JP2872396B2 - Ultrasonic signal processor - Google Patents

Ultrasonic signal processor

Info

Publication number
JP2872396B2
JP2872396B2 JP2323164A JP32316490A JP2872396B2 JP 2872396 B2 JP2872396 B2 JP 2872396B2 JP 2323164 A JP2323164 A JP 2323164A JP 32316490 A JP32316490 A JP 32316490A JP 2872396 B2 JP2872396 B2 JP 2872396B2
Authority
JP
Japan
Prior art keywords
delay
phase
mixing
signal
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2323164A
Other languages
Japanese (ja)
Other versions
JPH04194769A (en
Inventor
景義 片倉
俊雄 小川
真一 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Ltd
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Medical Corp filed Critical Hitachi Ltd
Priority to JP2323164A priority Critical patent/JP2872396B2/en
Priority to US07/797,025 priority patent/US5271276A/en
Publication of JPH04194769A publication Critical patent/JPH04194769A/en
Application granted granted Critical
Publication of JP2872396B2 publication Critical patent/JP2872396B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は超音波により物体の検出あるいは検査を行う
装置に関し、とくに複数の超音波トランスデューサ素子
からの受信信号を整相する整相処理に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for detecting or inspecting an object using ultrasonic waves, and particularly to a phasing process for phasing received signals from a plurality of ultrasonic transducer elements.

〔従来の技術〕[Conventional technology]

配列する複数のトランスデューサ素子で検出された超
音波の受波信号にそれぞれ遅延を与えることにより所望
の方位、もしくは距離からの超音波の波面を同位相と
し、これを加え合せて改善された方位分解能を得る超音
波装置が物体のキズの検査,ソナーあるいは生体の超音
波断層像の撮像などの種々の分野で用いられる。
The azimuth resolution is improved by adding delays to the received wave signals of the ultrasonic waves detected by the arrayed transducer elements to make the ultrasonic waves from the desired azimuth or distance in phase, and adding them together. Is used in various fields such as inspection of a flaw of an object, sonar or imaging of an ultrasonic tomographic image of a living body.

また、特開昭52−20857号、及び米国特許第4,140,022
号には位相がそれぞれ制御された参照信号と各受信信号
とを混合することにより受信信号を低周波信号に周波数
移動し、その後それぞれ遅延を与えて加算する装置が示
される。これらの装置では、周波数移動整相法が行なわ
れると言うことができる。
Also, JP-A-52-20857, and U.S. Pat.
In the figure, a device is shown in which a received signal is frequency-shifted to a low-frequency signal by mixing a reference signal whose phase is controlled respectively with each received signal, and thereafter each is delayed and added. In these devices, it can be said that the frequency shift phasing method is performed.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上記のいずれの整相法をとる装置においても、位相を
合せるべき方位もしくは距離の変更に応じて個々の信号
への遅延量を変更する必要がある。限られた装置コスト
でこれを実現するため、遅延を与えるための遅延部は、
限られた値の複数の遅延時間の中からその受信信号につ
いての遅延時間の理論値を近似できる遅延時間を選択し
て実行する構成とするのが一般的である。つまり、遅延
時間は、ある量子化単位の整数倍の値の中から選ばれ
る。
In any of the devices employing the above phasing method, it is necessary to change the amount of delay to each signal in accordance with the change in the azimuth or distance to be matched. In order to achieve this with limited equipment cost, the delay unit to give a delay,
Generally, a configuration is adopted in which a delay time that can approximate the theoretical value of the delay time of the received signal is selected from a plurality of delay times having a limited value and executed. That is, the delay time is selected from values that are integral multiples of a certain quantization unit.

