの触媒活性並びに量子化学的反応指数
を求め活性順を検討したところ、活性順はRhが最も高
く、次いでPd、Ptの順になり、Ruは最も低活性と
いう結果が述べられている。また、Bulletin of Chemic
al Society of Japan (日本化学会欧文誌)Vol. 61, 3
788 (1988) Song, C., Hanaoka, K., Nomura, M.には、
溶剤抽出炭にニッケル−モリブデン触媒とその硫化物を
触媒として用い、溶剤抽出炭の水素化を行い脱ヘテロ並
びに脱芳香族反応を評価している。しかし、これらの研
究結果をもってしても途は非常に遠く、今後共、更に活
発な研究が必要である。
2. Description of the Related Art Coal liquefaction is aimed at producing liquid fuel alternative to petroleum such as gasoline and diesel oil. For this purpose, coal is once liquefied, a naphtha fraction and a gas oil fraction are distilled and separated from the produced liquefied oil, and the obtained fraction is secondarily hydrotreated to obtain a liquefied oil fraction. Heterogeneous compounds containing sulfur, nitrogen, oxygen, etc. in them must be hydrocracked and upgraded to liquid fuels. In this case, even if a commercially available desulfurization catalyst is used, the gas consisting of lower hydrocarbons such as methane, ethane, 1-propane, and butane by hydrocracking of the liquefied oil fraction should be used to increase the de-hetero depth. And the liquid yield is significantly reduced. Furthermore, since the chemical structure of liquid fuels such as gasoline and diesel is a straight-chain hydrocarbon, the alicyclic compounds generated by hydrogenation are relatively easy, although the problem of suppressing the gasification reaction still exists. Hydrocracking to produce straight chain hydrocarbons. To date, there have been many studies on secondary hydrogenation catalysts, both in Japan and overseas. For example, Bulletin of Chemical Soc
society of Japan Vol. 62, 3994 (1
989) Sakanishi, K., Ohara, M., Mochida, I. include Rh for tricyclic compounds such as pyrene, fluoranthene, anthracene, fluorene, acridine and carbazole.
When the catalytic activities of Pd, Pt, and Ru and the quantum chemical reaction index were determined and the order of the activities was examined, the order of the activities was that Rh was the highest, followed by Pd and Pt, and that Ru was the lowest. I have. Also, Bulletin of Chemic
al Society of Japan Vol. 61, 3
788 (1988) Song, C., Hanaoka, K., Nomura, M.
Using a nickel-molybdenum catalyst and its sulfide as a catalyst in solvent-extracted coal, hydrogenation of the solvent-extracted coal is performed to evaluate the hetero- and dearomatic reactions. However, the results of these studies are far from over, and further active research is needed in the future.

【0003】本発明者らは、石炭液化反応における最も
重要な研究課題は、一次液化、二次液化を問わず、触媒
開発にあると考え研究を行ってきた。二次液化の場合、
触媒の主たる役割は水素化能である。一般に、白金等の
貴金属の持つ高い水素化能は公知である。他方、液化油
といえども、石炭系の原料は多くのヘテロ化合物を含ん
でいる。このため、これらのヘテロ化合物が水素化され
ると、水、硫化水素、アンモニアを生成するため貴金属
触媒並びに、アルミナ等の担体化合物の表面酸性を中和
するなどの活性点汚染を起こし、容易に触媒を失活させ
てしまう。
[0003] The inventors of the present invention have conducted research on the belief that the most important research subject in the coal liquefaction reaction is development of a catalyst regardless of primary liquefaction or secondary liquefaction. For secondary liquefaction,
The main role of the catalyst is its hydrogenation ability. Generally, the high hydrogenation ability of a noble metal such as platinum is known. On the other hand, coal-based feedstocks, even liquefied oils, contain many hetero compounds. For this reason, when these hetero compounds are hydrogenated, they generate water, hydrogen sulfide, and ammonia, causing active site contamination such as neutralizing the surface acidity of noble metal catalysts and carrier compounds such as alumina, and easily occur. It deactivates the catalyst.

