JP2879492B2 - Molten metal transfer pipe and method for producing the same - Google Patents

Molten metal transfer pipe and method for producing the same

Info

Publication number
JP2879492B2
JP2879492B2 JP4130177A JP13017792A JP2879492B2 JP 2879492 B2 JP2879492 B2 JP 2879492B2 JP 4130177 A JP4130177 A JP 4130177A JP 13017792 A JP13017792 A JP 13017792A JP 2879492 B2 JP2879492 B2 JP 2879492B2
Authority
JP
Japan
Prior art keywords
molten metal
transfer pipe
metal transfer
carbon fiber
passage member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4130177A
Other languages
Japanese (ja)
Other versions
JPH05293627A (en
Inventor
月 善 一 望
山 龍 吉 丸
島 健 二 新
正 裕 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Shibaura Machine Co Ltd
Original Assignee
Toho Rayon Co Ltd
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Rayon Co Ltd, Toshiba Machine Co Ltd filed Critical Toho Rayon Co Ltd
Priority to JP4130177A priority Critical patent/JP2879492B2/en
Publication of JPH05293627A publication Critical patent/JPH05293627A/en
Application granted granted Critical
Publication of JP2879492B2 publication Critical patent/JP2879492B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は低圧鋳造機や電磁給湯の
ダイカスト機の溶湯通路に関するもので、特にアルミニ
ウム合金溶湯を移送する溶湯移送管およびその製造方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a molten metal passage for a low-pressure casting machine or a die casting machine for electromagnetic hot water supply, and more particularly to a molten metal transfer pipe for transferring a molten aluminum alloy and a method of manufacturing the same.

【0002】[0002]

【従来の技術】従来からアルミニウム合金を鋳造する鋳
造装置の一つとして、たとえば図7に示すような電磁ポ
ンプを用いたダイカスト機がある。
2. Description of the Related Art A conventional casting apparatus for casting an aluminum alloy is, for example, a die casting machine using an electromagnetic pump as shown in FIG.

【0003】この電磁ポンプ付きのダイカスト機は、金
型100と、金型100に連結される射出スリーブ10
1と、射出スリーブ101内に給湯される溶湯102を
金型100内に圧送する射出プランジャ103と、溶湯
102を溶解炉104から射出スリーブ101まで給湯
するための電磁ポンプ105と、電磁ポンプ105と射
出スリーブ101を連結する溶湯移送管106と、から
構成されている。
[0003] A die casting machine equipped with an electromagnetic pump comprises a mold 100 and an injection sleeve 10 connected to the mold 100.
1, an injection plunger 103 for feeding the molten metal 102 fed into the injection sleeve 101 into the mold 100, an electromagnetic pump 105 for feeding the molten metal 102 from the melting furnace 104 to the injection sleeve 101, and an electromagnetic pump 105. And a molten metal transfer pipe 106 for connecting the injection sleeve 101.

【0004】そして、溶湯通路を構成する溶湯移送管1
06の材料として、炭化珪素や窒化珪素等の窒化系ある
いは炭化系のセラミックスおよびムライト系のセラミッ
クスが用いられていた。
[0004] A molten metal transfer pipe 1 constituting a molten metal passage.
As a material of No. 06, nitride-based or carbide-based ceramics such as silicon carbide and silicon nitride and mullite-based ceramics have been used.

【0005】また、その他の従来の鋳造装置として、図
8に示すような低圧鋳造機がある。この低圧鋳造機は溶
湯107が貯留される炉108と、下端が炉108の溶
湯107に浸漬され上端が炉108の上方に配置された
金型109に連結された溶湯移送管110と、から構成
され、炉108内に導入される不活性ガスのガス圧によ
って溶湯107を溶湯移送管110を通じて金型109
内に供給するようになっていた。
[0005] As another conventional casting apparatus, there is a low-pressure casting machine as shown in FIG. This low-pressure casting machine comprises a furnace 108 in which a molten metal 107 is stored, and a molten metal transfer pipe 110 whose lower end is immersed in the molten metal 107 of the furnace 108 and whose upper end is connected to a mold 109 arranged above the furnace 108. Then, the molten metal 107 is transferred to the mold 109 through the molten metal transfer pipe 110 by the gas pressure of the inert gas introduced into the furnace 108.
Was to be supplied inside.

【0006】この溶湯移送管110の材料としては黒鉛
および窒化珪素やムライト系のセラミックスが用いられ
ていた。
As a material of the molten metal transfer tube 110, graphite, silicon nitride, and mullite ceramics have been used.