上記した周波数移動整相法では、遅延部の遅延時間の
量子化単位を単純な整相法より大きくしても十分な方位
分解能が得られる。例えば、上記特開昭52−20857号に
記載されたひとつの例では、混合により周波数移動され
た各受信信号は、所定周期でサンプリングされ、そのサ
ンプリング周期の整数倍の遅延量が実現されているが、
その標本化周期を比較的大きくすることができる。ただ
し、各受信信号に混合する参照信号の位相制御は、整相
すべき波面に応じて十分に精密に行う必要があり、この
ような周波数移動部を構成するのに困難が伴なってい
た。
In the above-described frequency shift phasing method, a sufficient azimuth resolution can be obtained even if the quantization unit of the delay time of the delay unit is made larger than that of the simple phasing method. For example, in one example described in Japanese Patent Application Laid-Open No. 52-20857, each received signal frequency-shifted by mixing is sampled at a predetermined cycle, and a delay amount that is an integral multiple of the sampling cycle is realized. But,
The sampling period can be made relatively large. However, the phase control of the reference signal mixed with each received signal needs to be performed with sufficient precision in accordance with the wavefront to be phased, and it has been difficult to configure such a frequency shifter.

〔課題を解決するための手段〕[Means for solving the problem]

微少遅延後に本発明では、周波数移動のために混合す
る参照信号として複数の受信信号に共通の、つまり共通
位相の参照信号を用いる。そのために、混合の前段に微
少遅延回路を挿入し、さらに、混合出力をそれぞれ所定
位相だけ移相する移相器を用いる。
After a minute delay, the present invention uses a reference signal common to a plurality of received signals, that is, a reference signal having a common phase, as a reference signal to be mixed for frequency shift. For this purpose, a minute delay circuit is inserted before the mixing, and a phase shifter for shifting the mixed output by a predetermined phase is used.

〔作用〕[Action]

複数の受信素子にて受信した信号の位相合わせを行い
加算することにより方位分解能が形成される。従来の構
成は第2図に示すものであるが、ここで第2図a)は単
純な構成であり、受信素子TR1〜TRNからの各信号を微少
遅延回路により遅延させ、充分小さい遅延時間τ′を単
位として遅延時間をそれぞれ設定可能な量子化遅延回路
QDによりそれぞれ遅延させ、加算することにより目的信
号のみを受信する。この構成によるとτ′が小さいこと
から量子化遅延回路の構成が困難となる。また第2図
b)が筆者の考案による周波数移動法でありTRからの信
号と、時間を精密に制御した参照信号Rとの乗算等によ
る混合処理を行い低周波信号に変換した後、比較的大き
な遅延時間τ″を単位として設定可能な量子化遅延回路
QDにより遅延させ、加算することによる、量子化遅延回
路を簡単化する構成である。この構成によると混合部の
構成が困難となる。また、波形の劣化がある。
The azimuth resolution is formed by adjusting the phases of the signals received by the plurality of receiving elements and adding them. Although the conventional configuration is that shown in Figure 2, where Figure 2 a) is a simple construction, is delayed by a minute delay circuits each signal from the receiver elements TR 1 to Tr N, sufficiently small delay Quantization delay circuit that can set delay time in units of time τ '
Only the target signal is received by delaying and adding by QD. According to this configuration, since τ ′ is small, the configuration of the quantization delay circuit becomes difficult. FIG. 2 (b) shows a frequency shift method according to the inventor's inventor, which performs a mixing process such as multiplication of a signal from the TR and a reference signal R whose time is precisely controlled to convert the signal into a low-frequency signal. Quantization delay circuit that can be set in units of large delay time τ ″
This is a configuration for simplifying a quantization delay circuit by delaying and adding by QD. According to this configuration, the configuration of the mixing section becomes difficult. In addition, there is deterioration of the waveform.

上記本発明の構成では、微少遅延をそれぞれ行なった
後同一位相の参照信号との混合処理を行う構成であるた
め、混合部の構成が簡単となり、同時に周波数が低周波
に移動していることから、主遅延部の周波数特性に関す
る要求も緩和されこの部分の構成も簡単になる。
In the configuration of the present invention, since the mixing process with the reference signal having the same phase is performed after each of the small delays, the configuration of the mixing unit is simplified, and the frequency shifts to a low frequency at the same time. In addition, requirements on the frequency characteristics of the main delay section are relaxed, and the configuration of this section is simplified.