【0004】[0004]

【発明が解決しようとする課題】これらの問題を解決す
るには水素化脱ヘテロ化合物に耐性をもち、且つ、水素
化能を持つ触媒の選択が不可欠である。この目的に沿う
金属はルテニウムであり、担体には表面酸性を持たない
ニッケル、マンガン、ランタン、亜鉛、等の酸化物が挙
げられるため、これからルテニウム担持金属酸化物触媒
を調製し、鋭意研究を重ねた結果、本発明に成功した。
本発明は、石炭液化油等の多環芳香属化合物の選択的核
水素化方法を提供することを目的とする。また、本発明
は、ルテニウム担持金属酸化物触媒を用いて石炭液化油
等の多環芳香属化合物を高選択率で核水素化する方法を
提供することを目的とする。
In order to solve these problems, it is indispensable to select a catalyst having resistance to the hydrode-hetero compound and having a hydrogenation ability. The metal for this purpose is ruthenium, and the carriers include oxides of nickel, manganese, lanthanum, zinc, etc. that do not have surface acidity. As a result, the present invention succeeded.
An object of the present invention is to provide a method for the selective nuclear hydrogenation of polycyclic aromatic compounds such as coal liquefied oil. Another object of the present invention is to provide a method for nucleating a polycyclic aromatic compound such as coal liquefied oil with high selectivity using a ruthenium-supported metal oxide catalyst.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
の本発明は、ルテニウム担持金属酸化物触媒を用いて高
選択率で核水素化反応させることを特徴とする石炭液化
油等の多環芳香族化合物の選択的核水素化方法、であ
り、金属酸化物が、ニッケル、マンガン、亜鉛、又はラ
ンタンの酸化物から成る複合酸化物である上記の方法
を、好ましい実施の態様としている。
According to the present invention, there is provided a polycyclic hydrocarbon such as coal liquefied oil characterized in that a nuclear hydrogenation reaction is performed at a high selectivity using a ruthenium-supported metal oxide catalyst. A preferred embodiment is a method for the selective nuclear hydrogenation of aromatic compounds, wherein the metal oxide is a composite oxide comprising an oxide of nickel, manganese, zinc or lanthanum.

【0006】[0006]

【発明の実施の形態】本発明においては、原料として、
石炭液化油等の多環芳香化合物が使用されるが、具体的
には、ナフタリン、アントラセン、石炭液化油留分等が
代表的なものとして例示される。上記多環芳香属化合物
の選択的核水素化反応において、ルテニウム担持金属酸
化物触媒が用いられるが、該触媒は、ニッケル、マンガ
ン、亜鉛、ランタンの酸化物を組み合わせて成る複合酸
化物にルテニウムを担持させたものが用いられる。金属
ルテニウムとして、塩化ルテニウム、硝酸ルテニウム等
が用いられ、担体となる酸化ランタンの調製には塩化ラ
ンタンが、また、酸化亜鉛、酸化マンガン、酸化ニッケ
ルの調製には全て硝酸塩が好適なものとして用いられ
る。本発明におけるルテニウム担持金属酸化物触媒は、
上記金属ルテニウムをこれらの金属酸化物から成る複合
酸化物に担持させた形で使用されるが、具体的には、酸
化マンガン/酸化亜鉛、酸化マンガン/酸化ニッケル、
酸化マンガン/酸化ランタン、酸化ランタン/酸化亜鉛
等の適宜の組み合せから成る複合酸化物担体に金属ルテ
ニウムを担持させた各担体系触媒として使用される。担
持させるルテニウムは、金属ルテニウムとして担体の
0.2〜1.0重量%が好適なものとしてあげられる。
後記する実施例2から実施例6において、特に記載のな
い場合、触媒は全て1%の金属ルテニウムを担持させた
ものである。次に、本発明の選択的水素化反応の条件と
しては、反応温度230〜430℃、圧力10〜20M
Pa、で5〜30分間の条件が好適なものとしてあげら
れるが、これらの反応条件は、原料の種類等に応じて適
宜変更すればよく、特に限定されるものではない。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention,
Polycyclic aromatic compounds such as coal liquefied oil are used, and specific examples thereof include naphthalene, anthracene, and coal liquefied oil fractions. In the above selective nuclear hydrogenation reaction of the polycyclic aromatic compound, a ruthenium-supported metal oxide catalyst is used, and the catalyst comprises nickel, manganese, zinc, ruthenium in a composite oxide formed by combining oxides of lanthanum. What is carried is used. As the metal ruthenium, ruthenium chloride, ruthenium nitrate, etc. are used, lanthanum chloride is used as a carrier for preparing lanthanum oxide, and zinc oxide, manganese oxide, and nitrate are all used as preferable ones for preparing nickel oxide. . Ruthenium-supported metal oxide catalyst in the present invention,
The metal ruthenium is used in the form of being supported on a composite oxide composed of these metal oxides. Specifically, manganese oxide / zinc oxide, manganese oxide / nickel oxide,
It is used as a catalyst for each carrier in which metal ruthenium is carried on a composite oxide carrier comprising an appropriate combination of manganese oxide / lanthanum oxide, lanthanum oxide / zinc oxide and the like. As ruthenium to be supported, 0.2 to 1.0% by weight of the carrier as metal ruthenium is preferred.
In Examples 2 to 6 described below, unless otherwise specified, all the catalysts supported 1% of metal ruthenium. Next, the conditions for the selective hydrogenation reaction of the present invention include a reaction temperature of 230 to 430 ° C and a pressure of 10 to 20M.
Suitable conditions include Pa and 5 to 30 minutes, but these reaction conditions may be appropriately changed according to the type of raw materials and the like, and are not particularly limited.