【0007】[0007]

【発明が解決しようとする課題】しかし、上記したいず
れの鋳造装置の溶湯移送管106,110も、強度が低
く脆い材質なので、取扱時に落下等により破壊しやすい
という問題があった。
However, since the molten metal transfer pipes 106 and 110 of any of the above-mentioned casting apparatuses have low strength and are brittle, they have a problem that they are easily broken by dropping during handling.

【0008】特に、ムライト等のセラミックスには不純
物としてシリカ(SiO2 )が含まれているため、アル
ミニウムと反応してスラグがセラミックス界面で形成さ
れ、溶湯通路が狭くなり溶湯の供給の精度が悪くなる。
そのため、一か月毎に内部を清掃する保守作業を強いら
れることになる。また、このスラグを除去する際に、セ
ラミックスのカケや割れ等の問題が発生する場合もあ
り、作業を慎重に行う必要があった。
In particular, since ceramics such as mullite contain silica (SiO 2 ) as an impurity, they react with aluminum to form slag at the ceramics interface, narrowing a molten metal passage, resulting in poor precision in supplying molten metal. Become.
For this reason, a maintenance operation for cleaning the interior every month is forced. In addition, when the slag is removed, problems such as chipping and cracking of the ceramics may occur, so that the operation must be performed carefully.

【0009】また、セラミックスも黒鉛も材質的にもろ
いので、機械的結合がしにくいという問題もあった。そ
のため、移送通路が長い場合、長い溶湯移送管106,
110を準備する必要がある。
In addition, since both ceramics and graphite are brittle in material, there is a problem that mechanical coupling is difficult. Therefore, when the transfer passage is long, a long molten metal transfer pipe 106,
110 needs to be prepared.

【0010】本発明は上記した従来技術の課題を解決す
るためになされたもので、その目的とするところは、取
扱時に破壊せず、アルミ溶湯と反応せず、しかも機械的
な結合が容易にできる溶湯移送管およびその製造方法を
提供することにある。
The present invention has been made in order to solve the above-mentioned problems of the prior art, and it is an object of the present invention not to be broken at the time of handling, not to react with molten aluminum, and to be easily mechanically joined. An object of the present invention is to provide a molten metal transfer pipe and a method for manufacturing the same.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に、本発明にあっては、鋳造装置の溶湯移送管におい
て、溶湯を移送する通路部材を織布状とした炭素繊維が
炭素化処理されたものでその組織に気孔を存在させた
素繊維強化炭素材により構成し、該通路部材の外側を耐
熱鋳鉄で鋳ぐるんだことを特徴とする。
In order to achieve the above object, according to the present invention, in a molten metal transfer pipe of a casting apparatus, a carbon fiber having a passage member for transferring molten metal in a woven cloth shape is provided.
A carbon fiber reinforced carbon material having pores in its structure is carbonized, and the outside of the passage member is made of heat-resistant cast iron.

【0012】また、通路部材を構成する炭素繊維強化炭
素材表面に炭化珪素コーティングを施して耐熱鋳鉄で鋳
ぐるんだことを特徴とする。
Further, the surface of the carbon fiber reinforced carbon material constituting the passage member is coated with silicon carbide, and is cast with heat-resistant cast iron.

【0013】さらに、その製造方法は、炭素繊維フィラ
メントあるいは炭素繊維紡績糸織物に熱硬化性樹脂を含
浸した材料によって所定形状の中間成形体を成形し、該
中間成形体の炭素化処理を行うことにより炭素繊維強化
炭素材よりなる通路部材を成形し、該通路部材を耐熱鋳
鉄で鋳ぐるむことにより溶湯移送管を製造することを特
徴とする。
[0013] Further, the production method is characterized in that a carbon fiber filament or a carbon fiber spun yarn woven fabric is molded into an intermediate molded body having a predetermined shape with a material impregnated with a thermosetting resin, and the intermediate molded body is carbonized. And forming a passage member made of a carbon fiber reinforced carbon material, and then casting the passage member with heat-resistant cast iron to manufacture a molten metal transfer pipe.

【0014】また、中間成形体を炭素化処理した炭素化
処理成形体にさらにピッチを含浸させて再炭素化処理し
て組織を緻密化することを特徴とする。また、前記耐熱
鋳鉄で鋳ぐるむ前の炭素化処理成形体にさらに炭化珪素
コーティングを施したことを特徴とする。
[0014] Further, the present invention is characterized in that the carbonized molded article obtained by carbonizing the intermediate molded article is further impregnated with pitches and re-carbonized to densify the structure. Also, the heat resistance
Silicon carbide added to carbonized molded body before being cast with cast iron
It is characterized by having been coated.

