JP2878406B2 - Porous ceramic member - Google Patents

Porous ceramic member

Info

Publication number
JP2878406B2
JP2878406B2 JP17014390A JP17014390A JP2878406B2 JP 2878406 B2 JP2878406 B2 JP 2878406B2 JP 17014390 A JP17014390 A JP 17014390A JP 17014390 A JP17014390 A JP 17014390A JP 2878406 B2 JP2878406 B2 JP 2878406B2
Authority
JP
Japan
Prior art keywords
particle size
size distribution
volume
range
ceramic particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17014390A
Other languages
Japanese (ja)
Other versions
JPH0459676A (en
Inventor
茂樹 丹羽
力 岩澤
邦夫 速水
英明 加藤
憲生 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP17014390A priority Critical patent/JP2878406B2/en
Publication of JPH0459676A publication Critical patent/JPH0459676A/en
Application granted granted Critical
Publication of JP2878406B2 publication Critical patent/JP2878406B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、多孔質耐火物やフィルタ等のポーラスセ
ラミック部材に関する。
Description: TECHNICAL FIELD The present invention relates to a porous ceramic member such as a porous refractory or a filter.

従来の技術 この種のポーラスセラミック部材の一例として、溶融
金属をいれる取鍋等の底に取り付けるポーラスプラグを
あげることができる。
2. Description of the Related Art As an example of this kind of porous ceramic member, a porous plug attached to the bottom of a ladle or the like in which molten metal is put can be cited.

ポーラスプラグとは、溶融金属をいれる取鍋の底に取
り付けたのち、これを通してガスを噴射させることによ
り、取鍋内に受綱した溶融金属中の例えば非金属介在物
の浮上促進、添加物の攪拌、分散、反応速度の促進、温
度調整等を行うことを目的として使用される通気性を持
った多孔質の耐火レンガである。実公昭54−30339号公
報を参照。
Porous plugs are attached to the bottom of the ladle in which the molten metal is placed, and then by injecting gas through it, promote the floating of non-metallic inclusions in the molten metal received in the ladle, for example, It is a porous, fire-resistant brick that is used for the purpose of stirring, dispersing, accelerating the reaction rate, and adjusting the temperature. See Japanese Utility Model Publication No. 54-30339.

従来のポーラス耐火物は、先ず粗粒を配してガスの通
る粒間を確保しておき、粒間の接触面不足に起因する強
度の低下を、数μmオーダーのガラス微粉を使用してガ
ラス相ボンドにして補う手法を用い、各種粒径のセラミ
ック粒子を互いに結合させてポーラスに形成していた。
たとえば粒径1〜1000μmの各種セラミック粒子を結合
させたポーラス耐火物が知られている。
In conventional porous refractories, first, coarse particles are arranged to secure a space between gas passages, and a decrease in strength due to insufficient contact surface between the particles is reduced by using glass fine powder of several μm order. By using a technique of supplementing with a phase bond, ceramic particles of various particle sizes are bonded to each other to form a porous body.
For example, a porous refractory in which various ceramic particles having a particle size of 1 to 1000 μm are bonded is known.

第1図は従来のポーラス耐火物における全セラミック
粒子の粒度分布と累積体積(%)の関係及び粒度分布と
気孔率(%)の関係を示している。
FIG. 1 shows the relationship between the particle size distribution of all ceramic particles and the cumulative volume (%) and the relationship between the particle size distribution and the porosity (%) in a conventional porous refractory.

第1図の従来例においては、全セラミック粒子が粒径
1μm〜1000μmの範囲に分布しているが、粒径20μm
〜100μmの範囲の粒度はほとんど配合されておらず、
粒度分布にムラがある。つまり、不連続な粒度分布にな
っている。具体的にいえば、粒径20μm〜70μmの範囲
ではセラミック粒子がほぼ皆無であり、粒径200μm〜5
00μmの範囲では、セラミック粒子が急激に増加してい
ることがわかる。
In the conventional example shown in FIG. 1, all the ceramic particles are distributed in the range of particle size of 1 μm to 1000 μm,
Particle size in the range of ~ 100 μm is hardly blended,
The particle size distribution is uneven. That is, the particle size distribution is discontinuous. Specifically, in the range of the particle size of 20 μm to 70 μm, there are almost no ceramic particles, and the particle size is 200 μm to 5 μm.
It can be seen that in the range of 00 μm, the number of ceramic particles increases rapidly.