【0007】以下、実施例をもって本発明を詳細に説明
する。 1.実験装置と実験方法 実験装置には内容積70mlのステンレス製オートクレ
ーブを用い、これに所定量の原料、触媒、水素ガスを充
填し室温から反応温度の430℃まで毎分2.5℃の昇
温速度で昇温する。反応温度に到達したら直ちにオート
クレーブを電気炉から取り出して扇風機で急冷して反応
を停止させる。この昇温過程中に急激に水素圧が低下す
る温度が観察される。この温度が核水素化温度で、ここ
に示した実施例では230〜430℃の範囲であった。
Hereinafter, the present invention will be described in detail with reference to examples. 1. Experimental Apparatus and Experimental Method A stainless steel autoclave having an inner volume of 70 ml was used as an experimental apparatus, and a predetermined amount of raw materials, a catalyst, and hydrogen gas were charged into the autoclave. The temperature rises at a speed. As soon as the reaction temperature is reached, the autoclave is removed from the electric furnace and quenched with a fan to stop the reaction. During this heating process, a temperature at which the hydrogen pressure drops rapidly is observed. This temperature was the nuclear hydrogenation temperature, which was in the range of 230-430 ° C. in the examples shown.

【0008】2.反応条件 原料には試薬のナフタリン(8g)とアントラセン(5
g)の他に、バトルリバー炭の直接液化によって得た沸
点250−350℃の中質油留分(5g)を用いた。触
媒にはニッケル、マンガン、亜鉛、ランタンの酸化物か
ら成る複合酸化物に少量の(ここでは担体重量に対して
ルテニウムとして1重量%に統一した)塩化ルテニウム
を含浸させて、反応前に水素気流中、260℃で塩化ル
テニウム担持金属酸化物を2時間還元して触媒として用
いた。また、市販触媒、Cyanamid社のHDS−
3触媒(NiO=3.0−4.0,MoO3 =14.5
−16.0)を比較のために用いた。触媒は全て100
メッシュ以下に粉砕し、使用量は原料の10重量%に統
一した。しかし、触媒使用量は1重量%でも十分に目的
を達成できる。反応用の水素ガスは初圧10MPaでオ
ートクレーブに充填した。
[0008] 2. Reaction conditions The starting materials were the reagents naphthalene (8 g) and anthracene (5
g) In addition, a medium oil fraction (5 g) having a boiling point of 250-350 ° C. obtained by direct liquefaction of Battle River coal was used. The catalyst is impregnated with a small amount of ruthenium chloride (here, unified as 1% by weight as ruthenium based on the weight of the carrier) in a composite oxide composed of oxides of nickel, manganese, zinc, and lanthanum. The ruthenium chloride-supported metal oxide was reduced at 260 ° C. for 2 hours and used as a catalyst. In addition, a commercially available catalyst, HDS-
3 catalyst (NiO = 3.0-4.0, MoO 3 = 14.5)
-16.0) was used for comparison. All catalysts are 100
It was pulverized to a mesh size or less, and the amount used was unified to 10% by weight of the raw material. However, even if the amount of the catalyst used is 1% by weight, the object can be sufficiently achieved. Hydrogen gas for reaction was charged into the autoclave at an initial pressure of 10 MPa.