【0015】ここで、本明細書中に記載の用語「アルミ
ニウム合金」は、アルミニウム合金のみならず、アルミ
ニウム単独の場合も含む意味で用いている。
Here, the term “aluminum alloy” described in the present specification is used in a sense including not only an aluminum alloy but also aluminum alone.

【0016】[0016]

【作用】本発明の溶湯移送管にあっては、通路部材の外
側を耐熱鋳鉄で鋳ぐるんであるので落下等による破壊が
ない。
In the molten metal transfer pipe of the present invention, since the outside of the passage member is made of heat-resistant cast iron, there is no destruction due to falling or the like.

【0017】また、溶湯通路が織布状とした炭素繊維が
炭素化処理されたものでその組織に気孔を存在させた炭
素繊維強化炭素材のためアルミニウム溶湯とは反応せ
ず、通路内周にスラッグが付着しない。
Further, the carbon fiber in which the molten metal passage has a woven fabric shape is used.
Carbonized carbonaceous material with pores in its tissue
Since it is a carbon fiber reinforced carbon material , it does not react with the molten aluminum, and slug does not adhere to the inner periphery of the passage.

【0018】外側を耐熱鋳鉄で鋳ぐるんでいるので、フ
ランジ結合等の結合機械的な結合が容易になり、長い移
送管を用いなくても短い移送管を結合すればよい。
Since the outside is made of heat-resistant cast iron, mechanical connection such as flange connection is facilitated, and a short transfer pipe may be connected without using a long transfer pipe.

【0019】溶湯通路に高精度の炭素繊維強化炭素材を
用い、その外側を耐熱鋳鉄で鋳ぐるんであるため、割
れ,カケ等の発生がなく、また溶融アルミニウムと反応
することがないので、溶湯の供給を確実に行うことがで
きる。
Since a high-precision carbon fiber reinforced carbon material is used for the molten metal passage and the outside thereof is made of heat-resistant cast iron, there is no occurrence of cracks, chips, etc., and there is no reaction with the molten aluminum. Can be reliably supplied.

【0020】[0020]

【実施例】以下に本発明を図示の実施例に基づいて説明
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the illustrated embodiments.

【0021】図1は本発明の一実施例に係る溶湯移送管
を模式的に示すもので、1は溶湯移送管全体を示してい
る。この溶湯移送管1は、溶湯通路2となる通路部材3
と、この通路部材3の外側を鋳ぐるんだ耐熱鋳鉄部材4
とから構成されている。
FIG. 1 schematically shows a molten metal transfer pipe according to one embodiment of the present invention, and 1 indicates the entire molten metal transfer pipe. The molten metal transfer pipe 1 is provided with a passage member 3 serving as a molten metal passage 2.
And a heat-resistant cast iron member 4 which is formed by casting the outside of the passage member 3.
It is composed of

【0022】この鋳ぐるまれる通路部材3の材質として
は炭素繊維5で強化された炭素材が用いられている。こ
の実施例では図2に示すように、炭素繊維5は炭素繊維
紡績糸織物6として炭素材中に埋設されている。炭素繊
維強化炭素材表面には適当な凹凸があるため、耐熱鋳鉄
部材4が通路部材3を構成する炭素繊維強化炭素材表面
の凹凸部に浸透して機械的に強固な結合をしている。
As the material of the passage member 3 to be cast, a carbon material reinforced with carbon fibers 5 is used. In this embodiment, as shown in FIG. 2, the carbon fiber 5 is embedded in a carbon material as a carbon fiber spun yarn fabric 6. Since the surface of the carbon fiber reinforced carbon material has appropriate irregularities, the heat-resistant cast iron member 4 penetrates into the irregularities on the surface of the carbon fiber reinforced carbon material constituting the passage member 3 to form a mechanically strong bond.

【0023】次に、この溶湯移送管1の製造方法につい
て説明する。
Next, a method of manufacturing the molten metal transfer pipe 1 will be described.

【0024】まず、炭素繊維フィラメントあるいは炭素
繊維織物に熱硬化性樹脂を含浸したプレプレグ(前駆
体)を通路部材3の形状に倣った所定形状に成形して中
間成形体を作る。
First, a prepreg (precursor) obtained by impregnating a carbon fiber filament or a carbon fiber woven fabric with a thermosetting resin is molded into a predetermined shape following the shape of the passage member 3 to produce an intermediate molded body.