〔実施例〕〔Example〕

以下、図面を用いて実施例を詳細に説明する。第1図
においてTR1〜TRNが配列する超音波送受波器(トランス
デューサ素子)であり、SDが微少遅延回路、Mが混合
器、MDが遅延時間τMnなる量子化単位で各々の遅延時間
が設定可能な量子化遅延回路、ADが加算器である。
Hereinafter, embodiments will be described in detail with reference to the drawings. In FIG. 1, TR 1 to TR N are arranged ultrasonic transducers (transducer elements), SD is a minute delay circuit, M is a mixer, and MD is each delay time in a quantization unit of delay time τ Mn. Is a quantizing delay circuit that can be set, and AD is an adder.

図示しない送信用の回路から素子TR1〜TRNの一部に送
信信号が印加され、もって超音波パルスが対象に向けて
送波される。これにより生じる反射音波が素子TR1〜TRN
のそれぞれで検出される。各受信信号は微少遅延回路SD
でそれぞれ遅延を受けた後、混合器Mで参照信号発生器
RGからの共通の参照信号とそれぞれ混合される。混合に
より生じた低周波数成分は、移相器PSでそれぞれ特定の
移相を受けた後、量子化遅延回路MDでそれぞれ遅延を受
け、加算器ADで加算されて整相された受信信号ω
(t)となる。
Transmitting signals from the circuit for transmission, not shown in the part of the element TR 1 to Tr N is applied, the ultrasonic pulses are transmit toward the target with. Reflective wave element TR 1 to Tr N Thereby resulting
Is detected in each of the. Each received signal is a minute delay circuit SD
After each delay at the mixer M, the reference signal generator
Each is mixed with a common reference signal from RG. The low-frequency components generated by the mixing are respectively subjected to a specific phase shift by the phase shifter PS, then delayed by the quantization delay circuit MD, added by the adder AD, and phase-adjusted to obtain the received signal ω.
n (t).

中心周波数がωなる送信信号をs(t)とすると s(t)=A(t)exp(jωSt) と近似できる。ここで、A(t)は送信信号の包絡線形
状である。この送信信号による反射信号の第n素子によ
る受信信号un(t)は音波の伝搬時間をτとすること
により un(t)=s(t−τ) =A(t−τ)exp{jω(t−τ)} となる。本方式では、このun(t)をSDにより時間τSn
だけ遅延させ,fn(t)とする。この信号fn(t)は、M
Dにより同相と出来るために fn(t)=A(t+τMn)exp{jω(t+
τMn)} なる信号である。ここで、τSn+τMn=τである。こ
の信号と参照信号h(t)との乗算を行なう。ここで、
本方式においてはh(t)は全素子チャネルに共通で、 h(t)=exp{jωdt)} である。このため、乗算結果をgn(t)とすると gn(t)=fn(t)h(t) =A(t+τMn) ・exp[j{(ω−ω)t+ωτMn}] =A(t+τMn) ・exp[j{ω′t−ωτMn}] =A(t+τMn) ・exp[j{ω′t+(ω′+ω)τMn}] =A(t+τMn) ・exp[j{ω′(t+τMn)+ωτMn}] である。ここでω′は移動後の周波数に相当し ω−ω′=ω である。この波形がMDによりτMnなる時間の遅延処理を
受けた信号vn(t)は vn(t)=gn(t−τMn) =A(t)exp[jω′t+ωτMn] =A(t)exp[jω′t+2πτMn] となる。ここでτは参照信号の周期であり ω=2π/τ である。この信号においては、τMnはnに依存して異な
るため、これらを加算した結果である は、位相が一般的には一致せず、加算回路ADの出力にて
所望の位置からの反射信号の振幅は成長しない。そこで
本方式においてはの第1図PSにしめす移相器により位相
φだけ混合器出力の位相を回転する。ここで φ=−2πτMn と設定することにより、vn″(t)が vn″(t)=A(t)exp[jω′t] と同一波形となり、これらの加算結果であるw″(t)
と大きく成長させることができる。
When the transmission signal center frequency is omega S and s (t) can be approximated by s (t) = A (t ) exp (jω S t). Here, A (t) is the envelope shape of the transmission signal. Received signal u n by the n-th element of the reflected signal by the transmission signal (t) u n is by the propagation time of the sound wave and τ n (t) = s ( t-τ n) = A (t-τ n ) Exp {jω S (t−τ n )}. In this method, the time tau Sn by SD this u n (t)
And delay by f n (t). This signal f n (t) is M
To be in phase by D, f n (t) = A (t + τ Mn ) exp {jω S (t +
τ Mn )}. Here, τ Sn + τ Mn = τ n . This signal is multiplied by a reference signal h (t). here,
In this method, h (t) is common to all element channels, and h (t) = exp {jω d t)}. Therefore, assuming that the multiplication result is g n (t), g n (t) = f n (t) h (t) = A (t + τ Mn ) · exp [j {(ω S −ω d ) t + ω S τ Mn }] = A (t + τ Mn ) · exp [j {ω′t−ω S τ Mn }] = A (t + τ Mn ) · exp [j {ω′t + (ω ′ + ω d ) τ Mn }] = A ( t + τ Mn ) · exp [j {ω ′ (t + τ Mn ) + ω d τ Mn }]. Here, ω ′ corresponds to the frequency after the movement, and ω S −ω ′ = ω d . The signal v n (t) obtained by subjecting this waveform to a time delay of τ Mn by the MD is v n (t) = g n (t−τ Mn ) = A (t) exp [jω′t + ω d τ Mn ] = A (t) exp [jω't + 2πτ Mn / τ d ]. Here, τ d is the period of the reference signal, and ω d = 2π / τ d . In this signal, τ Mn differs depending on n, and is the result of adding these. In general, the phases do not match, and the amplitude of the reflected signal from the desired position does not grow at the output of the adder circuit AD. Therefore the phase shifter shown in the first diagram PS of the present method rotates only mixer output of the phase the phase phi n. Here, by setting φ n = −2πτ Mn / τ d , v n ″ (t) has the same waveform as v n ″ (t) = A (t) exp [jω′t], and the addition result of these W ″ (t)
To And can grow big.