第2図は第1図の従来例を示す説明図である。第1図
と第2図から理解されるように、不連続な粒度分布であ
ると、気孔径にバラツキが生じる。気孔径1μm〜100
μmの範囲では気孔率が約30%から約8%まで穏やかな
曲線を描いて減少していき、気孔径100μm以上では約
7%の気孔率が維持されている。
FIG. 2 is an explanatory view showing a conventional example of FIG. As can be understood from FIGS. 1 and 2, a discontinuous particle size distribution causes a variation in pore diameter. Pore diameter 1μm ~ 100
In the range of μm, the porosity decreases in a gentle curve from about 30% to about 8%, and the porosity of about 7% is maintained when the pore diameter is 100 μm or more.

発明が解決しようとする課題 従来例では、第1図に示すように、全体の気孔径分布
がブロードで、通気にほとんど寄与しないと考えられる
数μmの細気孔から、300μm以上の大気孔まで広範囲
に分布している。
Problems to be Solved by the Invention In the conventional example, as shown in FIG. 1, the entire pore size distribution is broad, and from a few μm fine pores which are considered to hardly contribute to ventilation to a large pore size of 300 μm or more. Are distributed.

このようなものをポーラスプラグに使用した場合、大
気孔に溶綱の浸潤が生じ、バブリング不能を起こす問題
が生じる。また、タンディシュで用いられる上ノズルで
は、Arガスの気泡径が大き過ぎると、浸漬ノズル内の洗
浄効果が十分に得られず、また泡径が小さ過ぎると、凝
固シェルにトラップされることに起因するピンホール欠
陥を生ずる問題が起きる。
When such a material is used for a porous plug, there arises a problem that infiltration of a molten steel into an air hole causes bubbling failure. In addition, in the upper nozzle used in the tundish, if the bubble diameter of Ar gas is too large, the cleaning effect in the immersion nozzle is not sufficiently obtained, and if the bubble diameter is too small, it is trapped in the solidified shell. This causes a problem of causing pinhole defects.

このため、気孔径を検討することによって上記の問題
点を解決しようとする試みがなされ、粒度構成や粒径の
調整により気孔径の微細化や均一化が図られているが、
十分とはいえない。
For this reason, attempts have been made to solve the above problems by examining the pore size, and finer and more uniform pore sizes have been achieved by adjusting the particle size configuration and particle size.
Not enough.

また、特別な粒子(たとえば実公昭54−30339号公報
に示されているような球形粒子)を使用したり、SiO2
どの微粉原料を使用したり、成形圧を高くしたりしなけ
ればならない。
In addition, special particles (for example, spherical particles as disclosed in Japanese Utility Model Publication No. 54-30339) must be used, a fine powder material such as SiO 2 must be used, and the molding pressure must be increased. .

しかし、球形粒子の使用はコスト高を招き、SiO2微粉
末の使用は耐食性を低下させ、成形圧の増加は骨材を破
壊させる問題点がある。
However, the use of spherical particles leads to an increase in cost, the use of SiO 2 fine powder reduces corrosion resistance, and the increase in molding pressure has a problem of breaking aggregate.

本発明は、前述のような問題点を解消するために、気
孔径の均一化や気孔径分布の任意な設定が可能で、要求
される機能に即した気孔径の設計ができるポーラスセラ
ミック部材を提供することを目的としている。
The present invention provides a porous ceramic member capable of uniformizing the pore diameter and arbitrarily setting the pore diameter distribution and capable of designing the pore diameter in accordance with the required function in order to solve the above-described problems. It is intended to provide.

課題を解決するための手段 本発明は、複数の粒度分布からなる各種粒径のセラミ
ック粒子を互いに結合させたポーラスセラミック部材に
おいて、各粒度分布の粒径範囲を最大粒径より順に2の
平方根 で除していって区分けした場合に、最大粒径より連続し
た15種以下の粒度分布の粒径範囲に全セラミック粒子の
90重量%以上が含まれ、かつ、その15種以下の粒度分布
の粒径範囲において互いに隣り合う粒度分布の粒径範囲
に含まれるセラミック粒子の体積比が大きい方の粒径範
囲の体積%をそのすぐ下の小さい方の粒径範囲の体積%
で除した値で必ず0.5〜1.8になるように調整した連続粒
度分布系としたことを特徴とするポーラスセラミック部
材である。
Means for Solving the Problems The present invention relates to a porous ceramic member in which ceramic particles having various particle sizes having a plurality of particle size distributions are bonded to each other. When divided by dividing the total ceramic particles in the particle size range of 15 or less particle size distribution continuous from the maximum particle size
90% by weight or more, and the volume percentage of the larger particle size range of the ceramic particles included in the particle size range of the particle size distribution adjacent to each other in the particle size range of 15 or less particle sizes is defined as Volume% of the smaller particle size range immediately below
A porous ceramic member characterized in that it is a continuous particle size distribution system adjusted so as to be always 0.5 to 1.8 by the value divided by