【0025】この実施例ではプラスチックで製作されて
いるコア10に、フェノール樹脂等の熱硬化性樹脂を含
浸させた織布状になっている炭素繊維強化炭素材のプレ
プレグ材11を所定厚さだけ巻き付け、熱硬化させた後
コア10を抜き取って通路部材の中間成形体12を成形
する(図3(a) ,(b) 参照)。
In this embodiment, a prepreg material 11 of carbon fiber reinforced carbon material, which is a woven cloth impregnated with a thermosetting resin such as phenol resin, is applied to a core 10 made of plastic to a predetermined thickness. After winding and thermosetting, the core 10 is removed to form the intermediate molded body 12 of the passage member (see FIGS. 3A and 3B).

【0026】次いで、炉18内で不活性雰囲気中(例え
ば窒素ガス)1000℃で炭素化処理を行う(図3(c)
参照)。この状態では炭素化された炭素材組織は気孔が
多いので、ピッチ14を含浸して再炭素化するいわゆる
緻密化工程を数回行って、気孔率を5〜30%として通
路部材3が完成する(図3(d) 参照)。
Next, carbonization is performed in the furnace 18 at 1000 ° C. in an inert atmosphere (for example, nitrogen gas) (FIG. 3C).
reference). In this state, since the carbonized carbon material structure has many pores, a so-called densification step of impregnating the pitch 14 and re-carbonizing is performed several times to set the porosity to 5 to 30%, thereby completing the passage member 3. (See FIG. 3 (d)).

【0027】このピッチの含浸は、たとえば図示のよう
な真空吸引によって行なわれる。まず、炭素化中間成形
体13外周をピッチ14によって被覆し、盲蓋15によ
って炭素化中間成形体13の両端開口部を閉塞してお
く。次いで、真空吸引源16によって盲蓋15に設けた
吸引孔17から炭素化中間成形体13内のエアを吸引
し、炭素化中間成形体13内外の圧力差によってピッチ
14を炭素化中間成形体13周壁の気孔に充填するよう
になっている。
The pitch is impregnated by, for example, vacuum suction as shown in the figure. First, the outer periphery of the carbonized intermediate molded body 13 is covered with the pitch 14, and the openings at both ends of the carbonized intermediate molded body 13 are closed with the blind lid 15. Next, the air in the carbonized intermediate molded body 13 is sucked from the suction hole 17 provided in the blind lid 15 by the vacuum suction source 16, and the pitch 14 is changed by the pressure difference between the inside and the outside of the carbonized intermediate molded body 13. The pores in the peripheral wall are filled.

【0028】次に、上記通路部材の外側に機械加工をす
ることなく耐熱鋳鉄材料にてそのまま鋳ぐるむ。この耐
熱鋳鉄材料は高温での強度が必要なため、クロム,モリ
ブデンを含有した特殊鋳鉄材料、たとえば組成(C;
3.5%,Si;2.4%,Mn;0.6%,Cr;
0.3%,Ni;0.3%,Mo;0.8%)の鋳鉄材
料で鋳ぐるんだ。
Next, without machining the outside of the passage member, the heat-resistant cast iron material is used as it is. Since this heat-resistant cast iron material requires strength at high temperatures, a special cast iron material containing chromium and molybdenum, for example, the composition (C;
3.5%, Si; 2.4%, Mn; 0.6%, Cr;
0.3%, Ni; 0.3%, Mo; 0.8%).

【0029】鋳込む通路部材3は、図4に示すように砂
型20にセットする。この砂型20を乾燥して通路部材
3の水分を完全に除去した後、上記の鋳鉄を湯道21よ
りキャビティ22内に注湯する。
The passage member 3 to be cast is set on a sand mold 20 as shown in FIG. After the sand mold 20 is dried to completely remove the water in the passage member 3, the cast iron is poured into the cavity 22 from the runner 21.

【0030】通路部材3を構成する炭素繊維強化炭素材
の表面には適当な凹凸があるため、耐熱鋳鉄が凹凸部に
浸透し機械的に強固な結合をする。
Since the surface of the carbon fiber reinforced carbon material constituting the passage member 3 has appropriate irregularities, the heat-resistant cast iron penetrates the irregularities and forms a strong mechanical bond.

【0031】これらの部材を所定の形状に開口し、図7
や図8に示すアルミニウム溶湯移送管として使用する。
Opening these members into a predetermined shape, FIG.
Or as an aluminum molten metal transfer pipe shown in FIG.