ここで、固定の位相角に関しては線形であることか
ら、第3図に示す構成のようにfn(t)の位相をPSによ
りφだけ回転させることにより、同様にvn″(t)が vn″(t)=A(t)exp[jω′t] と同一波形となり、これらの加算結果であるw″(t)
を大きく成長させることができる。
Here, since the fixed phase angle is linear, by rotating the phase of f n (t) by φ n by PS as in the configuration shown in FIG. 3, similarly, v n ″ (t) Has the same waveform as v n ″ (t) = A (t) exp [jω′t], and the result of addition of these is w ″ (t)
Can be greatly grown.

ここで、I及びLを整数とし、τMnを τMn=(I/L)τ と設定すると、信号vn(t)は vn(t)=gn(t−τMn) =A(t)exp[jω′t+2πτMn] =A(t)exp[jω′t+2πI/L] となる。このため、PSの移相量は L=1の場合には常にφ≡0 L=2の場合にはφは0あるいはπの二種類 L=Lの場合の場合にはL種類 の位相回転量に限定され、PSが不要あるいは位相反転回
路にて構成可能となり装置が簡易化される。
Here, the I and L is an integer, when the tau Mn is set to τ Mn = (I / L) τ d, the signal v n (t) is v n (t) = g n (t-τ Mn) = A (t) becomes exp [jω't + 2πτ Mn / τ d] = a (t) exp [jω't + 2πI / L]. For this reason, the phase shift amount of the PS is always φ n ≡0 when L = 1, φ n is 0 or π when L = 2, and L types of phases when L = L. The amount of rotation is limited, and PS is not required or can be configured with a phase inversion circuit, thereby simplifying the device.

ここで、PSの構成としては通常の移相器のほかに遅延
線を用いることも可能である。
Here, as the configuration of the PS, a delay line can be used in addition to a normal phase shifter.

以上は説明の簡単のために複素信号として取り扱って
きたが、この構成に限定されるものではなく、実部ある
いは虚部のみによる構成も簡易構成として当然可能であ
る。
Although the above has been treated as a complex signal for the sake of simplicity, the present invention is not limited to this configuration, and a configuration using only a real part or an imaginary part is naturally possible as a simple configuration.