【0009】3.分析方法 反応終了後、ガス生成物を、一旦、ポリエチレン製のバ
ックに拡散させてからその内容物をガスクロにて分析し
た。次いでオートクレーブの内容物を取り出し、キャピ
ラリーガスクロ及び質量分析計で分析した。石炭液化油
を用いた場合、混合物であるため、ガス分析に引き続い
た液体成分の分析には水素の核磁気共鳴分析を行って、
置換された水素分布を分析して核水素化活性を評価し
た。また、触媒組成は蛍光X線分析、結晶形の同定はX
線回折により行った。
3. Analysis method After the reaction was completed, the gas product was once diffused into a polyethylene bag, and the contents were analyzed by gas chromatography. The contents of the autoclave were then removed and analyzed by capillary gas chromatography and a mass spectrometer. When using coal liquefied oil, it is a mixture, so for the analysis of liquid components following gas analysis, nuclear magnetic resonance analysis of hydrogen was performed,
The distribution of substituted hydrogen was analyzed to evaluate nuclear hydrogenation activity. The catalyst composition was X-ray fluorescence analysis, and the identification of the crystal form was X-ray.
Performed by line diffraction.

【0010】[0010]

【実施例】以下、具体的な実施例により本発明を更に詳
細に説明する。 実施例1 (触媒調製法と触媒前処理法)担体となる酸化ランタン
の調製には塩化ランタンを、酸化亜鉛、酸化マンガン、
酸化ニッケルの調製には全て硝酸塩を用いた。具体的に
は、所定量の塩類を混合してイオン交換水に溶解させ、
2.5規定の苛性ソーダ水溶液を加えて塩類を中和さ
せ、pHを10.4に保ちながら4時間攪拌を続けた
後、一夜放置してpHの変化のないことを確認した。そ
の後、濾過してイオン交換水で十分に水洗し、得られた
ケーキを一旦110℃で一夜乾燥し、更に、500℃で
3時間、電気炉中で焼成した。これを100メッシュ以
下に粉砕して担体とした。ルテニウムを担持するには、
金属ルテニウムとして担体の1重量%となるように三塩
化ルテニウムを計量した後、含水量に相当するイオン交
換水にこれを溶解させ、これに所定に担体を加え、一時
間放置して水溶液の均一な拡散を待った。その後、これ
を100℃で一夜乾燥した後、円筒型ガラス管に充填
し、一旦、260℃で2時間、空気気流中で焼成乾燥
後、水素気流に切り換え、260℃で2時間還元して反
応に用いた。市販のCyanamid社の脱硫触媒(H
DS−3)触媒の場合、5.6容量%の硫化水素を含む
水素ガスにて、初圧6MPaで360℃で2時間予備硫
化した後、反応に用いた。
Hereinafter, the present invention will be described in more detail with reference to specific examples. Example 1 (Catalyst preparation method and catalyst pretreatment method) For the preparation of lanthanum oxide as a carrier, lanthanum chloride was added to zinc oxide, manganese oxide,
Nitrate was used in all preparations of nickel oxide. Specifically, a predetermined amount of salts are mixed and dissolved in ion-exchanged water,
A 2.5N aqueous solution of caustic soda was added to neutralize the salts, and stirring was continued for 4 hours while maintaining the pH at 10.4, and then left overnight to confirm that there was no change in pH. Thereafter, the resulting cake was filtered and thoroughly washed with ion-exchanged water, and the obtained cake was once dried at 110 ° C. overnight and further calcined at 500 ° C. for 3 hours in an electric furnace. This was pulverized to 100 mesh or less to obtain a carrier. To carry ruthenium,
After measuring ruthenium trichloride so as to be 1% by weight of the carrier as metal ruthenium, this is dissolved in ion-exchanged water corresponding to the water content, and the carrier is added thereto in a predetermined manner. I waited for the spread. After that, it was dried at 100 ° C. overnight, filled in a cylindrical glass tube, fired and dried at 260 ° C. for 2 hours in an air stream, switched to a hydrogen stream, reduced at 260 ° C. for 2 hours, and reacted. It was used for. A commercially available Cyanamid desulfurization catalyst (H
DS-3) In the case of a catalyst, it was preliminarily sulfurized with a hydrogen gas containing 5.6% by volume of hydrogen sulfide at an initial pressure of 6 MPa at 360 ° C. for 2 hours, and then used for the reaction.