【0032】本発明の溶湯移送管1は、溶湯通路2が炭
素材により構成されているので、セラミックスのように
アルミ溶湯とは反応しない。また、機械的強度が15〜
20[kgf/mm2 ]と大きいため割れ,かけ等の発生がな
い。また、長時間使用すると、アルミが炭素材の気孔部
に浸透し、炭素材の酸化劣化が少ない。特に、酸化を極
端にきらう場合には、SiC(炭化珪素)コーティング
することにより酸化を皆無にすることができる。このS
iCコーティングは、たとえば、炭素部材を約1500
℃に保持されたSiCl4 雰囲気中で表面をSiC化す
ることによりコーティングを施すことができる。このよ
うにSiCコーティングを施してから耐熱鋳鉄で鋳ぐる
む。
In the molten metal transfer pipe 1 of the present invention, the molten metal passage 2 is made of a carbon material, and therefore does not react with the molten aluminum like ceramics. Also, the mechanical strength is 15 ~
Since it is as large as 20 [kgf / mm 2 ], there is no occurrence of cracks, cracks, etc. Further, when used for a long time, aluminum penetrates into the pores of the carbon material, and the carbon material is less oxidatively deteriorated. In particular, when oxidation is extremely difficult, oxidation can be completely eliminated by coating with SiC (silicon carbide). This S
The iC coating can, for example, reduce the carbon component to about
The coating can be applied by converting the surface into SiC in a SiCl 4 atmosphere maintained at a temperature of ° C. After applying the SiC coating in this way, it is cast with heat-resistant cast iron.

【0033】図7,8の電磁給湯ダイカスト機や低圧鋳
造機に使用されるこれら溶湯移送管1に作用する溶湯圧
力は1[kgf/cm2 ]以下であり、10000時間使用し
ても問題なく従来の部材の5倍の寿命を得た。
The pressure of the molten metal acting on these molten metal transfer pipes 1 used in the electromagnetic hot water supply die casting machine and low pressure casting machine shown in FIGS. 7 and 8 is 1 kgf / cm 2 or less, and there is no problem even after 10,000 hours of use. Five times longer life than conventional members.

【0034】また、10000時間使用した後、溶湯移
送管1を切断して調査したところ、図5の顕微鏡写真に
示すように、耐熱鋳鉄と炭素繊維強化炭素材の接合部
に、約1mmの均一なFe−Al合金層が形成されてい
た。
After using for 10000 hours, the molten metal transfer pipe 1 was cut and inspected. As shown in the micrograph of FIG. 5, the joint of heat-resistant cast iron and carbon fiber reinforced carbon material had a uniform thickness of about 1 mm. An Fe-Al alloy layer was formed.

【0035】この層はFe分が完全に飽和した層で、こ
の層がアルミの浸透を阻害し、このような好結果に至っ
た。
This layer is a layer in which the Fe content is completely saturated, and this layer impedes the permeation of aluminum, resulting in such a good result.

【0036】図5は、この寿命試験後における溶湯移送
管1の通路部材3と耐熱鋳鉄部材4間の組織断面の顕微
鏡写真である。
FIG. 5 is a photomicrograph of a cross section of the structure between the passage member 3 of the molten metal transfer pipe 1 and the heat-resistant cast iron member 4 after the life test.

【0037】この写真で、Aは通路部材3を構成する炭
素繊維強化炭素材の領域であり、Bは耐熱鋳鉄と炭素繊
維強化炭素材との境界層領域であり、Cは耐熱鋳鉄の領
域である。写真によれば境界層領域Bは約1mmの均一な
層となっており、この境界層領域Bは、分析の結果以下
に示すように均一なFe−Al合金層となっていること
が明らかになった。
In this photograph, A is a region of the carbon fiber reinforced carbon material constituting the passage member 3, B is a boundary layer region between the heat-resistant cast iron and the carbon fiber reinforced carbon material, and C is a region of the heat-resistant cast iron. is there. According to the photograph, the boundary layer region B is a uniform layer of about 1 mm. As a result of the analysis, it is apparent that the boundary layer region B is a uniform Fe-Al alloy layer as shown below. became.

【0038】図6は、この境界層領域Bの合金層をX線
マイクロアナライザにて分析した結果を示している。
FIG. 6 shows the result of analyzing the alloy layer in the boundary layer region B by an X-ray microanalyzer.

【0039】このX線マイクロアナライザは、X線ビー
ムを各元素に当てた時の各元素に特有のパルス数をカウ
ントするもので、分析元素としては耐熱鋳鉄部を構成す
る鉄(Fe)と、射出される溶湯の構成成分であるアル
ミニウム(Al)である。チャートの縦軸を2500,
15000 [cps/25mm] ,チャート横軸を100 [μm
/30mm] として描いている。
This X-ray microanalyzer counts the number of pulses peculiar to each element when an X-ray beam is applied to each element. The analysis elements include iron (Fe) constituting a heat-resistant cast iron part, Aluminum (Al) which is a component of the molten metal to be injected. The vertical axis of the chart is 2500,
15000 [cps / 25mm], the horizontal axis of the chart is 100 [μm
/ 30mm].

