JP2876225B2 - How to keep horticultural crops fresh - Google Patents

How to keep horticultural crops fresh

Info

Publication number
JP2876225B2
JP2876225B2 JP28973189A JP28973189A JP2876225B2 JP 2876225 B2 JP2876225 B2 JP 2876225B2 JP 28973189 A JP28973189 A JP 28973189A JP 28973189 A JP28973189 A JP 28973189A JP 2876225 B2 JP2876225 B2 JP 2876225B2
Authority
JP
Japan
Prior art keywords
ethylene
ozone
present
concentration
flask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28973189A
Other languages
Japanese (ja)
Other versions
JPH03151826A (en
Inventor
謙一 関口
恒久 植田
伊男 夏梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP28973189A priority Critical patent/JP2876225B2/en
Publication of JPH03151826A publication Critical patent/JPH03151826A/en
Application granted granted Critical
Publication of JP2876225B2 publication Critical patent/JP2876225B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は園芸作物の鮮度保持方法に関し、更に詳しく
は園芸作物の追熟、老化、変色を抑制する方法に関す
る。
Description: TECHNICAL FIELD The present invention relates to a method for maintaining freshness of horticultural crops, and more particularly to a method for suppressing ripening, aging and discoloration of horticultural crops.

(従来の技術) 園芸作物は、貯蔵中にそれ自体から発生するエチレン
等の成長促進物質によって、生理障害を起こし、その追
熟、老化、変色等が早まることが知られている。
(Prior Art) Horticultural crops are known to cause physiological disorders due to growth-promoting substances such as ethylene generated during storage and accelerate ripening, aging and discoloration.

これに対して、オゾンがエチレン等の不飽和炭化水素
化合物を迅速に酸化分解し、微生物等の殺菌にも有効で
あることが知られており、このエチレン分解作用と殺菌
効果とを利用した食品の鮮度保持が行われている(「食
品の包装」第17巻2号1−29、1986)。
On the other hand, it is known that ozone rapidly oxidatively decomposes unsaturated hydrocarbon compounds such as ethylene, and is also effective for disinfecting microorganisms. Foods utilizing this ethylene decomposing action and disinfecting effect are known. (“Packaging of Food”, Vol. 17, No. 1-29, 1986).

しかしながら、一般にエチレンを含む雰囲気気体中に
オゾンが100ppm以上の高濃度で含まれる場合にはエチレ
ンの分解も迅速に進み、殺菌効果も大きいものの、オゾ
ン濃度が100ppm未満である場合には、酸化反応が緩慢に
なるためエチレン除去効果は低下し、殺菌効果も低下す
る。更に、雰囲気中のエチレンの濃度が数〜数10ppm以
下である場合には、一層、エチレン除去効果が低下す
る。
However, in general, when ozone is contained in an atmosphere gas containing ethylene at a high concentration of 100 ppm or more, the decomposition of ethylene proceeds rapidly, and although the bactericidal effect is large, when the ozone concentration is less than 100 ppm, the oxidation reaction occurs. , The ethylene removal effect is reduced and the bactericidal effect is also reduced. Further, when the concentration of ethylene in the atmosphere is several to several tens ppm or less, the ethylene removing effect is further reduced.

ところが、実用上、雰囲気気体中のエチレン濃度が数
〜数10ppm以下の段階で迅速にエチレンを除去できなけ
れば、園芸作物の追熟、老化、変色等を防止することは
できない。
However, in practice, if ethylene cannot be rapidly removed at a stage where the ethylene concentration in the atmospheric gas is several to several tens of ppm or less, ripening, aging, discoloration, and the like of horticultural crops cannot be prevented.

それゆえ、低濃度のエチレン等の成長促進化合物を効
率よく除去する方法が求められていた。
Therefore, there has been a demand for a method for efficiently removing a low concentration of a growth promoting compound such as ethylene.