【0011】実施例2 酸化マンガン/酸化亜鉛担体系触媒を用いてナフタリン
の核水素化反応を行った。その結果を表1に示す。但
し、デカリンの選択率は、トランスとシス(3/1)体
とを併せて示している。シクロヘキサンはエチルシクロ
ヘキサンを示す。
Example 2 A naphthalene nuclear hydrogenation reaction was carried out using a manganese oxide / zinc oxide carrier system catalyst. Table 1 shows the results. However, the selectivity of decalin is shown for both trans and cis (3/1) isomers. Cyclohexane indicates ethylcyclohexane.

【0012】[0012]

【表1】 * ルテニウムを担持しなかった時の結果。 ** 高沸点生成物の選択率は4%であった。[Table 1] * Results when ruthenium was not supported. ** Selectivity of high boiling products was 4%.

【0013】この結果からルテニウムの顕著な核水素化
活性が理解できる。また、未反応水素以外に気体生成物
は検出されず、液収率は殆ど100%であった。しか
し、HDS−3触媒の場合、選択率4%の高沸点生成物
が得られたため核水素化選択率は96%にとどまった。
From these results, it can be understood that the remarkable nuclear hydrogenation activity of ruthenium. In addition, no gas product was detected other than unreacted hydrogen, and the liquid yield was almost 100%. However, in the case of the HDS-3 catalyst, a high boiling point product having a selectivity of 4% was obtained, so that the nuclear hydrogenation selectivity was only 96%.

【0014】実施例3 酸化マンガン/酸化ニッケル担体系触媒を用いてナフタ
リンの核水素化反応を行った。その結果を表2に示す。
但し、デカリンの選択率は、トランスとシス体(3/
1)とを併せて示している。シクロヘキサシンはエチル
シクロヘキサンを示す。
Example 3 A nuclear hydrogenation reaction of naphthalene was carried out using a manganese oxide / nickel oxide carrier system catalyst. Table 2 shows the results.
However, the selectivity of decalin was trans and cis (3 /
1) is also shown. Cyclohexacin refers to ethylcyclohexane.

【0015】[0015]

【表2】 * ルテニウムを担持しなかった時の結果。 ** 高沸点生成物の選択率は4%であった。[Table 2] * Results when ruthenium was not supported. ** Selectivity of high boiling products was 4%.

【0016】この触媒系ではルテニウムの共存なしに高
い核水素化活性を得ることがきる。また、未反応水素以
外に気体生成物は検出されず、液収率は殆ど100%で
あった。しかし、HDS−3触媒の場合、選択率4%の
高沸点生成物が得られたため核水素化選択率は96%に
とどまった。
In this catalyst system, high nuclear hydrogenation activity can be obtained without the coexistence of ruthenium. In addition, no gas product was detected other than unreacted hydrogen, and the liquid yield was almost 100%. However, in the case of the HDS-3 catalyst, a high boiling point product having a selectivity of 4% was obtained, so that the nuclear hydrogenation selectivity was only 96%.

【0017】実施例4 酸化マンガン/酸化ランタン担体系触媒を用いてナフタ
リンの核水素化反応を行った。その結果を表3に示す。
但し、デカリンの選択率は、トランスとシス体(2/
1)とを併せて示している。シクロヘキサンはエチルシ
クロヘキサンを示す。
Example 4 A naphthalene nuclear hydrogenation reaction was carried out using a manganese oxide / lanthanum oxide carrier system catalyst. Table 3 shows the results.
However, the selectivity of decalin was in the trans and cis form (2 /
1) is also shown. Cyclohexane indicates ethylcyclohexane.

【0018】[0018]

【表3】 ** 高沸点生成物の選択率は4%であった。[Table 3] ** Selectivity of high boiling products was 4%.