【0040】この線図によれば、Fe,Alの量が境界
層領域Bの全域に亙りほぼ一定となっている。これは、
Al溶湯が通路部材の炭素繊維強化炭素材領域Aを透過
して耐熱鋳鉄領域C側へ拡散するものの、拡散する量が
完全に飽和しており、これ以上拡散が進まないことを意
味しており、Al溶湯による耐熱鋳鉄の侵食を完全に防
止することができたことがわかる。
According to this diagram, the amounts of Fe and Al are almost constant over the entire boundary layer region B. this is,
Although the molten aluminum diffuses through the carbon fiber reinforced carbon material region A of the passage member and diffuses toward the heat-resistant cast iron region C, the amount of the diffusion is completely saturated, meaning that diffusion does not proceed any more. It can be seen that the erosion of the heat-resistant cast iron by the molten aluminum was completely prevented.

【0041】また、表1には波長分散型X線分析装置に
よるFe−Al合金層の定量分析結果を示している。
Table 1 shows the results of quantitative analysis of the Fe-Al alloy layer by a wavelength dispersive X-ray analyzer.

【0042】この分析結果によれば、Al成分は中央部
で52.8%、炭素繊維側で45.0%であり、ほぼ均
一になっていることがわかり、上記X線マイクロアナラ
イザによる分析結果と同一の結果が得られた。尚、図5
の写真で、〇印の部位は定量分析を行った中央部を示し
ている。
According to the analysis results, the Al component was 52.8% at the center and 45.0% at the carbon fiber side, and was found to be almost uniform. The same results were obtained. FIG.
In the photograph of, the part indicated by a triangle indicates the central part where the quantitative analysis was performed.

【0043】[0043]

【発明の効果】本発明は以上の構成および作用を有する
もので、通路部材の外側を強度の高い耐熱鋳鉄で鋳ぐる
んであるので落下等による破壊がない。また、溶湯通路
織布状とした炭素繊維が炭素化処理されたものでその
組織に気孔を存在させた炭素繊維強化炭素材のためアル
ミニウム溶湯とは反応せず、通路内周にスラッグが付着
しないので、通路断面積が変化せず給湯量精度を長期
に亙って維持できるし、通路内の清掃等の保守作業が不
要となる。
The present invention has the above-described structure and operation. Since the outside of the passage member is made of heat-resistant cast iron having high strength, there is no destruction due to dropping or the like. In addition, the molten metal passage is made of woven cloth carbon fiber that has been carbonized.
Tissue does not react with molten aluminum for carbon fiber-reinforced carbon material was present pores, since slug in the circumferential path does not adhere, over a hot water supply amount of precision without changing a passage cross-sectional area for long-term maintenance Maintenance work such as cleaning the inside of the passage is unnecessary.

【0044】さらに、外側を耐熱鋳鉄で鋳ぐるんでいる
ので、フランジ結合等の機械的な結合が容易になり、長
い移送管を用いなくても短い移送管を結合すればよくな
る。
Furthermore, since the outside is made of heat-resistant cast iron, mechanical connection such as flange connection is facilitated, and a short transfer pipe can be connected without using a long transfer pipe.

【0045】[0045]

【表1】 [Table 1]

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は本発明の一実施例に係る溶湯移送管を示
すもので、同図(a) は縦断面図、同図(b) は組織を模式
的に示す一部破断拡大斜視図である。
FIG. 1 shows a molten metal transfer pipe according to one embodiment of the present invention. FIG. 1 (a) is a longitudinal sectional view, and FIG. 1 (b) is a partially broken enlarged perspective view schematically showing a structure. FIG.

【図2】図2(a) は図1の溶湯移送管の通路部材のみを
取り出して示す縦断面図、同図(b) は組織を模式的に示
す一部破断拡大斜視図である。
2 (a) is a longitudinal sectional view showing only a passage member of the molten metal transfer pipe of FIG. 1, and FIG. 2 (b) is a partially broken enlarged perspective view schematically showing a structure.

【図3】図3(a) 乃至(d) は通路部材の製造工程を模式
的に示す説明図である。
FIGS. 3 (a) to 3 (d) are explanatory views schematically showing steps of manufacturing a passage member.