作用 最小粒径から最大粒径までの粒度分布のほぼ全体にわ
たって各種粒径の分布に実質的にムラがなく、連続粒度
分布になり、高い強度が得やすい。
Action Almost all of the particle size distribution from the minimum particle size to the maximum particle size is substantially uniform in the distribution of various particle sizes, a continuous particle size distribution is obtained, and high strength is easily obtained.

また、気孔径が均一になりやすく、かつ、気孔径をほ
ぼ任意に設定しやすい。
In addition, the pore diameter tends to be uniform, and the pore diameter can be set almost arbitrarily.

実施例 異なる範囲に、従来品に比べて均一な気孔径を得るこ
とを目的として、本発明による3つの例を作った。つま
り、表1、表2及び表3に示す粒度配合でセラミック粒
子をサンドミキサーによって混合した後、成形し、SK30
で焼成してポーラスプラグを作った。いずれの例も、ア
ルミナ粉とムライト粉は、それぞれ約72重量%と28重量
%であった。
EXAMPLES Three examples according to the present invention were made in order to obtain a uniform pore size in a different range as compared with the conventional product. That is, the ceramic particles were mixed by a sand mixer with the particle sizes shown in Tables 1, 2 and 3 and then molded, and SK30
To make a porous plug. In each case, alumina powder and mullite powder were about 72% by weight and 28% by weight, respectively.

表4は参考例として従来品の数値を示している。 Table 4 shows the values of conventional products as reference examples.

表1〜4について説明すると、最大粒径より連続した
複数の粒径範囲を区分けしている。つまり、最大粒径よ
り順に2の平方根で除(わり算)していって、連続した
複数の粒度分布を作る。粒度分布番号1は、全セラミッ
ク粒子のうちの最大粒径と、その最大粒径を2の平方根
で除(わり算)した値との粒径範囲を示す。例えば、表
1では、使用した全セラミック粒子のうち最大粒径が14
00μmであり、粒度分布番号1の粒径範囲は1400−990
μmになっているが、この「990μm」の値は最大粒径1
400μmを2の平方根で除した値である。粒度分布番号
2の粒径範囲は990μmとそれを2の平方根で除した値
(700μm)との範囲である。その値(700μm)とそれ
をさらに2の平方根で除した値(495)との範囲が粒度
分布番号3の粒径範囲である。粒度分布番号4以下につ
いても同様に粒径範囲を設定していく。
Describing Tables 1-4, a plurality of continuous particle size ranges are divided from the maximum particle size. That is, a plurality of continuous particle size distributions are created by dividing (dividing) by the square root of 2 in order from the maximum particle size. The particle size distribution number 1 indicates a particle size range of a maximum particle size of all the ceramic particles and a value obtained by dividing (dividing) the maximum particle size by a square root of 2. For example, in Table 1, the maximum particle size of all the used ceramic particles was 14%.
The particle size range of particle size distribution number 1 is 1400-990.
The value of “990 μm” is the maximum particle size of 1
This is a value obtained by dividing 400 μm by the square root of 2. The particle size range of the particle size distribution number 2 is 990 μm and a value obtained by dividing it by the square root of 2 (700 μm). The range between the value (700 μm) and the value (495) obtained by further dividing the value by the square root of 2 is the particle size range of the particle size distribution number 3. The particle size range is similarly set for particle size distribution numbers 4 and below.

表1〜4中の体積%は全体積に対する各粒度分布のセ
ラミック粒子の体積の割合(%)を示す。例えば、表1
においては、ポーラスプラグ全体の体積を100%とした
とき、その全体積(100%)に対する粒度分布番号1
(粒径範囲1400−990μm)のセラミック粒子の体積の
割合は12.5%である。体積%の合計が90%を越えたら、
それ以下のセラミック粒子については粒度分布番号を付
けず、「雑」として1つにまとめる。表1では、雑は9
体積%である。
The volume% in Tables 1 to 4 indicates the ratio (%) of the volume of the ceramic particles of each particle size distribution to the total volume. For example, Table 1
In the above, when the volume of the entire porous plug is defined as 100%, the particle size distribution number 1 relative to the total volume (100%)
The proportion by volume of the ceramic particles (particle size range 1400-990 μm) is 12.5%. If the sum of volume% exceeds 90%,
Ceramic particles smaller than this are not given a particle size distribution number and are grouped together as "miscellaneous". In Table 1, 9
% By volume.