(発明が解決しようとする課題) 本発明の目的は、実用上問題となる、低濃度のエチレ
ン等の園芸作物成長促進物質を効率よく除去することが
でき、かつ、殺菌効果のすぐれた園芸作物の鮮度保持方
法を提供することにある。
(Problems to be Solved by the Invention) An object of the present invention is to provide a horticultural crop which can efficiently remove horticultural crop growth promoting substances such as ethylene at a low concentration, which is practically problematic, and has an excellent bactericidal effect. Another object of the present invention is to provide a method for maintaining freshness.

本発明者らは、この目的を達成すべく鋭意研究を行な
った結果、園芸作物の雰囲気気体を、オゾンの存在下
で、紫外線照射下、特定の半導体に接触させれば、エチ
レン等の成長促進物質が迅速に分解されることを見出
し、この知見に基いて本発明を完成するに到った。
The present inventors have conducted intensive studies to achieve this object, and as a result, when the atmospheric gas of a horticultural crop is brought into contact with a specific semiconductor under ultraviolet irradiation in the presence of ozone, the growth of ethylene and the like is promoted. The inventors have found that the substance is rapidly degraded, and have completed the present invention based on this finding.

(課題を解決するための手段) かくして本発明によれば、園芸作物の雰囲気気体を、
オゾンとの共存下で、紫外線照射下において、0.5〜5eV
の禁止帯幅を有する半導体に接触させることを特徴とす
る園芸作物の鮮度保持方法が提供される。
(Means for Solving the Problems) Thus, according to the present invention, the atmospheric gas of the horticultural crop is
0.5 to 5 eV under UV irradiation in the presence of ozone
A method for maintaining freshness of a horticultural crop, comprising contacting a semiconductor having a forbidden band width with a semiconductor.

本発明においては、園芸作物の雰囲気気体をオゾンと
の共存下で紫外線照射することが必要である。園芸作物
の雰囲気気体をオゾンと共存させるには、雰囲気気体か
らオゾンを発生させてもよく、別途に発生させたオゾン
を雰囲気気体と混合してもよい。オゾンを発生させる場
所、時期は特に限定されない。例えば、半導体層及び紫
外線ランプを設置した反応器の内部にオゾン発生器を設
置してもよく、反応器外部の別の場所で発生させてこれ
を配管で反応器に導入してもよい。
In the present invention, it is necessary to irradiate the atmospheric gas of the horticultural crop with ultraviolet light in the presence of ozone. In order for the atmospheric gas of the horticultural crop to coexist with ozone, ozone may be generated from the atmospheric gas, or ozone separately generated may be mixed with the atmospheric gas. The location and timing of generating ozone are not particularly limited. For example, an ozone generator may be installed inside a reactor in which a semiconductor layer and an ultraviolet lamp are installed, or may be generated at another place outside the reactor and introduced into the reactor by piping.

オゾンを発生させる方法としては、従来公知の方法を
採用することができる。具体的には、一対の電極の間に
誘電体を挿入し、この電極間に交流の高電圧(数kV〜数
10kV)を加え、この放電空間に空気又は酸素を通す無声
放電方式や平板又は円筒型の高純度アルミナセラミック
の表面に細線状の放電電極群を、内部には板状の誘電電
極を、それぞれタングステン電極を用いて形成し、この
両電極間に適正な高周波電圧を加え、空気又は酸素を通
す沿面放電方式や高圧水銀ランプ、キセノンランプ、重
水素ランプあるいは専用のオゾンランプ(短波長殺菌ラ
ンプ)等により通過する空気又は酸素を照射する紫外線
ランプ方式等が好適であるが、電解、化学反応、α線、
陰極線、熱等他の方法により発生させてもよい。
As a method for generating ozone, a conventionally known method can be employed. Specifically, a dielectric is inserted between a pair of electrodes, and an alternating high voltage (several kV to several kV) is applied between the electrodes.
10kV), air or oxygen is passed through this discharge space, and a thin wire discharge electrode group is placed on the surface of a flat or cylindrical high-purity alumina ceramic, a plate-like dielectric electrode is placed inside, It is formed using electrodes and a suitable high-frequency voltage is applied between the two electrodes to allow air or oxygen to pass through. An ultraviolet lamp system or the like that irradiates air or oxygen passing therethrough is preferable, but electrolysis, chemical reaction, α-ray,
It may be generated by other methods such as a cathode ray or heat.