【図4】図4は通路部材を耐熱鋳鉄で鋳ぐるむ砂型の断
面図である。
FIG. 4 is a sectional view of a sand mold in which a passage member is cast with heat-resistant cast iron.

【図5】図5は通路部材と耐熱鋳鉄部材の境界層の金属
組織を示す顕微鏡写真である。
FIG. 5 is a diagram showing a metal in a boundary layer between a passage member and a heat-resistant cast iron member.
It is a microscope picture which shows a structure .

【図6】図6は図5の顕微鏡写真のaーa線に沿ってX
線マイクロアナライザにて線分析した結果を示す図であ
る。
FIG. 6 is a cross-sectional view taken along line aa of the micrograph of FIG. 5;
It is a figure which shows the result of line analysis with the line microanalyzer.

【図7】図7は従来の溶湯移送管が使用される電磁給湯
ダイカスト機の概略断面図である。
FIG. 7 is a schematic sectional view of an electromagnetic hot water supply die casting machine using a conventional molten metal transfer pipe.

【図8】図8は他の従来の溶湯移送管が使用される低圧
鋳造機の概略断面図である。
FIG. 8 is a schematic sectional view of a low-pressure casting machine using another conventional molten metal transfer pipe.

【符号の説明】[Explanation of symbols]

1 溶湯移送管 2 溶湯通路 3 通路部材 4 耐熱鋳鉄部材 5 炭素繊維 6 炭素繊維紡績糸織物 10 コア 11 プレプレグ 12 中間成形体 13 炭素化中間成形体 14 ピッチ 20 砂型 Reference Signs List 1 molten metal transfer pipe 2 molten metal passage 3 passage member 4 heat-resistant cast iron member 5 carbon fiber 6 carbon fiber spun yarn fabric 10 core 11 prepreg 12 intermediate molded body 13 carbonized intermediate molded body 14 pitch 20 sand mold

フロントページの続き (51)Int.Cl.6 識別記号 FI B22D 35/00 B22D 35/00 G C04B 35/83 C04B 35/52 E (72)発明者 新 島 健 二 静岡県駿東郡長泉町上土狩字高石234番 地東邦レーヨン株式会社 研究所内 (72)発明者 林 正 裕 静岡県駿東郡長泉町上土狩字高石234番 地東邦レーヨン株式会社 研究所内 (56)参考文献 特開 昭48−325(JP,A) 特開 昭50−47825(JP,A) 特開 平3−169465(JP,A) 特開 昭63−11583(JP,A) 特開 昭56−140080(JP,A) 特開 平1−143759(JP,A) (58)調査した分野(Int.Cl.6,DB名) B22D 19/00 B22D 17/20 B22D 18/04 B22D 19/14 B22D 35/00 Continuation of the front page (51) Int.Cl. 6 Identification code FI B22D 35/00 B22D 35/00 G C04B 35/83 C04B 35/52 E (72) Inventor Kenji Niijima Kamitsuji character in Nagaizumi-cho, Sunto-gun, Shizuoka Prefecture No. 234, Takaishi Jihoho Rayon Co., Ltd. (72) Inventor Masahiro Hayashi, No. 234, Takatsugi, Kamichi-cho, Nagaizumi-cho, Sunto-gun, Shizuoka Pref. A) JP-A-50-47825 (JP, A) JP-A-3-169465 (JP, A) JP-A-63-11583 (JP, A) JP-A-56-140080 (JP, A) JP-A-1 −143759 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) B22D 19/00 B22D 17/20 B22D 18/04 B22D 19/14 B22D 35/00