表1〜4において、当該粒度分布番号とその直前の粒
度分布番号との体積比は、当該粒度分布番号の体積%で
その直前の粒度分布番号の体積%を除(わり算)した値
である。例えば、表1において、粒度分布番号1の体積
%(12.5)を粒度分布番号2の体積%(14.0)で除して
体積比(0.89)を得ている。
In Tables 1 to 4, the volume ratio between the particle size distribution number and the particle size distribution number immediately before it is a value obtained by dividing (dividing) the volume% of the particle size distribution number immediately before by the volume% of the particle size distribution number. For example, in Table 1, the volume ratio (0.89) is obtained by dividing the volume% (12.5) of the particle size distribution number 1 by the volume% (14.0) of the particle size distribution number 2.

表1〜3から理解されるように、本発明においては、
最大粒径より連続した粒度分布の総数は15種以下であ
る。全セラミック粒子の粒径が、それぞれ表1では1400
−8μm、表2では840−20μm、表3では420−5μm
の範囲に分布している。雑に入る粒子を除くと、表1は
11種の粒度分布であり、表2は8種の粒度分布であり、
表3は9種の粒度分布である。粒度分布の数が15種を超
えると、セラミック部材が多孔質(ポーラス)になら
ず、緻密質になりやくなる。
As understood from Tables 1 to 3, in the present invention,
The total number of particle size distributions continuous from the maximum particle size is 15 or less. The particle size of all ceramic particles is 1400 in Table 1 respectively.
-8 μm, 840-20 μm in Table 2, 420-5 μm in Table 3
Distributed in the range. Excluding the particles that enter the table, Table 1 shows
There are 11 particle size distributions, and Table 2 shows 8 particle size distributions,
Table 3 shows the nine particle size distributions. When the number of particle size distributions exceeds 15, the ceramic member does not become porous but tends to be dense.

また、本発明においては、当該粒度分布とその直前の
粒度分布の体積比が0.5〜1.8になっている。この体積比
は0.9〜1.3が最適である。しかも、各粒度分布の体積%
を3以上にするのが好ましい。表1〜3では、すべて4.
5以上の体積%になっている。
In the present invention, the volume ratio between the particle size distribution and the particle size distribution immediately before the particle size distribution is 0.5 to 1.8. The optimal volume ratio is 0.9 to 1.3. Moreover, the volume% of each particle size distribution
Is preferably 3 or more. In Tables 1-3, all 4.
It is 5% or more by volume.

表5は第3図の例で使用した原料の詳細を示してい
る。
Table 5 shows the details of the raw materials used in the example of FIG.

第3図は表1に示した例におけるセラミック粒子の粒
径と累積体積の関係及び気孔径と見掛気孔率の関係を示
している。第4図は表2に示した例におけるそれらの関
係を、第5図は表3に示した例におけるそれらの関係を
それぞれ示している。
FIG. 3 shows the relationship between the particle size and the cumulative volume of the ceramic particles and the relationship between the pore diameter and the apparent porosity in the examples shown in Table 1. FIG. 4 shows their relationship in the example shown in Table 2, and FIG. 5 shows their relationship in the example shown in Table 3.

第6図は第3図〜第5図の気孔径と見掛気孔率の関係
をまとめたものである。
FIG. 6 summarizes the relationship between the pore diameter and the apparent porosity in FIGS. 3 to 5.

これらの図から明らかなように、本発明品の気孔率
は、従来品に比べ、粒度分布や気孔径分布に関係なく、
32〜33%のところできわめてシャープな気孔径分布が横
にスライドした形になっており、また、100μm以上の
大気孔の割合が少なくなっている。たとえば、第5図に
おいては、気孔径が3μm以下の範囲では気孔率が約32
%で一定しており、気孔径3〜100μm(とくに5〜23
μm)の範囲では気孔率の分布が集中しており、気孔径
100μm以上の範囲では約1%以下の気孔率になってい
る。
As is clear from these figures, the porosity of the product of the present invention is higher than that of the conventional product regardless of the particle size distribution and the pore size distribution,
At 32 to 33%, a very sharp pore size distribution slides sideways, and the proportion of pores of 100 μm or more is reduced. For example, in FIG. 5, the porosity is about 32 in the range where the pore diameter is 3 μm or less.
%, And a pore diameter of 3 to 100 μm (particularly 5 to 23
μm), the porosity distribution is concentrated and the pore diameter
In the range of 100 μm or more, the porosity is about 1% or less.