本発明の方法において、オゾンの濃度は特に限定され
ないが、100ppm以下でよい。100ppmを超えると、成長促
進物質の分解の速度は上がるが、オゾンの有害性から園
芸作物自体への障害や処理後の雰囲気気体の放出に問題
が生じる。
In the method of the present invention, the concentration of ozone is not particularly limited, but may be 100 ppm or less. Above 100 ppm, the rate of decomposition of the growth-promoting substances increases, but the harmfulness of ozone causes problems in the horticultural crop itself and in the emission of atmospheric gases after treatment.

本発明において用いる紫外線としては、波長が400〜2
00nmの近紫外線が好ましいが、200nm以下の真空紫外線
が含まれていても差し支えない。これらの紫外線は超高
圧水銀灯、キセノン灯、低圧水銀灯を単独あるいは併用
することによって発生させうるが、放電管内に水銀と希
ガス以外のガリウム、タリウム等の第三成分を共存させ
て目的に合致した波長分布特性を有するように改良され
た光源を使用してもよい。もちろん、紫外線以外の光
線、例えば可視光線を含んでいてもよい。
The ultraviolet light used in the present invention has a wavelength of 400 to 2
Near ultraviolet rays of 00 nm are preferable, but vacuum ultraviolet rays of 200 nm or less may be included. These ultraviolet rays can be generated by using an ultra-high-pressure mercury lamp, a xenon lamp, or a low-pressure mercury lamp alone or in combination, but the mercury and a third component other than the rare gas, such as gallium and thallium, coexist in the discharge tube to meet the purpose. Light sources modified to have wavelength distribution characteristics may be used. Of course, light rays other than ultraviolet rays, for example, visible light rays may be included.

本発明において用いられる半導体は、0.5〜5eV、好ま
しくは1〜3eVの禁止帯幅を持つものであることが必要
である。
The semiconductor used in the present invention needs to have a band gap of 0.5 to 5 eV, preferably 1 to 3 eV.

このような半導体としては、例えば、二酸化スズ、酸
化亜鉛、三酸化タングステン、二酸化チタン、チタン酸
バリウム、酸化第二鉄等の金属酸化物及びその混晶物;
硫化亜鉛、硫化カドミウム、硫化鉛、セレン化亜鉛、セ
レン化カドミウム、等のカルコゲン化合物及びその混晶
物;シリコン、ゲルマニウム等のIV族元素;シリコンカ
ーバイド等のIV族化合物;ガリウム−リン、ガリウム−
ヒ素、インジウム−リン等のIII−V族化合物及びその
混晶物;ポリアセチレン、ポリピロール、ポリチオフェ
ン、ポリアニリン、ポリビニルカルバゾール等の有機半
導体を挙げることができる。
Examples of such a semiconductor include metal oxides such as tin dioxide, zinc oxide, tungsten trioxide, titanium dioxide, barium titanate, and ferric oxide, and mixed crystals thereof;
Chalcogen compounds such as zinc sulfide, cadmium sulfide, lead sulfide, zinc selenide, cadmium selenide and the like and mixed crystals thereof; Group IV elements such as silicon and germanium; Group IV compounds such as silicon carbide; gallium-phosphorus, gallium-
Group III-V compounds such as arsenic and indium-phosphorus and mixed crystals thereof; and organic semiconductors such as polyacetylene, polypyrrole, polythiophene, polyaniline, and polyvinylcarbazole can be given.

また、上記の半導体にヒ素、リン、アルミニウム、ホ
ウ素、ナトリウム、ハロゲン等の不純物をドープしたも
のも同様に使用することができる。
In addition, a semiconductor obtained by doping the above semiconductor with an impurity such as arsenic, phosphorus, aluminum, boron, sodium, or halogen can also be used.