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 鋳造装置の溶湯移送管において、 溶湯を移送する通路部材を織布状とした炭素繊維が炭素
化処理されたものでその組織に気孔を存在させた炭素繊
維強化炭素材により構成し、該通路部材の外側を耐熱鋳
鉄で鋳ぐるんだことを特徴とする溶湯移送管。
1. A molten metal transfer pipe of a casting apparatus, wherein a carbon fiber having a passage member for transporting the molten metal is woven.
A molten metal transfer pipe comprising a carbon fiber reinforced carbon material that has been subjected to a chemical treatment and has pores in its structure, and wherein the outside of the passage member is filled with heat-resistant cast iron.
【請求項2】 通路部材を構成する炭素繊維強化炭素材
表面に炭化珪素コーティングを施して耐熱鋳鉄で鋳ぐる
んだ請求項1に記載の溶湯移送管。
2. The molten metal transfer pipe according to claim 1, wherein the surface of the carbon fiber reinforced carbon material constituting the passage member is coated with silicon carbide and then cast with heat-resistant cast iron.
【請求項3】 炭素繊維フィラメントあるいは炭素繊維
紡績糸織物に熱硬化性樹脂を含浸した材料によって所定
形状の中間成形体を成形し、該中間成形体の炭素化処理
を行うことにより炭素繊維強化炭素材よりなる通路部材
を成形し、 該通路部材を耐熱鋳鉄で鋳ぐるむことにより溶湯移送管
を製造することを特徴とする溶湯移送管の製造方法。
3. A carbon fiber filament or carbon fiber spun yarn woven fabric is molded into an intermediate molded body having a predetermined shape by using a material impregnated with a thermosetting resin, and the intermediate molded body is subjected to a carbonization treatment. A method for manufacturing a molten metal transfer tube, comprising: forming a passage member made of a material; and casting the formed passage member with heat-resistant cast iron to manufacture a molten metal transfer tube.
【請求項4】 中間成形体を炭素化処理した炭素化処理
成形体にさらにピッチを含浸させて再炭素化処理をして
組織を緻密化する請求項3に記載の溶湯移送管の製造方
法。
4. The method for producing a molten metal transfer pipe according to claim 3, wherein a pitch is further impregnated into the carbonized molded body obtained by carbonizing the intermediate molded body to perform a carbonization treatment to densify the structure.
【請求項5】 前記耐熱鋳鉄で鋳ぐるむ前の炭素化処理
成形体にさらに炭化珪素コーティングを施した請求項3
または4に記載の溶湯移送管の製造方法。
5. A carbonization treatment before casting with said heat-resistant cast iron.
4. The molded article further provided with a silicon carbide coating.
Or the method for producing a molten metal transfer pipe according to 4.
JP4130177A 1992-04-23 1992-04-23 Molten metal transfer pipe and method for producing the same Expired - Fee Related JP2879492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4130177A JP2879492B2 (en) 1992-04-23 1992-04-23 Molten metal transfer pipe and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4130177A JP2879492B2 (en) 1992-04-23 1992-04-23 Molten metal transfer pipe and method for producing the same

Publications (2)

Publication Number Publication Date
JPH05293627A JPH05293627A (en) 1993-11-09
JP2879492B2 true JP2879492B2 (en) 1999-04-05

Family

ID=15027895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4130177A Expired - Fee Related JP2879492B2 (en) 1992-04-23 1992-04-23 Molten metal transfer pipe and method for producing the same

Country Status (1)

Country Link
JP (1) JP2879492B2 (en)

Also Published As

Publication number Publication date
JPH05293627A (en) 1993-11-09

Similar Documents

Publication Publication Date Title
US7686990B2 (en) Method of producing a ceramic matrix composite article
JP4974209B2 (en) Silicon infiltration treatment method for ceramic matrix composites
JP5117862B2 (en) Manufacturing method of ceramic matrix composite member
US9611180B2 (en) Method for manufacturing a part made of CMC
GB2163736A (en) Graphite fiber mold
JP2002502801A (en) Method for producing fiber-reinforced composite material
JP2003128471A (en) Method for producing melt-inpregnated ceramic composite using forming support
CN112390657B (en) In-situ reaction connection method for fiber-reinforced silicon carbide-based composite material
JP3167738B2 (en) Method for producing carbon fiber reinforced ceramic composite material
CN110382444B (en) Method for producing a consolidated fiber preform
JP2879492B2 (en) Molten metal transfer pipe and method for producing the same
US5486379A (en) Method of manufacturing a part made of composite material comprising fiber reinforcement consolidated by a liquid process
JP3681354B2 (en) Metal matrix composite and piston using the same
KR100694913B1 (en) A method of manufacturing a thermostructural composite material bowl, in particular for an installation that produces silicon single crystals
US5770262A (en) Method for continuous manufacture of reaction bonded silicon carbide
CN114026055A (en) Metering device for removing and distributing a melt and method for producing the metering device
KR100393233B1 (en) Casting and its manufacturing process with an outer layer capable of forming an impermeable layer in the gas
US11607725B2 (en) Siphon delivery method for consistent melt infiltration
JP2005158471A (en) Ceramic heater and manufacturing method of same
JP2838457B2 (en) Die casting pump member and method of manufacturing the same
JPS6157108B2 (en)
JPH0985412A (en) Production of sleeve for die casting machine
JPH09124368A (en) Unidirectional carbon fiber reinforced composite material and its production
JPS5921258B2 (en) die casting injection sleeve
JPS61166932A (en) Production of fiber preform

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19981208

LAPS Cancellation because of no payment of annual fees