【0019】この触媒系ではテトラリンから逐次的にデ
カリンを合成したり、更に、水素化開裂を促進する活性
は乏しいと判断できる。また、未反応水素以外に気体生
成物は検出されず、液収率は殆ど100%であった。し
かし、HDS−3触媒の場合、選択率4%の高沸点生成
物が得られたため核水素化選択率は96%にとどまっ
た。
In this catalyst system, it can be judged that the activity of sequentially synthesizing decalin from tetralin and further promoting hydrogenolysis is poor. In addition, no gas product was detected other than unreacted hydrogen, and the liquid yield was almost 100%. However, in the case of the HDS-3 catalyst, a high boiling point product having a selectivity of 4% was obtained, so that the nuclear hydrogenation selectivity was only 96%.

【0020】実施例5 酸化ランタン/酸化亜鉛担体系触媒を用いてナフタリン
の核水素化反応を行った。その結果を表4に示す。但
し、デカリンの選択率は、トランスとシス(2/1)体
とを併せて示している。シクロヘキサンはエチルシクロ
ヘキサンを示す。
Example 5 A nuclear hydrogenation reaction of naphthalene was carried out using a lanthanum oxide / zinc oxide carrier system catalyst. Table 4 shows the results. However, the selectivity of decalin is shown for both trans and cis (2/1) isomers. Cyclohexane indicates ethylcyclohexane.

【0021】[0021]

【表4】 ** 高沸点生成物の選択率は4%であった。[Table 4] ** Selectivity of high boiling products was 4%.

【0022】この場合も、未反応水素以外に気体生成物
は検出されず、液収率は殆ど100%であった。しか
し、HDS−3触媒の場合、選択率4%の高沸点生成物
が得られたため核水素化選択率は96%にとどまった。
In this case, no gaseous product was detected other than unreacted hydrogen, and the liquid yield was almost 100%. However, in the case of the HDS-3 catalyst, a high boiling point product having a selectivity of 4% was obtained, so that the nuclear hydrogenation selectivity was only 96%.

【0023】実施例6 各種触媒を用いてアントラセンの核水素化反応を行っ
た。その結果を表5に示す。
Example 6 A nuclear hydrogenation reaction of anthracene was carried out using various catalysts. Table 5 shows the results.

【0024】[0024]

【表5】 [Table 5]

【0025】アントラセンの核水素化においても未反応
水素以外に気体生成物は生成しなかった。しかし、HD
S−3触媒の場合、11.4%の選択率で高沸点化合物
が生成したため、核水素選択率は90%以下にとどまっ
ている。
In the nuclear hydrogenation of anthracene, no gaseous products were produced other than unreacted hydrogen. But HD
In the case of the S-3 catalyst, a high-boiling compound was produced with a selectivity of 11.4%, so that the selectivity of nuclear hydrogen was kept at 90% or less.

【0026】実施例7 各種触媒を用いて液化油核水素化反応を行い生成物中の
水素分布を調べた。その結果を表6に示す。
Example 7 Hydrogenation of a liquefied oil nucleus was performed using various catalysts, and the distribution of hydrogen in the product was examined. Table 6 shows the results.

【0027】[0027]

【表6】 [Table 6]

【0028】上記表6において、Arom、α−H、β
−H、γ−Hは、それぞれ、芳香族の核水素、α位水
素、β位水素、γ位水素含有率を示す。表6の結果から
明らかなように、いずれの触媒によっても液化油中の芳
香族水素量は大巾に減少し、核水素化反応が顕著に進行
している。中でもMn2 3 /NiO触媒は市販の触媒
(HDS−3)よりもはるかに高い核水素化活性を示し
ている。
In the above Table 6, Arom, α-H, β
-H and γ-H indicate the content of aromatic nuclear hydrogen, α-position hydrogen, β-position hydrogen, and γ-position hydrogen, respectively. As is evident from the results in Table 6, the amount of aromatic hydrogen in the liquefied oil was greatly reduced by any of the catalysts, and the nuclear hydrogenation reaction proceeded remarkably. Among them, the Mn 2 O 3 / NiO catalyst shows much higher nuclear hydrogenation activity than the commercially available catalyst (HDS-3).