特に、実用的な面からは、二酸化チタン、酸化亜鉛、
三酸化タングステン、酸化セリウム等の金属酸化物及び
その混晶物が好ましい。
Especially from a practical point of view, titanium dioxide, zinc oxide,
Metal oxides such as tungsten trioxide and cerium oxide and mixed crystals thereof are preferred.

更に、これらの半導体表面に金、白金、パラジウム等
の貴金属を担持することにより、触媒効果の向上をはか
ることができる。
Further, by supporting a noble metal such as gold, platinum or palladium on the surface of these semiconductors, the catalytic effect can be improved.

更に、活性炭や酸化白土等の吸着剤を併用してもよ
い。
Further, an adsorbent such as activated carbon or oxidized clay may be used in combination.

半導体の使用量は、成長促進化合物の種類、組成、混
合比、濃度、導入するオゾンの濃度、光源の種類、電力
使用量等によって異なるが、特に制限されない。
The amount of semiconductor used depends on the type, composition, mixing ratio, concentration, concentration of ozone to be introduced, type of light source, amount of power used, and the like, but is not particularly limited.

本発明において、半導体の形状は特に限定されず、適
当な支持体に塗布、含浸等により担持させる等の方法を
例示することができる。
In the present invention, the shape of the semiconductor is not particularly limited, and examples thereof include a method in which the semiconductor is supported on a suitable support by application, impregnation, or the like.

本発明において半導体に紫外線を照射する方法にも、
特に制限はなく、光源の表面又は光源の反射板等に担持
させてこれを照射するとか、あるいは、光源の周囲に、
半導体を担持させた支持体を設置してこれを照射する等
の方法が採用できるが、これらに限定されない。光源の
周囲に設置する支持体は、反応効率上は、フィルター製
造であることが好ましい。
In the present invention, the method of irradiating the semiconductor with ultraviolet light also includes
There is no particular limitation, and it is carried on the surface of the light source or the reflector of the light source and irradiated, or around the light source,
A method of arranging and irradiating a support supporting a semiconductor and irradiating the support may be adopted, but the method is not limited thereto. The support provided around the light source is preferably manufactured by a filter from the viewpoint of reaction efficiency.

園芸作物の雰囲気気体とオゾンとの共存気体を紫外線
照射下において、半導体と接触させる方法は、特に限定
されない。具体例としては、この気体をオゾン発生器及
び0.5〜5eVの禁止帯幅を有する半導体層及び該半導体を
照射する紫外線ランプを設置した反応器にバッチ方式又
は連続方式で導入する方法を示すことができる。また、
被処理気体を循環させて紫外線を繰り返し照射すること
ももちろん可能である。反応器は開放系でも密閉系でも
よく、反応器にファンを用いて送風する通風系でもよ
い。
There is no particular limitation on the method for bringing the coexisting gas of the atmospheric gas of the horticultural crop and the ozone into contact with the semiconductor under ultraviolet irradiation. As a specific example, a method of introducing this gas into a batch system or a continuous system into a reactor equipped with an ozone generator and a semiconductor layer having a band gap of 0.5 to 5 eV and an ultraviolet lamp for irradiating the semiconductor can be shown. it can. Also,
It is of course possible to circulate the gas to be treated and repeatedly irradiate the ultraviolet rays. The reactor may be an open system or a closed system, or may be a ventilation system in which a fan is blown into the reactor.

本発明の方法は、園芸作物の雰囲気気体中に硫黄酸化
物、窒素酸化物、エチレン以外の炭化水素化合物等が共
存していても有効である。
The method of the present invention is effective even when sulfur oxides, nitrogen oxides, hydrocarbon compounds other than ethylene, and the like coexist in the atmospheric gas of a horticultural crop.

(発明の効果) かくして本発明によれば、エチレン等の成長促進化合
物を効率よく分解できる。本発明の方法は、従来からの
用途である輸送、貯蔵等の流通過程における園芸作物の
鮮度保持のみでなく、一般家庭における冷蔵庫内の園芸
作物の鮮度保持にも使用できる。
(Effect of the Invention) Thus, according to the present invention, a growth promoting compound such as ethylene can be efficiently decomposed. The method of the present invention can be used not only for maintaining the freshness of horticultural crops in the distribution process such as transportation and storage, which is the conventional use, but also for maintaining the freshness of horticultural crops in refrigerators in ordinary households.