なお、気孔径の測定は水銀圧入法によった。気孔率の
測定はJISR2205によった。
The pore size was measured by a mercury intrusion method. The porosity was measured according to JISR2205.

また、第7図は第3〜5図の例を示す説明図である。
粗粒〜微粒を連続的に配し、粒間径(気孔径)を小さく
すると同時に粒間の接触面を多くして微粉末使用に起因
する強度の低下を補っている。
FIG. 7 is an explanatory diagram showing an example of FIGS.
Coarse grains to fine grains are continuously arranged to reduce the intergranular diameter (pore diameter) and at the same time increase the contact surface between the grains to compensate for the decrease in strength due to the use of fine powder.

発明の効果 1)球形粒子を使用しなくても、高気孔率でシャープな
気孔径分布が得られる。
Effects of the Invention 1) A sharp porosity and sharp pore size distribution can be obtained without using spherical particles.

2)大気孔を減少できる。2) Atmospheric holes can be reduced.

3)マトリクスにSiO2などの微粉原料が不要で、良好な
耐食性が得られる。
3) Fine powder material such as SiO 2 is not required for the matrix, and good corrosion resistance is obtained.

4)原料粒度次第で、気孔径コントロールが可能であ
る。
4) The pore size can be controlled depending on the raw material particle size.

5)成形時にかさ密度をコントロールすることが不要
で、品質管理が容易である。
5) It is not necessary to control the bulk density during molding, and quality control is easy.

6)均一な気孔になりやすく、通気率のバラツキが小で
ある。
6) Uniform pores are likely to be formed, and variation in air permeability is small.

7)特許請求の範囲に記載のような粒径の粒子を連続的
に配合すれば、所望の気孔径分布が容易に得られる。
7) A desired pore size distribution can be easily obtained by continuously blending particles having a particle size as described in the claims.

8)均一な気孔径なので、セラミックフィルターとして
も使用できる。
8) Since it has a uniform pore size, it can be used as a ceramic filter.

【図面の簡単な説明】[Brief description of the drawings]

第1図は従来のセラミックポーラス耐火物におけるセラ
ミック粒子の粒径と累積体積の関係及び気孔径と見掛気
孔率の関係を示すグラフである。 第2図は第1図の従来例を示す説明図である。 第3〜5図は本発明のセラミックポーラス耐火物の3つ
の例におけるセラミック粒子の粒径と累積体積の関係及
び気孔径と見掛気孔率の関係を示すグラフである。 第6図は第3〜5図の例における気孔径と気孔率の関係
をまとめて示したグラフである。 第7図は第3〜5図の例を示す説明図である。
FIG. 1 is a graph showing the relationship between the particle size and cumulative volume of ceramic particles and the relationship between pore size and apparent porosity in a conventional ceramic porous refractory. FIG. 2 is an explanatory view showing a conventional example of FIG. 3 to 5 are graphs showing the relationship between the particle size and the cumulative volume of the ceramic particles and the relationship between the pore size and the apparent porosity in three examples of the ceramic porous refractory of the present invention. FIG. 6 is a graph collectively showing the relationship between the pore diameter and the porosity in the examples of FIGS. FIG. 7 is an explanatory diagram showing an example of FIGS.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加藤 英明 愛知県刈谷市小垣江町南藤1番地 東芝 セラミックス株式会社刈谷製造所内 (72)発明者 近藤 憲生 愛知県刈谷市小垣江町南藤1番地 東芝 セラミックス株式会社刈谷製造所内 (56)参考文献 特開 昭61−97161(JP,A) 特開 平2−153871(JP,A) 実公 昭54−30339(JP,Y2) (58)調査した分野(Int.Cl.6,DB名) C04B 38/00 303 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hideaki Kato 1st Minamito, Ogakie-cho, Kariya-shi, Aichi Pref. Toshiba Ceramics Co., Ltd. Kariya Works (56) References JP-A-61-97161 (JP, A) JP-A-2-153871 (JP, A) Jikken Sho 54-30339 (JP, Y2) (58) Fields investigated (Int. Cl. 6 , DB name) C04B 38/00 303