【0029】以上、実施例をもって本発明を詳細に説明
したが、これらの結果から明らかなように、本発明によ
るルテニウム担持各種金属酸化物触媒は、いずれも優れ
た核水素化活性を示し、市販のニッケル/モリブデン触
媒に匹敵するか、これをはるかに上回る高選択的核水素
化活性を示すことが明らかになった。中でも、酸化マン
ガン/酸化ニッケル系触媒の活性は著しく高く、液化油
に対してもガス化することもなく極めて高い核水素化活
性を示す、画期的な触媒であることを明らかにした。
As described above, the present invention has been described in detail with reference to Examples. As is clear from these results, the various ruthenium-supported metal oxide catalysts according to the present invention show excellent nuclear hydrogenation activity and are commercially available. It has been shown to exhibit highly selective nuclear hydrogenation activity comparable to or well beyond the nickel / molybdenum catalyst of US Pat. Among them, the activity of the manganese oxide / nickel oxide catalyst was remarkably high, and it was clarified that this catalyst was an epoch-making catalyst that showed extremely high nuclear hydrogenation activity without gasification even to liquefied oil.

【0030】[0030]

【発明の効果】以上詳述したように、本発明は、ルテニ
ウム担持金属酸化物触媒を用いて高選択率で核水素化反
応させることを特徴とする石炭液化油等の多環芳香族化
合物の選択的核水素化方法に係るものであり、本発明に
よれば、次のような効果が得られる。 (1)石炭液化油等の多環芳香属化合物の選択的核水素
化反応を高選択率で行うことができる。 (2)ルテニウム担持金属酸化物触媒を用いることによ
り、100%に近い高い選択率で核水素化することがで
きる。 (3)高選択的核水素化活性を有するルテニウム担持金
属酸化物触媒を提供することができる。
As described above in detail, the present invention relates to a method for producing a polycyclic aromatic compound such as coal liquefied oil, which comprises subjecting a nuclear hydrogenation reaction with a high selectivity using a ruthenium-supported metal oxide catalyst. The present invention relates to a selective nuclear hydrogenation method, and according to the present invention, the following effects can be obtained. (1) A selective nuclear hydrogenation reaction of a polycyclic aromatic compound such as coal liquefied oil can be performed at a high selectivity. (2) By using a ruthenium-supported metal oxide catalyst, nuclear hydrogenation can be performed with a high selectivity close to 100%. (3) A ruthenium-supported metal oxide catalyst having high selective nuclear hydrogenation activity can be provided.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C07C 13/48 C07C 13/58 13/58 C07B 61/00 300 // C07B 61/00 300 B01J 23/64 104X (56)参考文献 特開 平3−242243(JP,A) 特開 平1−176451(JP,A) 特公 昭52−3933(JP,B2) (58)調査した分野(Int.Cl.6,DB名) C10G 45/52 C07C 5/10 C10G 1/06 C10G 35/085 C10G 49/06 C10G 65/08 C10G 67/02 C10G 69/02 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI C07C 13/48 C07C 13/58 13/58 C07B 61/00 300 // C07B 61/00 300 B01J 23/64 104X (56) Reference Document JP-A-3-242243 (JP, A) JP-A-1-176451 (JP, A) JP-B-52-3933 (JP, B2) (58) Fields investigated (Int. Cl. 6 , DB name) C10G 45/52 C07C 5/10 C10G 1/06 C10G 35/085 C10G 49/06 C10G 65/08 C10G 67/02 C10G 69/02

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ルテニウム担持金属酸化物触媒であっ
て、該金属酸化物担体が、ニッケル、マンガン、亜鉛
はランタンの酸化物の少なくとも2成分を含んで成る
複合酸化物担体であるルテニウム担持金属酸化物触媒を
用いて反応温度230〜430℃の範囲で高選択率で核
水素化反応させることを特徴とする多環芳香族化合物の
選択的核水素化方法。
1. A ruthenium-supported metal oxide catalyst, wherein the metal oxide carrier comprises nickel, manganese, zinc ,
Or characterized in that the nuclear hydrogenation reaction at a high selectivity at a reaction temperature range two hundred thirty to four hundred thirty ° C. using ruthenium supported metal oxide catalyst which is a composite oxide support comprising at least two components of the oxides of lanthanum For the selective nuclear hydrogenation of polycyclic aromatic compounds.
【請求項2】 金属酸化物が、ニッケル、マンガン、亜
鉛、又はランタンの酸化物の2成分を含んで成る複合酸
化物である請求項1記載の選択的核水素化方法。
2. The selective nuclear hydrogenation method according to claim 1, wherein the metal oxide is a composite oxide containing two components of nickel, manganese, zinc and lanthanum oxide.
JP7290599A 1995-10-13 1995-10-13 Selective nuclear hydrogenation over ruthenium-supported metal oxide catalysts. Expired - Lifetime JP2884050B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7290599A JP2884050B2 (en) 1995-10-13 1995-10-13 Selective nuclear hydrogenation over ruthenium-supported metal oxide catalysts.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7290599A JP2884050B2 (en) 1995-10-13 1995-10-13 Selective nuclear hydrogenation over ruthenium-supported metal oxide catalysts.