(実施例) 以下、本発明を実施例により更に詳細に説明するが、
本発明は下記実施例に限定されるものではない。なお、
本実施例において部及び%は、特に断りのない限り重量
基準である。
(Examples) Hereinafter, the present invention will be described in more detail with reference to Examples.
The present invention is not limited to the following examples. In addition,
In this example, parts and percentages are by weight unless otherwise specified.

実施例1 パイレックスガラス製の容量300mlの3つ口セパラブ
ルフラスコ(以下、単にフラスコという。)に、市販の
二酸化チタン粉末1.0gを投入したのち、市販のオゾナイ
ザー(シルバー精工社製)から導入した46ppmのオゾン
を含む空気でフラスコ内を置換して密閉した。次に、注
射器でエチレンを注入して第1表に示す初濃度とし、フ
ラスコから20cmの距離に設置した超高圧水銀灯(照度10
mw/cm2、主波長365nm)により紫外線照射を行なった。
点灯後のエチレンの濃度の経時変化をガスクロマトグラ
フィーで追跡した。結果を第1表に示す。
Example 1 A commercially available titanium dioxide powder (1.0 g) was introduced into a 300-ml Pyrex glass three-neck separable flask (hereinafter, simply referred to as a flask), and then introduced from a commercially available ozonizer (manufactured by Silver Seiko). The inside of the flask was replaced with air containing 46 ppm of ozone and sealed. Next, ethylene was injected with a syringe to obtain the initial concentration shown in Table 1, and an ultra-high pressure mercury lamp (illuminance: 10 cm) was installed at a distance of 20 cm from the flask.
mw / cm 2 , dominant wavelength 365 nm).
The change over time in the concentration of ethylene after lighting was tracked by gas chromatography. The results are shown in Table 1.

比較例1 オゾンを含む空気によるフラスコ内の置換を行わない
ほかは実施例1と同様の実験を行なった。結果を第1表
に併せて示す。
Comparative Example 1 The same experiment as in Example 1 was performed except that the atmosphere in the flask was not replaced with air containing ozone. The results are shown in Table 1.

比較例2 紫外線照射を行わないほかは実施例1と同様の実験を
行なった。結果を第1表に併せて示す。
Comparative Example 2 The same experiment as in Example 1 was performed except that no ultraviolet irradiation was performed. The results are shown in Table 1.

比較例3 フラスコ内に二酸化チタンを投入しないほかは実施例
1と同様の実験を行なった。結果を第1表に併せて示
す。
Comparative Example 3 The same experiment as in Example 1 was performed except that titanium dioxide was not charged into the flask. The results are shown in Table 1.

比較例4 フラスコ内に二酸化チタンを投入せず、紫外線照射を
行わないほかは実施例1と同様の実験を行なった。結果
を第1表に併せて示す。
Comparative Example 4 The same experiment as in Example 1 was performed except that titanium dioxide was not charged into the flask and ultraviolet irradiation was not performed. The results are shown in Table 1.

第1表の結果から、本発明の方法によりエチレンを効
率よく除去できることが分かる。
From the results in Table 1, it can be seen that ethylene can be efficiently removed by the method of the present invention.

実施例2 エチレンに代えて第2表に示す初濃度のアセトアルデ
ヒドを用いるほかは実施例2と同様の実験を行なった。
結果を第2表に示す。
Example 2 The same experiment as in Example 2 was conducted except that acetaldehyde having the initial concentration shown in Table 2 was used instead of ethylene.
The results are shown in Table 2.

第2表の結果から、本発明の方法は、アセトアルデヒ
ドの除去にも有効であることが分かる。
The results in Table 2 show that the method of the present invention is also effective for removing acetaldehyde.