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】複数の粒度分布からなる各種粒径のセラミ
ック粒子を互いに結合させたポーラスセラミック部材に
おいて、各粒度分布の粒径範囲を最大粒径より順に2の
平方根 で除していって区分けした場合に、最大粒径より連続し
た15種以下の粒度分布の粒径範囲に全セラミック粒子の
90重量%以上が含まれ、かつ、その15種以下の粒度分布
の粒径範囲において互いに隣り合う粒度分布の粒径範囲
に含まれるセラミック粒子の体積比が大きい方の粒径範
囲の体積%をそのすぐ下の小さい方の粒径範囲の体積%
で除した値で必ず0.5〜1.8になるように調整した連続粒
度分布系としたことを特徴とするポーラスセラミック部
材。
1. A porous ceramic member in which ceramic particles of various particle sizes having a plurality of particle size distributions are bonded to each other, the particle size range of each particle size distribution is set to the square root of 2 in order from the maximum particle size. When divided by dividing the total ceramic particles in the particle size range of 15 or less particle size distribution continuous from the maximum particle size
90% by weight or more, and the volume percentage of the larger particle size range of the ceramic particles included in the particle size range of the particle size distribution adjacent to each other in the particle size range of 15 or less particle sizes is defined as Volume% of the smaller particle size range immediately below
A porous ceramic member characterized in that it is a continuous particle size distribution system adjusted to be always 0.5 to 1.8 by a value divided by (1).
JP17014390A 1990-06-29 1990-06-29 Porous ceramic member Expired - Fee Related JP2878406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17014390A JP2878406B2 (en) 1990-06-29 1990-06-29 Porous ceramic member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17014390A JP2878406B2 (en) 1990-06-29 1990-06-29 Porous ceramic member

Publications (2)

Publication Number Publication Date
JPH0459676A JPH0459676A (en) 1992-02-26
JP2878406B2 true JP2878406B2 (en) 1999-04-05

Family

ID=15899470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17014390A Expired - Fee Related JP2878406B2 (en) 1990-06-29 1990-06-29 Porous ceramic member

Country Status (1)

Country Link
JP (1) JP2878406B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019079068A1 (en) * 2017-10-19 2019-04-25 Univation Technologies, Llc A method for the determination of particle size bimodality

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002178137A (en) * 2000-12-19 2002-06-25 Tokyo Yogyo Co Ltd Aluminum melting and holding furnace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019079068A1 (en) * 2017-10-19 2019-04-25 Univation Technologies, Llc A method for the determination of particle size bimodality
US11644404B2 (en) 2017-10-19 2023-05-09 Univation Technologies, Llc Method for the determination of particle size bimodality

Also Published As

Publication number Publication date
JPH0459676A (en) 1992-02-26

Similar Documents

Publication Publication Date Title
JPS6046213A (en) Mold for vacuum molding and manufacture thereof
JPH026040A (en) Gas-permeable stopper rod
JPH0519176Y2 (en)
JP2010525930A (en) Controlled distribution of chemicals in ceramic systems.
US4591383A (en) Apparatus and method of filtering molten metal using honeycomb structure of sintered alumina as filter element
US5696041A (en) High solids silicon nitride aqueous slurries
JP2878406B2 (en) Porous ceramic member
US3196504A (en) Cast nozzle inserts
US20230257311A1 (en) 3d ceramic printing
JP2008207238A (en) Casting mold
JP2003321286A (en) Aluminum titanate ceramics-made member for improving non-wettability against aluminum alloy melt and manufacturing method therefor
JPH05186280A (en) Production of ceramic porous body
JP3803740B2 (en) Manufacturing method of refractories for gas blowing
JPH08157266A (en) Composition for chamotte flowed-in refractory
JPH0663684A (en) Production of ceramic core for casting
US3802891A (en) Semi-permanent refractory molds and mold parts
JPH0263656A (en) Gas blowing upper nozzle for tandish sliding nozzle
JPH0952168A (en) Porous plug
JPS5910864B2 (en) Porous refractories and their manufacturing method
JPS623796B2 (en)
JP2006239704A (en) Refractory material having gas permeability for continuous casting
JPH09136157A (en) Porous upper nozzle
JP3093862B2 (en) Refractories for continuous casting
JP2953682B2 (en) High-speed slurry casting using a porous ceramics mold
JPH07157370A (en) Refractory for flowed-in casting

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080122

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080122

Year of fee payment: 9

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080122

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080122

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090122

LAPS Cancellation because of no payment of annual fees