Publications (2)

Publication Number Publication Date
JPH09111252A JPH09111252A (en) 1997-04-28
JP2884050B2 true JP2884050B2 (en) 1999-04-19

Family

ID=17758097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7290599A Expired - Lifetime JP2884050B2 (en) 1995-10-13 1995-10-13 Selective nuclear hydrogenation over ruthenium-supported metal oxide catalysts.

Country Status (1)

Country Link
JP (1) JP2884050B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4512762B2 (en) * 2004-01-14 2010-07-28 独立行政法人産業技術総合研究所 Environmentally friendly naphthalene hydrogenation system
CN105618083A (en) * 2014-10-29 2016-06-01 中国科学院大连化学物理研究所 Application of adjuvant-containing catalyst in selective hydrogenation reaction of aromatic nitro compound

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3971354A (en) * 1975-06-23 1976-07-27 The Bendix Corporation Increasing warm up enrichment as a function of manifold absolute pressure
JPH088985B2 (en) * 1987-12-29 1996-01-31 三井石油化学工業株式会社 Hydrogenation catalyst
JPH06203B2 (en) * 1990-02-20 1994-01-05 工業技術院長 Coal liquefaction reaction catalyst and coal liquefaction method using the same

Also Published As

Publication number Publication date
JPH09111252A (en) 1997-04-28

Similar Documents

Publication Publication Date Title
CA1275064A (en) Process for improving octane by the conversion of fused multi-ring aromatics and hydroaromatics to lower molecular weight compounds
EP0512635B1 (en) A process for the production of isoparaffins
Du et al. The chemistry of selective ring-opening catalysts
JP3522797B2 (en) Method for producing hydrocarbon fuel
US5576256A (en) Hydroprocessing scheme for production of premium isomerized light gasoline
US4018663A (en) Coal liquefaction process
Stern Reaction networks in catalytic hydrodenitrogenation
CA1202951A (en) Tungsten carbide and molybdemum based reforming catalysts, and their use
PL98293B1 (en) METHOD OF MAKING A XYLENE MIXTURE
Groot et al. Comparative study of alumina-and carbon-supported catalysts for hydrogenolysis and hydrogenation of model compounds and coal-derived liquids
JP2884050B2 (en) Selective nuclear hydrogenation over ruthenium-supported metal oxide catalysts.
JPS60219295A (en) Hydrogenation of heavy hydrocarbon oil
Curtis et al. Hydrodenitrogenation of quinoline and coal using precipitated transition-metal sulfides
US3477943A (en) Two-stage treatment of high sulfur content petroleum materials
US4971680A (en) Hydrocracking process
Taylor et al. Fundamentals in the catalytic ring closure of open chain hydrocarbons
US3622501A (en) Catalyst and hydrocarbon processes employing same
JP2884058B2 (en) Efficient coal liquefaction method using ruthenium-supported metal oxide catalyst
EP0082551B1 (en) Process for the production of hydrocarbon oil distillates
JP3143673B2 (en) Unsupported nickel-tungsten sulfide tungsten catalyst, method for producing the same, and method for hydrogenating hydrocarbons
US2939836A (en) Destructive hydrogenation of heavy cycle oils
JP3062601B1 (en) Method for hydrotreating hydrocarbons containing aromatic hydrocarbons and / or condensed polycyclic hydrocarbons
Roebuck et al. Hydrocracking an Aromatic Extract to Naphthalene and 100-Octane Gasoline
US11891300B2 (en) Clean liquid fuels hydrogen carrier processes
JP3973191B2 (en) Hydrocarbon fuel for hydrogen generation and method for producing the same

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term