実施例3 二酸化チタンに代えて第3表に示す各種半導体を使用
するほかは実施例1と同様の実験を行なった。結果を第
3表に示す。
Example 3 The same experiment as in Example 1 was performed except that various semiconductors shown in Table 3 were used instead of titanium dioxide. The results are shown in Table 3.

第3表の結果から、本発明の方法によりエチレンを効
率よく除去できることが分かる。
From the results in Table 3, it can be seen that ethylene can be efficiently removed by the method of the present invention.

実施例4 フラスコに市販の二酸化チタン粉末1.0gを投入した。
次いで、市販のオゾナイザー(シルバー精工社製)で発
生させたオゾンを第4表に示す濃度になるように添加し
た、第4表に示す濃度のエチレンを含む空気を、フラス
コに一つの口から流入させ、他の一つの口から流出させ
ながら、フラスコから20cmの距離に設置した超高圧水銀
灯(照度10mw/cm2、主波長365nm)により紫外線照射を
行ない、入口と出口でのエチレンの濃度の変化をガスク
ロマトグラフィーで測定した。また、入口と出口でのオ
ゾンの濃度の変化をガステック社製のガス検知管で測定
した。結果を第4表に示す。
Example 4 A commercially available titanium dioxide powder (1.0 g) was charged into a flask.
Then, air containing ethylene having a concentration shown in Table 4 into which ozone generated by a commercially available ozonizer (manufactured by Silver Seiko) was added to a concentration shown in Table 4 was introduced into the flask from one port. And let it flow out of the other port, and irradiate it with an ultra-high pressure mercury lamp (illuminance 10mw / cm 2 , main wavelength 365nm) installed at a distance of 20cm from the flask, and change the ethylene concentration at the inlet and outlet. Was measured by gas chromatography. The change in the concentration of ozone at the inlet and the outlet was measured with a gas detector manufactured by Gastech. The results are shown in Table 4.

比較例5 フラスコ内に二酸化チタンを投入しないほかは実施例
4と同様の実験を行なった。結果を第4表に併せて示
す。
Comparative Example 5 The same experiment as in Example 4 was performed except that titanium dioxide was not charged into the flask. The results are shown in Table 4.

実施例5 フラスコに、市販の二酸化チタン粉末1.0gを投入した
のち、フラスコ内部に設置した市販のオゾン発生用の低
圧水銀灯(照度4mW/cm2、主波長254nm)を点灯した。次
いで、第4表に示した濃度のエチレンを含む空気を、フ
ラスコに一つの口から流入させ、他の一つの口から流出
させながら、入口と出口でのエチレンの濃度変化をガス
クロマトグラフィーで測定した。なお、この場合は、オ
ゾン濃度の測定はしなかった。
Example 5 After putting 1.0 g of commercially available titanium dioxide powder into a flask, a commercially available low-pressure mercury lamp for ozone generation (illuminance: 4 mW / cm 2 , main wavelength: 254 nm) installed inside the flask was turned on. Then, while air containing ethylene having the concentration shown in Table 4 was introduced into the flask from one port and discharged from the other port, the change in ethylene concentration at the inlet and outlet was measured by gas chromatography. did. In this case, the ozone concentration was not measured.

結果を併せて第4表に示す。 The results are shown in Table 4.

第4表の結果から、本発明の方法により、効率よくエ
チレンを除去でき、しかもオゾン濃度をほぼ半減できる
ことが分かる。
From the results in Table 4, it can be seen that ethylene can be efficiently removed and the ozone concentration can be reduced by almost half by the method of the present invention.