〔発明の効果〕〔The invention's effect〕

本方式は、波形の劣化を受けない特長を有する。更
に、ω′は低周波へ移動したあとの信号周波数であり、
MDの構成が簡単となる。また、参照信号h(t)は全信
号に共通であり、混合部の構成も大幅に簡単となる。
This method has the feature of not being affected by waveform deterioration. Further, ω ′ is a signal frequency after moving to a low frequency,
The MD configuration is simplified. Further, the reference signal h (t) is common to all signals, and the configuration of the mixing unit is greatly simplified.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明の一実施例の基本構成を説明するブロ
ック図。 第2図は、従来方式の構成説明図。 第3図は、本発明の他実施例の構成を説明するブロック
図。 TR……送受波器、SD……微少遅延回路、M……混合器、
MD……量子化遅延回路、AD……加算器、RG……参照信号
発生器、PS……位相回転器、PC……位相制御回路。
FIG. 1 is a block diagram illustrating a basic configuration of an embodiment of the present invention. FIG. 2 is a configuration explanatory view of a conventional system. FIG. 3 is a block diagram illustrating the configuration of another embodiment of the present invention. TR: Transceiver, SD: Micro delay circuit, M: Mixer,
MD: Quantization delay circuit, AD: Adder, RG: Reference signal generator, PS: Phase rotator, PC: Phase control circuit.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 近藤 真一 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (56)参考文献 特開 平4−194770(JP,A) 特開 平4−194771(JP,A) 特開 平3−94738(JP,A) 特開 平3−291580(JP,A) 特開 平4−38940(JP,A) 特開 昭63−209632(JP,A) 特開 昭58−141142(JP,A) 実開 昭55−158706(JP,U) 特公 平5−32709(JP,B2) 特公 平1−27394(JP,B2) (58)調査した分野(Int.Cl.6,DB名) G01S 15/89 G01S 7/52 G01N 29/22 A61B 8/00 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shinichi Kondo 1-280 Higashi Koikebo, Kokubunji-shi, Tokyo Inside the Central Research Laboratory, Hitachi, Ltd. (56) References JP-A-4-194770 (JP, A) JP-A-4 JP-A-94771 (JP, A) JP-A-3-94738 (JP, A) JP-A-3-291580 (JP, A) JP-A-4-38940 (JP, A) JP-A-63-209632 (JP, A) JP-A-58-141142 (JP, A) JP-A-55-158706 (JP, U) JP-B 5-32709 (JP, B2) JP-B 1-227394 (JP, B2) (58) Field (Int.Cl. 6 , DB name) G01S 15/89 G01S 7/52 G01N 29/22 A61B 8/00