実施例6及び比較例6 低温恒温器内に設置した内容積12のデシケーター内
に果物のキウイ10個を入れたのち、これとオゾナイザー
(シルバー精工社製)、市販の二酸化チタン粉末1.0gを
投入したフラスコ及びダイヤフラム型エアーポンプをこ
の順で、チューブで接続した。なお、デシケーター以外
は低温恒温槽外部に設置した。次いで、このデシケータ
ーを温度15℃、湿度90%以上に保ち、内部の空気をダイ
ヤフラム型エアーポンプで循環させた。このとき、エチ
レン及びアセトアルデヒドは、いずれも検出されなかっ
た。この状態で、前記フラスコをそれから20cmの距離に
設置した超高圧水銀灯(照度10mw/cm2、主波長365nm)
により常時紫外線照射しながら、1時間につき10分間、
間欠的にオゾナイザーで照射した(本発明例、実験
A)。また、比較のために、酸化チタンの投入、オゾナ
イザーでの照射及び紫外線照射のいずれをも行なわない
で同様の実験を行なった(比較例、実験B)。
Example 6 and Comparative Example 6 Ten fruit kiwis were put in a desiccator having an internal volume of 12 placed in a low-temperature thermostat, and then, an ozonizer (manufactured by Silver Seiko) and 1.0 g of commercially available titanium dioxide powder were put therein. The flask and the diaphragm type air pump were connected by a tube in this order. The parts other than the desiccator were installed outside the low-temperature constant temperature bath. Next, the desiccator was kept at a temperature of 15 ° C. and a humidity of 90% or more, and the air inside was circulated by a diaphragm type air pump. At this time, neither ethylene nor acetaldehyde was detected. In this state, an ultra-high pressure mercury lamp (illuminance: 10 mw / cm 2 , dominant wavelength: 365 nm) with the flask placed at a distance of 20 cm therefrom
10 minutes per hour while constantly irradiating with UV light,
Irradiation was performed intermittently with an ozonizer (Example of the present invention, Experiment A). Further, for comparison, a similar experiment was carried out without any of the addition of titanium oxide, irradiation with an ozonizer, and ultraviolet irradiation (Comparative Example, Experiment B).

2週間後にデシケーター中のエチレン及びアセトアル
デヒドの濃度をガスクロマトグラフィーで測定したとこ
ろ、実験Aではエチレン及びアセトアルデヒドを検出す
ることができなかったのに対して、実験Bでは10ppmの
エチレン及び6ppmのアセトアルデヒドが検出された。
Two weeks later, when the concentrations of ethylene and acetaldehyde in the desiccator were measured by gas chromatography, it was not possible to detect ethylene and acetaldehyde in Experiment A, whereas in Experiment B, 10 ppm of ethylene and 6 ppm of acetaldehyde were detected. was detected.

また、屈折計(アタゴ社製)でキウイの糖度を調べた
ところ、実験Aでは糖度16であり、ほぼ実験前の糖度
(17)と差がなかったのに対して、実験Bでは糖度が16
(実験前)から13(実験後)に低下していた。更に、実
験Bでは実験Aに比較してキウイが柔らかくなってい
た。
In addition, when the sugar content of the kiwi was examined with a refractometer (manufactured by Atago Co., Ltd.), the sugar content was 16 in Experiment A, which was almost the same as the sugar content (17) before the experiment.
It decreased from (before the experiment) to 13 (after the experiment). Furthermore, in Experiment B, the kiwi was softer than in Experiment A.

この結果から、本発明の方法は園芸作物の鮮度保持に
効果があることが明らかである。
From these results, it is clear that the method of the present invention is effective in maintaining the freshness of horticultural crops.

実施例7 実施例6及び比較例6と同じ実験をメロン2個につい
て実施した。その結果、本発明の方法によるときは、メ
ロンに外観に変化はなかったが、比較例では、メロン2
個のいずれにも皮の一部に白いカビが発生した。
Example 7 The same experiment as in Example 6 and Comparative Example 6 was performed for two melons. As a result, there was no change in the appearance of the melon when the method of the present invention was used.
Each of the individuals developed white mold on part of the skin.