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】複数の受信信号を信号処理して映像化する
超音波信号処理装置において,前記各受信信号に微小時
間の遅延時間を与える複数の第1の遅延手段と,該各第
1の遅延手段の出力に対して共通の参照信号を混合する
混合手段と,該混合手段の出力の位相を変化させる複数
の移相手段と,該各移相手段の出力を遅延させる第2の
遅延手段と,該第2の遅延手段により遅延された各出力
を加算する加算手段とを有することを特徴とする超音波
信号処理装置。
An ultrasonic signal processing apparatus for processing a plurality of received signals to form an image by performing signal processing, wherein a plurality of first delay means for giving a short delay time to each of the received signals; Mixing means for mixing a common reference signal with the output of the delay means, a plurality of phase shift means for changing the phase of the output of the mixing means, and second delay means for delaying the output of each phase shift means And an adding means for adding the outputs delayed by the second delay means.
【請求項2】前記参照信号の周期と前記第2の遅延手段
による遅延時間との比が整数比であることを特徴とする
請求項1に記載の超音波信号処理装置。
2. The ultrasonic signal processing apparatus according to claim 1, wherein a ratio of a period of said reference signal to a delay time of said second delay means is an integer ratio.
【請求項3】複数の受信信号を信号処理して映像化する
超音波信号処理装置において,前記各受信信号に微小時
間の遅延時間を与える複数の第1の遅延手段と,該各第
1の遅延手段の出力の位相を変化させる複数の移相手段
と,該各移相手段の出力に対して共通の参照信号を混合
する混合手段と,該混合手段により混合された各出力を
遅延させる第2の遅延手段と,該第2の遅延手段により
遅延された各出力を加算する加算手段とを有することを
特徴とする超音波信号処理装置。
3. An ultrasonic signal processing apparatus for processing a plurality of received signals to form an image by performing signal processing, wherein a plurality of first delay means for giving a short delay time to each of the received signals; A plurality of phase shifting means for changing the phase of the output of the delay means, a mixing means for mixing a common reference signal with the output of each of the phase shifting means, and a second means for delaying each output mixed by the mixing means. 2. An ultrasonic signal processing apparatus comprising: a second delay unit; and an adding unit that adds each output delayed by the second delay unit.
【請求項4】前記参照信号の周期と前記第2の遅延手段
による遅延時間との比が整数比であることを特徴とする
請求項3に記載の超音波信号処理装置。
4. The ultrasonic signal processing apparatus according to claim 3, wherein a ratio between a period of said reference signal and a delay time of said second delay means is an integer ratio.
JP2323164A 1990-11-28 1990-11-28 Ultrasonic signal processor Expired - Lifetime JP2872396B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2323164A JP2872396B2 (en) 1990-11-28 1990-11-28 Ultrasonic signal processor
US07/797,025 US5271276A (en) 1990-11-28 1991-11-25 Phase regulating apparatus of ultrasonic measuring devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2323164A JP2872396B2 (en) 1990-11-28 1990-11-28 Ultrasonic signal processor

Publications (2)

Publication Number Publication Date
JPH04194769A JPH04194769A (en) 1992-07-14
JP2872396B2 true JP2872396B2 (en) 1999-03-17

Family

ID=18151797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2323164A Expired - Lifetime JP2872396B2 (en) 1990-11-28 1990-11-28 Ultrasonic signal processor

Country Status (1)

Country Link
JP (1) JP2872396B2 (en)

Also Published As

Publication number Publication date
JPH04194769A (en) 1992-07-14

Similar Documents

Publication Publication Date Title
US5797846A (en) Method to control frame rate in ultrasound imaging
US6790182B2 (en) Ultrasound system and ultrasound diagnostic apparatus for imaging scatterers in a medium
JPH0614928A (en) Beam former
JPH024292B2 (en)
JP2000157548A (en) Method and system for imaging ultrasonic wave scattered body
US4598589A (en) Method of CW doppler imaging using variably focused ultrasonic transducer array
JP4039642B2 (en) Ultrasonic beam forming device
EP0179073A1 (en) Hybrid non-invasive ultrasonic imaging system.
Kidav et al. Architecture and FPGA prototype of cycle stealing DMA array signal processor for ultrasound sector imaging systems
JP6819184B2 (en) Ultrasonic measuring device and control method of ultrasonic measuring device
US5476098A (en) Partially coherent imaging for large-aperture phased arrays
JPH078492A (en) Ultrasonic diagnostic device
JP2872396B2 (en) Ultrasonic signal processor
JP2928627B2 (en) Ultrasonic signal processor
US5271276A (en) Phase regulating apparatus of ultrasonic measuring devices
US5127418A (en) Ultrasonic diagnostic apparatus
JP4395558B2 (en) Ultrasonic diagnostic equipment
JPH10127635A (en) Ultrasonic diagnostic system
JP3502700B2 (en) Ultrasound diagnostic imaging equipment
JPH1073653A (en) Ultrasonic wave signal processor
JPH04194770A (en) Processor for ultrasonic signal
JPH0722582B2 (en) Ultrasonic diagnostic equipment
JPS5812022B2 (en) ultrasound imaging device
JPH09133761A (en) Pulse compression device and ultrasonic diagnostic device
JPS58141139A (en) Ultrasonic wave transmitting and receiving system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080108

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090108

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100108

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100108

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110108

Year of fee payment: 12

EXPY Cancellation because of completion of term