この結果から、本発明の方法は園芸作物の鮮度保持に
効果があることが明らかである。
From these results, it is clear that the method of the present invention is effective in maintaining the freshness of horticultural crops.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−252244(JP,A) 特開 昭64−56684(JP,A) (58)調査した分野(Int.Cl.6,DB名) A23B 7/00 - 9/34 A01F 25/00 A01N 3/00 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-1-252244 (JP, A) JP-A-64-56684 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) A23B 7/00-9/34 A01F 25/00 A01N 3/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】園芸作物の雰囲気気体を、オゾンとの共存
下で、紫外線照射下において、0.5〜5eVの禁止帯幅を有
する半導体に接触させることを特徴とする園芸作物の鮮
度保持方法。
1. A method for maintaining freshness of a horticultural crop, comprising bringing an atmospheric gas of the horticultural crop into contact with a semiconductor having a band gap of 0.5 to 5 eV under ultraviolet irradiation in the presence of ozone.
JP28973189A 1989-11-07 1989-11-07 How to keep horticultural crops fresh Expired - Fee Related JP2876225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28973189A JP2876225B2 (en) 1989-11-07 1989-11-07 How to keep horticultural crops fresh

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28973189A JP2876225B2 (en) 1989-11-07 1989-11-07 How to keep horticultural crops fresh

Publications (2)

Publication Number Publication Date
JPH03151826A JPH03151826A (en) 1991-06-28
JP2876225B2 true JP2876225B2 (en) 1999-03-31

Family

ID=17747026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28973189A Expired - Fee Related JP2876225B2 (en) 1989-11-07 1989-11-07 How to keep horticultural crops fresh

Country Status (1)

Country Link
JP (1) JP2876225B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2831467B1 (en) * 2001-10-29 2003-12-19 Sicat PHOTOCATALYST AND METHOD FOR PURIFYING GASEOUS EFFLUENTS BY OXIDATION PHOTOCATALYSIS
CN103469272B (en) * 2013-09-04 2015-11-25 浙江大学 Tungsten trioxide/polyanilinecore-shell core-shell nanowire array radiochromic film and preparation method thereof
US9883693B1 (en) * 2016-07-26 2018-02-06 Donald Cradic Moisture removal system

Also Published As

Publication number Publication date
JPH03151826A (en) 1991-06-28

Similar Documents

Publication Publication Date Title
TW201532954A (en) Composition for producing chlorine dioxide
KR102007900B1 (en) Atmospheric pressure plasma system for sterilization of agricultural products
KR20000071562A (en) Method of and apparatus for cleaning semiconductor device
KR100342786B1 (en) Method for decomposing bromic acid by photocatalyst and apparatus therefor
JP2876225B2 (en) How to keep horticultural crops fresh
EP3210475B1 (en) Ethylene disposal apparatus and ethylene disposal method using same
Mok et al. Removal of dilute ethylene using repetitive cycles of adsorption and plasma-catalytic oxidation over Pd/ZSM-5 catalyst
Warneck Reactions of 1 D oxygen atoms in the photolysis of carbon dioxide
Ishikawa et al. Diagnostics of plasma-biological surface interactions in low pressure and atmospheric pressure plasmas
JPH03228639A (en) Agent for removing horticultural crop growth-accelerating substance and method for retaining freshness of horticultural crop
CN1036051C (en) Optical catalyst for air purification
EP0242941B1 (en) Process and apparatus for the deodorization of air
JP7039849B2 (en) Processing method
JP2890356B2 (en) How to keep horticultural crops fresh
JPH0532321B2 (en)
JP2006095520A (en) Manufacturing method of heteroatom introduction-type titanium oxide photocatalyst
RU2040935C1 (en) Method for sterilizing things
JP6728962B2 (en) Water treatment equipment
CN101068579A (en) Process and device for sterilising ambient air
JPH0194998A (en) Photochemical treatment of waste water
KR20030053232A (en) Photocatalytic ethylene removal reactor for maintaining freshness of fruits and vegetables
CN112495163B (en) Chlorine dioxide preparation capable of generating free radicals and preparation method and application thereof
JPH10113657A (en) Treating device and method for harmful material
JP2561901B2 (en) Active oxygen production equipment and active oxygen water production equipment
JPH07180861A (en) Method and equipment for sterilizng microorganism or the like being present in moving gas

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080122

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090122

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees