JP2870764B2 - Current measuring device with automatic calibration function - Google Patents

Current measuring device with automatic calibration function

Info

Publication number
JP2870764B2
JP2870764B2 JP63192422A JP19242288A JP2870764B2 JP 2870764 B2 JP2870764 B2 JP 2870764B2 JP 63192422 A JP63192422 A JP 63192422A JP 19242288 A JP19242288 A JP 19242288A JP 2870764 B2 JP2870764 B2 JP 2870764B2
Authority
JP
Japan
Prior art keywords
current
voltage
calibration
operational amplifier
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63192422A
Other languages
Japanese (ja)
Other versions
JPH0240567A (en
Inventor
直司 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ADOBANTESUTO KK
Original Assignee
ADOBANTESUTO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ADOBANTESUTO KK filed Critical ADOBANTESUTO KK
Priority to JP63192422A priority Critical patent/JP2870764B2/en
Publication of JPH0240567A publication Critical patent/JPH0240567A/en
Application granted granted Critical
Publication of JP2870764B2 publication Critical patent/JP2870764B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は例えば高抵抗素子の電流−電圧特性を測定
するような場合に用いる電流測定装置に関し、特に自動
校正機能を付加した電流測定装置に関する発明である。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a current measuring device used for measuring, for example, current-voltage characteristics of a high resistance element, and more particularly to a current measuring device having an automatic calibration function. It is an invention.

「従来の技術」 第5図に従来の電流測定装置を示す。図中10は電流測
定装置全体を指す。電流測定装置10は演算増幅器11と、
電流検出用抵抗器R1,R2,R3と、これら電流検出用抵抗
器R1,R2,R3を選択的に演算増幅器11の入力端子と出力
端子の間に接続するレンジ切替スイッチS1,S2,S3と、
演算増幅器11から出力される電圧信号をディジタル信号
に変換するAD変換器15と、このAD変換器15を制御するこ
と、補正演算を行なうこと、表示器16に測定結果を表示
すること等を実行するマイクロコンピュータ17と、この
マイクロコンピュータ17に付設されたメモリ18とによっ
て構成される。
[Prior Art] FIG. 5 shows a conventional current measuring device. In the figure, reference numeral 10 indicates the entire current measuring device. The current measuring device 10 includes an operational amplifier 11,
A range switch for selectively connecting the current detection resistors R 1 , R 2 , and R 3 and the current detection resistors R 1 , R 2 , and R 3 between the input terminal and the output terminal of the operational amplifier 11. S 1 , S 2 , S 3 ,
An AD converter 15 that converts the voltage signal output from the operational amplifier 11 into a digital signal, and controls the AD converter 15, performs a correction operation, displays a measurement result on a display 16, and the like. And a memory 18 attached to the microcomputer 17.

被測定電流IXは入力端子19を通じてレンジ切替スイッ
チS1〜S3によって選択された電流検出用抵抗器R1,R2
R3の何れにか流れ、電流検出用抵抗器R1,R2,R3の何れ
かに電圧降下を生じさせる。この電圧降下に相当する電
圧が電圧信号として出力され、AD変換されて表示器16に
表示される。
The current to be measured IX is supplied to the current detection resistors R 1 , R 2 , and R 3 selected by the range change switches S 1 to S 3 through the input terminal 19.
Flow or to any of R 3, causes a voltage drop in any of the current detecting resistor R 1, R 2, R 3 . A voltage corresponding to this voltage drop is output as a voltage signal, AD converted, and displayed on the display 16.

つまり演算増幅器11と、電流検出用抵抗器R1〜R3によ
って電流−電圧変換器が構成される。演算増幅器11は高
入力インピーダンス−低出力インピーダンスを実現する
インピーダンス変換器として動作する。
That is, the operational amplifier 11 and the current detection resistors R 1 to R 3 constitute a current-voltage converter. The operational amplifier 11 operates as an impedance converter that realizes a high input impedance-low output impedance.

この電流測定装置10の測定精度は電流検出用抵抗器R1
〜R3の抵抗値によって決められる。このため従来この電
流測定装置10を校正するために電流検出用抵抗器R1〜R3
と直列に抵抗値調整用として可変抵抗器を接続したり、
或はマイクロコンピュータ17に付設したメモリ18に電流
検出用抵抗器R1〜R3の校正係数を記憶させ、測定の都度
この校正係数を測定結果又は各電流検出用抵抗器R1〜R3
の抵抗値に乗算して補正している。
The measurement accuracy of this current measuring device 10 is a current detecting resistor R 1
It is determined by the resistance value of the to R 3. Therefore, in order to calibrate the current measuring device 10 conventionally, the current detecting resistors R 1 to R 3
Connect a variable resistor for resistance adjustment in series with
Or stores the calibration coefficient of the current detecting resistor R 1 to R 3 in the memory 18 which is attached to the microcomputer 17, the calibration coefficient measurement result or the current detection resistor R 1 to R 3 in every measurement
Is corrected by multiplying the resistance value.

「発明が解決しようとする課題」 電流検出用抵抗器R1〜R3のそれぞれに抵抗値調整用の
可変抵抗器を直列に接続するか、又は各電流検出用抵抗
器R1〜R3の校正係数をメモリ18に記憶させる方法の何れ
にしても各レンジ毎に校正を行なわなくてはならない。
Connect the variable resistor for resistance adjustment to each of the current detecting resistor R 1 to R 3 "0005" in series, or the current detection resistor R 1 to R 3 In any of the methods of storing the calibration coefficients in the memory 18, the calibration must be performed for each range.

このため各レンジのフルスケールに対応する電流を発
生する標準電流発生器を用意し、この標準電流発生器を
利用して各レンジを校正している。
For this reason, a standard current generator that generates a current corresponding to the full scale of each range is prepared, and each range is calibrated using the standard current generator.

また測定電流レンジがマイクロ、ナノ、ピコオーダの
ように微少電流の場合は入力端子19と標準電流発生器と
の間に接続されるケーブルの静電容量の影響によって標
準電流発生器から与えられる電流が安定するまでの時間
が長いため、校正に時間が掛る欠点もある。
When the measurement current range is micro current, such as micro, nano or pico order, the current given by the standard current generator is affected by the capacitance of the cable connected between the input terminal 19 and the standard current generator. There is also a disadvantage that the calibration takes time because the time until stabilization is long.

この発明はこれらの欠点を解決して微少電流域での校
正を自動化した校正機能を備えた電流測定装置を提供し
ようとするものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a current measuring apparatus having a calibration function for automating the calibration in a minute current region by solving these disadvantages.

「課題を解決するための手段」 被測定電流が反転入力端子に与えられ、出力端子と上
記反転入力端子との間に選択的に電流検出用抵抗器R1
R2,R3が接続され、被測定電流の値に対応した電圧を出
力する演算増幅器と、 電流検出用抵抗器R1,R2,R3を選択的に演算増幅器の
出力端子と反転入力端子との間に接続し、被測定電流の
測定レンジを切替るレンジ切替スイッチと、 演算増幅器の反転入力端子から導出され、外部から上
記演算増幅器の反転入力端子に被測定電流又は標準電流
を与える入力端子と、 校正時に標準電池から標準電圧が与えられる標準電池
接続端子と、 校正電圧Vrを発生する校正電圧源と、 演算増幅器の出力電圧と、標準電池接続端子に供給さ
れる標準電圧と、校正電圧Vrと、共通電位の電圧とが選
択的に入力され、これら各電圧をAD変換するAD変換器
と、 電流検出用抵抗器R1,R2,R3の中の最も抵抗値の小さ
い電流検出用抵抗器R1を基準抵抗器と定め、この基準抵
抗器R1を演算増幅器の反転入力端子と出力端子との間に
接続した状態で他の電流検出用抵抗器R2又はR3の一端に
レンジ切替スイッチを通じて校正電圧Vrを印加し、電流
検出用抵抗器R2又はR3を通じて校正電圧Vrと各電流検出
用抵抗器R2,R3の各抵抗値で決まる電流を演算増幅器の
反転入力端子に与える状態に切替るモード切替スイッチ
と、 標準電池接続端子に与えられる標準電圧をAD変換器に
直接入力し、そのAD変換値SFと共通電位の電圧をAD変換
した値S2との差の値K=SF−SZ及び、 校正電圧Vrを上記AD変換器に直接入力し、そのAD変換
した値EFと共通電位の電圧をAD変換した値EZとの差P=
EF−EZ及び、 上記標準電池に表示された電圧値D及び、 演算増幅器の反転入力端子と出力端子との間に上記基
準抵抗器R1を接続した状態で上記入力端子に標準電流IS
を入力し、上記演算増幅器が出力する電圧をAD変換した
値a1及び、 標準電流ISを入力した標準電流源に表示された電流値
A1と、 を初期校正係数として記憶するメモリと、 演算増幅器の反転入力端子と出力端子との間に基準抵
抗器R1を接続した状態で基準抵抗器R1より大きい抵抗値
を持つ電流検出用抵抗器R2の一端に校正電圧Vrを与え、
この電流検出用抵抗器R2を通じて演算増幅器の反転入力
端子に校正電圧Vrと電流検出用抵抗器R2の抵抗値で決ま
る電流を入力した状態で演算増幅器が校正する電圧をAD
変換した値b2及び、 演算増幅器の反転入力端子と出力端子との間に基準抵
抗器R1を接続した状態で電流検出用抵抗器R2より大きい
抵抗値を持つ電流検出用抵抗器R3の一端に校正電圧Vrを
与え、その電流検出用抵抗器R3を通じて演算増幅器の反
転入力端子に校正電圧Vrと電流検出用抵抗器R3の抵抗値
で決まる電流を入力した状態で演算増幅器が出力する電
圧をAD変換した値b3とを測定する校正動作制御手段と、 この校正動作制御手段で求めた値b2,b3を更に記憶す
る上記メモリと、 メモリに記憶した初期校正係数K,P,D,a1,A1と値b2
b3とにより電流検出用抵抗器R2の校正係数G2をG2=A1
K・b2/a1・P・Dにより求め、電流検出用抵抗器R3
校正係数G3をG3=A1・K・b3/a1・P・Dにより求めて
記憶する演算記憶手段と、 実用中に入力端子に与えられる被測定電流を上記演算
増幅器に入力し、その電圧出力に測定レンジに応じて読
み出される上記校正係数G2又はG3を剰算し、被測定電流
値を校正する演算手段と、 によって自動校正機能付電流測定装置を構成したもの
である。
[Means for Solving the Problems] A current to be measured is applied to an inverting input terminal, and a current detecting resistor R 1 ,
R 2 and R 3 are connected, and an operational amplifier that outputs a voltage corresponding to the value of the current to be measured, and current detection resistors R 1 , R 2 , and R 3 are selectively connected to the output terminal of the operational amplifier and the inverting input. And a range changeover switch that is connected between the input terminal and the input terminal of the operational amplifier to supply a measured current or a standard current externally to the inverted input terminal of the operational amplifier. An input terminal, a standard battery connection terminal to which a standard voltage is supplied from a standard battery during calibration, a calibration voltage source for generating a calibration voltage Vr, an output voltage of an operational amplifier, a standard voltage supplied to the standard battery connection terminal, The calibration voltage Vr and the voltage of the common potential are selectively inputted, and an AD converter for AD-converting each of these voltages, and a resistor having the smallest resistance value among the current detection resistors R 1 , R 2 and R 3 defined as a reference resistor a current detecting resistor R 1, the The reference resistor R 1 by applying a calibration voltage Vr through the other end to the range selector switch of the current detecting resistor R 2 or R 3 in a state of being connected between the inverting input terminal and the output terminal of the operational amplifier, the current A mode changeover switch for changing to a state in which a current determined by the calibration voltage Vr and each resistance value of each current detection resistor R 2 and R 3 is supplied to the inverting input terminal of the operational amplifier through the detection resistor R 2 or R 3 ; The standard voltage applied to the standard battery connection terminal is directly input to the AD converter, and the value K = S F −S Z of the difference between the AD converted value S F and the value S 2 obtained by AD converting the common potential voltage, and difference calibration voltage Vr inputted directly to the AD converter, and the AD converted value E F a common potential value E Z a voltage of the AD conversion of the P =
E F -E Z and the voltage displayed on the standard cell value D and the standard current I to the input terminal while connecting the reference resistor R 1 between the inverting input terminal of the operational amplifier and the output terminal S
Enter a, the operational amplifier value a 1 and the AD converting the voltage to be output, the current value is displayed in the standard current source enter the standard current I S
Current detection with the A 1, a memory for storing as an initial calibration coefficient, a reference resistor R 1 is greater than the resistance value in a state of connecting the reference resistor R 1 between the inverting input terminal of the operational amplifier and the output terminal given calibration voltage Vr to one end of the use resistors R 2,
The voltage operational amplifier in a state in which type the current determined by the calibration voltage Vr and the current resistance of the detecting resistor R 2 to the inverting input terminal of the operational amplifier through the current detection resistor R 2 is calibrated AD
The converted value b 2 and the current detecting resistor R 3 having a resistance value larger than the current detecting resistor R 2 with the reference resistor R 1 connected between the inverting input terminal and the output terminal of the operational amplifier. one end giving calibration voltage Vr of, is an operational amplifier in a state in which type the current determined by the resistance value of the calibration voltage Vr and the current detection resistor R 3 to the inverting input terminal of the operational amplifier through its current detecting resistor R 3 a calibration operation control means for measuring the value b 3 to the voltage output to the AD converter, and the memory further stores a value b 2, b 3 obtained in this calibration operation control means, an initial calibration coefficient K stored in the memory , P, D, a 1 , A 1 and the value b 2 ,
b 3 and by a calibration factor G 2 of the current detecting resistor R 2 G 2 = A 1 ·
Determined by K · b 2 / a 1 · P · D, operations for storing the calibration coefficient G 3 of the current detecting resistor R 3 G 3 = A 1 · K · b 3 / a 1 · P · found through D storage means, the measured current applied to the input terminal during practical input to the operational amplifier, and Amasan the calibration coefficient G 2 or G 3 is read in accordance with the measurement range to the voltage output, current to be measured A current measuring device with an automatic calibration function is constituted by the calculating means for calibrating the value.

「作用」 この発明の構成において、先ず外部に標準電池を用意
し、この標準電池の標準電圧を直接AD変換器に与え、そ
のAD変換出力が標準電圧に対応する値になっているか否
かを判別し、標準電圧に対応する値から外れている場合
は、そのAD変換値を標準電圧に対応する値に修正するた
めの校正係数を求め、この校正係数をメモリに記憶して
AD変換器の校正を終了する。
[Operation] In the configuration of the present invention, first, a standard battery is prepared outside, and the standard voltage of the standard battery is directly supplied to the AD converter, and whether or not the AD conversion output has a value corresponding to the standard voltage is determined. If the value is out of the value corresponding to the standard voltage, a calibration coefficient for correcting the AD conversion value to a value corresponding to the standard voltage is obtained, and the calibration coefficient is stored in the memory.
Finish the calibration of the AD converter.

このようにして校正されたAD変換器を使って、内部に
設けた校正電圧源の校正電圧を測定し、校正電圧の真値
を求める。
Using the AD converter calibrated in this way, the calibration voltage of the calibration voltage source provided inside is measured, and the true value of the calibration voltage is obtained.

次に複数ある電流検出用抵抗器の中の最も抵抗値が小
さい、つまり最も電流値が大きいレンジで用いられる第
1電流検出用抵抗器の抵抗値を校正する。
Next, the resistance value of the first current detection resistor used in the range having the smallest resistance value among the plurality of current detection resistors, that is, the largest current value is calibrated.

この校正は演算増幅器の入力と出力端子間に第1電流
検出用抵抗器を接続した状態で演算増幅器の入力端子に
標準電流源を接続して行なわれる。
This calibration is performed by connecting a standard current source to the input terminal of the operational amplifier with the first current detecting resistor connected between the input and output terminals of the operational amplifier.

つまり第1電流検出用抵抗器に外部から既知の値を持
つ標準電流を与え、そこに発生する電圧をAD変換器でAD
変換し、そのAD変換値からそのとき接続されている第1
電流検出用抵抗器の真の抵抗値を求める。
In other words, a standard current having a known value is given to the first current detection resistor from the outside, and the voltage generated there is subjected to AD conversion by the AD converter.
Convert and convert the AD conversion value to the first connected
Find the true resistance of the current detection resistor.

第1電流検出用抵抗器の抵抗値が求まると、その状態
で次に大きい抵抗値の第2電流検出用抵抗器を演算増幅
器と内部に設けた校正電圧源との間に接続し、この第2
電流検出用抵抗器を通じて第1電流検出用抵抗器に電流
を与える。この状態で発生する電圧は第1電流検出用抵
抗器の抵抗値をR1、第2電流検出用抵抗器の抵抗値を
R2、校正電圧源の電圧をVrとすると、R1/R2・Vrで与え
られる。この結果この測定電圧とR1とVrが既知であるこ
とから第2電流検出用抵抗器の抵抗値R2を求めることが
できる。
When the resistance value of the first current detection resistor is determined, a second current detection resistor having the next highest resistance value is connected between the operational amplifier and the calibration voltage source provided in the operation amplifier. 2
A current is supplied to the first current detection resistor through the current detection resistor. The voltage generated in this state is R 1 , the resistance value of the first current detection resistor, and the resistance value of the second current detection resistor.
Assuming that R 2 and the voltage of the calibration voltage source are V r , it is given by R 1 / R 2 · V r . As a result the measured voltage and the R 1 and V r can be obtained resistance value R 2 of the second current detection resistor because it is known.

このようにして第1の電流検出用抵抗器の抵抗値と、
校正電圧源の電圧を利用して第2、第3、第4の電流検
出用抵抗器の抵抗値を測定し、そのズレを修正する校正
係数をマイクロコンピュータの演算によって求める。
In this manner, the resistance value of the first current detection resistor is determined by:
The resistance values of the second, third, and fourth current detection resistors are measured using the voltage of the calibration voltage source, and a calibration coefficient for correcting the deviation is calculated by a microcomputer.

従ってこの発明によれば内部に設けた校正電圧源で発
生する校正電圧を利用して第2、第3、第4・・・の電
流検出用抵抗器の抵抗値を校正するための測定を行なう
から、各レンジ毎に校正用の標準電流源を用意しなくて
済む利点が得られる。
Therefore, according to the present invention, measurement for calibrating the resistance values of the second, third, fourth,... Current detecting resistors is performed using the calibration voltage generated by the calibration voltage source provided therein. Therefore, there is an advantage that a standard current source for calibration need not be prepared for each range.

また内部の校正電圧源を利用して各レンジの校正を行
なうから、ケーブルの影響を受けることがない。このた
めに短時間に校正を行なうことができる利点も得られ
る。
Also, since each range is calibrated using the internal calibration voltage source, there is no influence of the cable. For this reason, there is also obtained an advantage that calibration can be performed in a short time.

「実施例」 第1図にこの発明の一実施例を示す。図中10はこの発
明による自動校正機能付電流測定装置を示す。
FIG. 1 shows an embodiment of the present invention. In the figure, reference numeral 10 denotes a current measuring device with an automatic calibration function according to the present invention.

この発明による自動校正機能付電流測定装置10は測定
入力端子19の他に標準電圧入力端子21を有し、この標準
電圧入力端子21に必要に応じて標準電池22を接続し、ス
イッチS7を接点cに転換することによってAD変換器15に
標準電池22から標準電圧を与えることができるように構
成する。
In addition to a standard voltage input terminal 21 of the automatic calibration function with the current measuring device 10 measures the input terminal 19 according to the present invention, to connect the standard cells 22 as required to the standard voltage input terminal 21, the switch S 7 It is configured so that the standard voltage can be supplied from the standard battery 22 to the AD converter 15 by converting to the contact c.

更にこの発明では内部に校正電圧源23を設け、この校
正電圧源23から校正電圧Vrを発生させ、この校正電圧Vr
をスイッチS7の接点aを通じてAD変換器15に供給できる
ように構成する。尚スイッチS8は校正電圧Vrと共通電位
をAD変換器15に選択的に入力するための切換スイッチを
示す。
Further, in the present invention, a calibration voltage source 23 is provided inside, and a calibration voltage Vr is generated from the calibration voltage source 23, and the calibration voltage Vr
The configured to be supplied to the AD converter 15 through the contact a of the switch S 7. Note the switch S 8 indicates a changeover switch for selectively inputting the common potential and the calibration voltage V r to the AD converter 15.

一方電流検出用抵抗器R1,R2,R3,R4の一端は演算増
幅器11の反転入力端子に接続する。最も大きい電流レン
ジを規定する第1電流検出用抵抗器をここではR1とする
と、この抵抗器R1はレンジ切替スイッチS0を通じて演算
増幅器11の出力端子に接続する。
On the other hand, one ends of the current detection resistors R 1 , R 2 , R 3 , and R 4 are connected to the inverting input terminal of the operational amplifier 11. Now the first current detecting resistor and R 1 which defines the largest current range, the resistor R 1 is connected to the output terminal of the operational amplifier 11 through the range change switch S 0.

その他の電流検出用抵抗器R2,R3,R4はレンジ切替ス
イッチS1,S2,S3を通じてモード切替スイッチS4,S5
S6の可動接点に接続する。
The other current detection resistors R 2 , R 3 , and R 4 are connected to the mode selector switches S 4 , S 5 , and S 4 through the range selector switches S 1 , S 2 , and S 3 .
Connect to the movable contact of S 6.

このモード切替スイッチS4,S5,S6の一方の接点aは
演算増幅器11の出力端子に接続され、他方の接点bは校
正電圧源23に接続される。
One contact a of the mode changeover switches S 4 , S 5 , S 6 is connected to the output terminal of the operational amplifier 11, and the other contact b is connected to the calibration voltage source 23.

レンジ切替スイッチS0〜S3とモード切替スイッチS4
S6及び切替スイッチS7,S8はマイクロコンピュータ17に
よってそれぞれ独立してプログラムに従って自動的に切
替制御される。
Range switching switch S 0 ~S 3 and the mode selector switch S 4 ~
S 6 and the changeover switch S 7, S 8 is automatically switched controlled according independently programmed by the microcomputer 17.

通常の測定モードではモード切替スイッチS4,S5,S6
は接点aに接続され、また切替スイッチS7は接点bに接
続され、入力される被測定電流の大きさに応じてレンジ
切替スイッチS0〜S3が選択されて何れか一つがオンに操
作されて測定が行なわれる。
In the normal measurement mode, the mode changeover switches S 4 , S 5 , S 6
Is connected to the contact a, also the changeover switch S 7 is connected to the contact b, the range selector switch S 0 to S 3 is any one operation to turn on is selected in accordance with the size of the measured current input The measurement is performed.

これに対し校正動作は次の順序に従って実行される。 On the other hand, the calibration operation is performed in the following order.

AD変換器15を校正する。Calibrate the AD converter 15.

スイッチS7を接点cに接続し、入力端子21に標準電池
22を接続する。AD変換器15は標準電池22から与えられる
既知の電圧DをAD変換し、そのAD変換値SFをメモリ18に
記憶する。この場合AD変換器15に共通電位の0Vを入力
し、そのときのAD変換値SZをSFから減算し、ゼロ点のズ
レを除去したK=SF−SZをメモリ18に初期校正係数の一
つとして記憶する。またこのとき使用した標準電池22の
真の電圧D(電池22に表示されている)をメモリ18に初
期校正係数の一つとして記憶させる。
Connects the switch S 7 to the contact c, the standard battery to the input terminal 21
Connect 22. The AD converter 15 AD converts the known voltage D supplied from the standard battery 22 and stores the AD converted value SF in the memory 18. In this case enter the 0V common potential to the AD converter 15, an AD conversion value S Z at that time is subtracted from S F, initial calibration of K = S F -S Z removing the offset of the zero point in the memory 18 Store as one of the coefficients. The true voltage D (shown on the battery 22) of the standard battery 22 used at this time is stored in the memory 18 as one of the initial calibration coefficients.

校正電圧源23の電圧を測定する。The voltage of the calibration voltage source 23 is measured.

切換スイッチS7を接点aに接続し、切換スイッチS8
転換してAD変換器15に校正電圧Vrと共通電位0Vを与え
る。校正電圧VrのAD変換値EFから0Vを与えたときのAD変
換値EZを減算し、P=EF−EZを求め、Pをメモリ18に初
期校正係数の一つとして記憶する。
The changeover switch S 7 is connected to the contact a, it gives the common potential 0V and the calibration voltage Vr to the AD converter 15 to convert the change-over switch S 8. The AD conversion value E Z when given 0V from the AD conversion values E F of the calibration voltage Vr by subtracting to obtain the P = E F -E Z, and stores as one of the initial calibration coefficient P in the memory 18.

基準抵抗R1を校正する。Calibrating the reference resistor R 1.

最大レンジを規定する第1電流検出用抵抗器がR1とす
ると、この抵抗器R1が電流検出用抵抗器の中でも最も抵
抗値が小さい値となる。つまり電流測定レンジが1,1/1
0,1/100,1/1000の関係に設定されたとすると、R1,R2
R3,R4の抵抗値はR1の抵抗値を1とすればR2は10倍、R3
は100倍、R4は1000倍の抵抗値となる。
When the first current detecting resistor for defining the maximum range and R 1, the resistor R 1 is most resistance value smaller in the current detecting resistor. In other words, the current measurement range is 1,1 / 1
Assuming that the relationship is set to 0, 1/100, 1/1000, R 1 , R 2 ,
If the resistance value of R 3 and R 4 is 1 , the resistance value of R 1 is 1 , R 2 is 10 times, and R 3
Is 100 times and R 4 is 1000 times the resistance.

従ってここでは最も抵抗値が小さい電流検出用抵抗器
R1を基準抵抗器と定め、この基準抵抗器R1の真の抵抗値
を測定する。
Therefore, here the current detection resistor with the smallest resistance value
Set a reference resistor R 1, to measure the true resistance of the reference resistor R 1.

このためにはスイッチS7を接点bに接続し、レンジ切
替スイッチS0をオン、S1〜S3をオフに制御する。この状
態で入力端子19に標準電流源24を接続し、既知の標準電
流ISを入力する。このとき演算増幅器11の出力に発生す
る電圧をAD変換し、この測定値をa1としてメモリ18に初
期校正係数の一つとして記憶する。またこのとき入力し
た標準電流ISの真の値(標準電流源24に表示されている
値)をA1としてメモリ18に初期校正係数の一つとして記
憶する。これらの初期校正係数K,P,D,a1,A1の記憶が行
なわれると標準電流源24は入力端子19から切り離され
る。
For this purpose, connect the switches S 7 to the contact b, to control the range selector switch S 0 on and off S 1 to S 3. In this state, the standard current source 24 is connected to the input terminal 19, and the known standard current IS is input. In this case the voltage generated at the output of the operational amplifier 11 and AD conversion, and stores the measured value as one of the initial calibration coefficient memory 18 as a 1. Also stored as one of the initial calibration coefficient the true value of the standard current I S that have entered at this time (the value that is displayed in the standard current source 24) in the memory 18 as A 1. When these initial calibration coefficients K, P, D, a 1 and A 1 are stored, the standard current source 24 is disconnected from the input terminal 19.

ここで演算増幅器11が出力する電圧値a1は a1=R1・A1 で求められる。基準抵抗器R1の校正係数をG1とすると、
入力された電流値A1と、演算増幅器11の出力電圧a1との
間には A1=G1 a1 が成り立つ。
Here the voltage value a 1 of the operational amplifier 11 outputs can be determined by a 1 = R 1 · A 1 . When the calibration coefficient of the reference resistor R 1 and G 1,
The current value A 1 which is input, A 1 = G 1 a 1 holds between the output voltage a 1 of the operational amplifier 11.

従って基準抵抗器R1の校正係数G1を G1=A1/a1 により演算して求め、G1の値をメモリ18に記憶し、初期
校正動作を終了する。
Thus calibration coefficients G 1 reference resistor R 1 determined by calculating the G 1 = A 1 / a 1 , and stores the value in G 1 in the memory 18, and terminates the initial calibration operation.

電流検出用抵抗器R2の抵抗値を測定する。Measuring the resistance value of the current detection resistor R 2.

切替スイッチS7をbに接続し、レンジ切替スイッチ
S0,S1をオン、その他S2,S3はオフ、モード切替スイッ
チS4を接点bに接続する。
Connect the changeover switch S 7 to b, the range selector switch
S 0 and S 1 are turned on, S 2 and S 3 are turned off, and the mode switch S 4 is connected to the contact b.

従ってこの状態では第2図に示すように校正電圧源23
が電流検出用抵抗器R2を通じて演算増幅器11の反転入力
端子に接続され、電流検出用抵抗器R2を通じて電流Ib
電流検出用抵抗器R1に与える。このときAD変換器15の出
力側に現れる電圧をb2としてメモリ18に記憶する。
Therefore, in this state, as shown in FIG.
There is connected to the inverting input terminal of the operational amplifier 11 through a current detecting resistor R 2, providing a current I b to the current detection resistor R 1 through a current detecting resistor R 2. The time for storing the voltage at the output side of the AD converter 15 as b 2 in the memory 18.

電流検出用抵抗器R2の校正係数を求める。Determining calibration coefficients of the current detecting resistor R 2.

今ここで電流検出用抵抗器R2による測定レンジの接続
状態は第3図に示すようになる。
Now where the connection state of the measurement range by the current detecting resistor R 2 is as shown in Figure 3.

この測定状態において、被測定電流を仮にXとし、そ
のAD変換データをc1とすると、 c1=R2X ……(1) であるから(以下電流検出用抵抗器R1〜R4の符号を抵抗
値と共用する)これを校正するとデータはXにならなけ
ればならない。つまり校正係数をG2とすると、 X=G2・c1 ……(2) (1),(2)式より校正係数G2を求めればよい。
In this measuring condition, the current to be measured if the X, its the AD conversion data and c 1, c 1 = R 2 X ...... because it is (1) (hereinafter current detection resistor R 1 to R 4 When this is calibrated, the data must be X. That is, when the calibration coefficient and G 2, X = G 2 · c 1 ...... (2) (1), (2) calibration coefficients G 2 from equation Should be obtained.

第2図において で求めた電流検出用抵抗器R1の校正では a1=R1・A1 ……(4) ,のAD変換器15の校正データと、校正電圧Vrの測定
により Vr:P=D:K ……(5) (5)式より、 (3)式に(4),(6)式を代入すると、 これによって電流検出用抵抗器R2のレンジの校正係数G2
が求まる。この校正係数G2をメモリ18に記憶する。
In FIG. In the calibration data a 1 = R 1 · A 1 ...... (4), the AD converter 15 in the calibration of the current detecting resistor R 1 obtained, V by measurement of the calibration voltage V r r: P = D : K (5) From equation (5), Substituting equations (4) and (6) into equation (3) gives As a result, the calibration coefficient G 2 of the range of the current detection resistor R 2 is obtained.
Is found. Storing the calibration coefficients G 2 in the memory 18.

電流検出用抵抗器R3とR4のレンジでは第2図で電流検
出用抵抗器R2をR3とR4に変更すればよい。
In the range of the current detection resistor R 3 and R 4 may be changed current detection resistor R 2 to R 3 and R 4 in Figure 2.

然し乍ら電流検出用抵抗器R4のレンジでは各レンジが
10倍ずつ変化するものとすれば、R4とR1の抵抗値の比は
1/1000にもなり、AD変換器15のダイナミックレンジが不
足となる。この制約から必要な有効データが得られなく
なる。そこで電流検出用抵抗器R3をR1の代わりに基準抵
抗器として使用することも考えられる。
However, in the range of the current detection resistor R 4
Assuming that changes by 10 times, the ratio of the resistance value of R 4 and R 1 is
It becomes 1/1000, and the dynamic range of the AD converter 15 becomes insufficient. Necessary valid data cannot be obtained from this restriction. Therefore it is conceivable to use a current detection resistor R 3 as a reference resistor in place of R 1.

(7)式より電流検出用抵抗器R3の校正係数G3となる。(7) Calibration Factor G 3 of the current detecting resistor R 3 from the equation Becomes

(3)式から (9)式に(8)式と(6)式を代入すると、 となる。From equation (3) Substituting equations (8) and (6) into equation (9), Becomes

このように基準抵抗器R1と各電流検出用抵抗器R2
R3,R4の校正係数G1,G2,G3,G4 で与えられる。
Thus, the reference resistor R 1 and each current detection resistor R 2 ,
R 3, calibration coefficients R 4 G 1, G 2, G 3, G 4 is Given by

実際の測定に当っては測定レンジ(演算増幅器11に接
続されている電流検出用抵抗器R1,R2,R3・・・)に応
じて校正係数G1,G2,G3,G4・・・の何れかを選択して
読み出し、その校正係数G1,G2,G3,G4・・・を測定電
圧値Vx(演算増幅器11の出力電圧をAD変換した値)に剰
算し、各測定レンジ毎に校正を行なうことができる。
In the actual measurement, the calibration coefficients G 1 , G 2 , G 3 , G 3 are set according to the measurement range (the current detection resistors R 1 , R 2 , R 3 ... Connected to the operational amplifier 11). 4 ... is selected and read out, and the calibration coefficients G 1 , G 2 , G 3 , G 4 ... Are converted into the measured voltage value V x (the value obtained by AD-converting the output voltage of the operational amplifier 11). By performing addition, calibration can be performed for each measurement range.

上記した校正動作はマイクロコンピュータ17に内蔵し
たROMに収納したプログラムに従って自動的に実行され
る。従ってマイクロコンピュータ17とROMに記憶したプ
ログラムによて校正制御手段が校正されているものと見
ることができる。
The above-described calibration operation is automatically executed according to a program stored in a ROM built in the microcomputer 17. Therefore, it can be seen that the calibration control means is calibrated by the microcomputer 17 and the program stored in the ROM.

「変形実施例」 上述においてはレンジ切替スイッチS0〜S6が順次一個
だけオンに操作されてレンジを切替る構造の場合を説明
したが、複数の電流検出用抵抗器を全部並列接続して最
も電流値が大きいレンジを設定し、その状態から電流検
出用抵抗器を一本ずつ切離して測定電流のレンジを下げ
るように構成することもできる。
"Variant" is in the above described case of the range selector switch S 0 to S 6 is Ru switched is operated on sequentially only one range structure, connected in parallel all the plurality of the current detecting resistor It is also possible to set a range in which the current value is the largest, and to separate the current detection resistors one by one from that state to lower the range of the measured current.

また第4図に示すように基準抵抗RXを演算増幅器11の
入力側に接続することもできる。
It is also possible to connect the reference resistor R X as shown in FIG. 4 to the input side of the operational amplifier 11.

「発明の効果」 以上説明したようにこの発明によれば内部を設けた校
正電圧源23を用いて各レンジの校正を行なうから、各レ
ンジ毎に標準電流源を用意しなくてよい。よって利用者
の経済的な負担を少なくすることができる。
[Effects of the Invention] As described above, according to the present invention, each range is calibrated using the calibration voltage source 23 provided therein, so that it is not necessary to prepare a standard current source for each range. Therefore, the economic burden on the user can be reduced.

また内部に設けた校正電圧源を利用して校正を行なう
構造としたからケーブルの静電容量の影響を受けないで
校正を行なうことができる。この結果校正を短時間に済
ませることができる。
In addition, since the calibration is performed using the calibration voltage source provided inside, the calibration can be performed without being affected by the capacitance of the cable. As a result, calibration can be completed in a short time.

更にこの発明では電流検出用抵抗器R1〜R4の内で最も
抵抗値の小さい抵抗器を基準抵抗器と定め、この基準抵
抗器の抵抗値を利用して各レンジの校正を行なう構造と
したから精度の高い校正を行なうことができる。
Further, according to the present invention, a resistor having the smallest resistance value among the current detection resistors R 1 to R 4 is determined as a reference resistor, and the calibration of each range is performed using the resistance value of the reference resistor. Thus, highly accurate calibration can be performed.

換言すれば抵抗器の経時変化は抵抗値が大きい程大き
くずれる。このために基準となる抵抗器を抵抗値が最も
小さい抵抗器に選定することによって経時変化による影
響を最小にすることができ、この点で校正の精度を確保
することができる。
In other words, the change with time of the resistor shifts greatly as the resistance value increases. For this reason, by selecting the reference resistor as the resistor having the smallest resistance value, the influence due to aging can be minimized, and in this regard, the accuracy of calibration can be ensured.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明の一実施例を示す接続図、第2図及び
第3図はこの発明の校正動作を説明するための接続図、
第4図はこの発明の変形実施例を示す接続図、第5図は
従来の技術を説明するための接続図である。 10:電流測定装置、11:演算増幅器、R1〜R4:電流検出用
抵抗器、S0〜S3:レンジ切替スイッチ、S4〜S6:モード
切替スイッチ、S7,S8:切替スイッチ、15:AD変換器、1
6:表示器、17:マイクロコンピュータ、18:メモリ、22:
外部に設けた標準電池、23:内部に設けた校正電圧源、2
4:外部に設けた標準電流源。
FIG. 1 is a connection diagram showing one embodiment of the present invention, FIGS. 2 and 3 are connection diagrams for explaining a calibration operation of the present invention,
FIG. 4 is a connection diagram showing a modified embodiment of the present invention, and FIG. 5 is a connection diagram for explaining a conventional technique. 10: current measuring device, 11: operational amplifier, R 1 to R 4: the current detecting resistor, S 0 to S 3: Range selector switch, S 4 to S 6: mode switch, S 7, S 8: Switch Switch, 15: AD converter, 1
6: display, 17: microcomputer, 18: memory, 22:
External standard battery, 23: Internal calibration voltage source, 2
4: Standard current source provided externally.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】A.被測定電流が反転入力端子に与えられ、
出力端子と上記反転入力端子との間に選択的に電流検出
用抵抗器R1,R2,R3が接続され、被測定電流の値に対応
した電圧を出力する演算増幅器と、 B.上記電流検出用抵抗器R1,R2,R3を選択的に上記演算
増幅器の出力端子と反転入力端子との間に接続し、被測
定電流の測定レンジを切替るレンジ切替スイッチと、 C.上記演算増幅器の反転入力端子から導出され、外部か
ら上記演算増幅器の反転入力端子に被測定電流又は標準
電流を与える入力端子と、 D.校正時に標準電池から標準電圧が与えられる標準電池
接続端子と、 E.校正電圧Vrを発生する校正電圧源と、 F.上記演算増幅器の出力電圧と、上記標準電池接続端子
に供給される標準電圧と、上記校正電圧源が発生する校
正電圧Vrと、共通電位の電圧とが選択的に入力され、こ
れら各電圧をAD変換するAD変換器と、 G.上記電流検出用抵抗器の中の最も抵抗値の小さい電流
検出用抵抗器R1を基準抵抗器と定め、この基準抵抗器R1
を上記演算増幅器の反転入力端子と出力端子との間に接
続した状態で他の電流検出用抵抗器R2またはR3の一端に
上記レンジ切替スイッチを通じて上記校正電圧Vrを印加
し、上記電流検出用抵抗器R2又はR3を通じて上記校正電
圧Vrと各電流検出用抵抗器R2,R3の各抵抗値で決まる電
流を上記演算増幅器の反転入力端子に与える状態に切替
るモード切替スイッチと、 H.上記標準電池接続端子に与えられる標準電圧を上記AD
変換器に直接入力し、そのAD変換値SFと共通電位の電圧
をAD変換した値SZとの差の値K=SF−SZ及び、 上記校正電圧Vrを上記AD変換器に直接入力し、そのAD変
換した値EFと共通電位の電圧をAD変換した値EZとの差P
=EF−EZ及び、 上記標準電池に表示された電圧値D及び、 上記演算増幅器の反転入力端子と出力端子との間に上記
基準抵抗器を接続した状態で上記入力端子に標準電流IS
を入力し、上記演算増幅器が出力する電圧をAD変換した
値a1及び、 上記標準電流ISを入力した標準電流源に表示された電流
値A1とを初期校正係数として記憶するメモリと、 I.上記演算増幅器の反転入力端子と出力端子との間に上
記基準抵抗器R1を接続した状態で上記基準抵抗器R1より
大きい抵抗値を持つ電流検出用抵抗器R2の一端に上記校
正電圧Vrを与え、この電流検出用抵抗器R2を通じて上記
演算増幅器の反転入力端子に上記校正電圧Vrと上記電流
検出用抵抗器R2の抵抗値で決まる電流を入力した状態で
上記演算増幅器が出力する電圧をAD変換した値b2と、 上記演算増幅器の反転入力端子と出力端子との間に上記
基準抵抗器R1を接続した状態で上記電流検出用抵抗器R2
より大きい抵抗値を持つ電流検出用抵抗器R3の一端に上
記校正電圧Vrを与え、その電流検出用抵抗器R3を通じて
上記演算増幅器の反転入力端子に上記校正電圧Vrと上記
電流検出用抵抗器R3の抵抗値で決まる電流を入力した状
態で上記演算増幅器が出力する電圧をAD変換した値b
3と、 を測定する校正動作制御手段と、 J.この校正動作制御手段で求めた上記値b2,b3を更に記
憶する上記メモリと、 K.上記メモリに記憶した初期校正係数K,P,D,a1,A1と値
b2,b3とにより上記電流検出用抵抗器R2の校正係数G2
G2=A1・K・b2/a1・P・Dにより求め、上記電流検出
用抵抗器R3の校正係数G3をG3=A1・K・b3/a1・P・D
により求めて記憶する演算記憶手段と、 L.実用中に上記入力端子に与えられる被測定電流を上記
演算増幅器に入力し、その電圧出力に測定レンジに応じ
て読み出される上記校正係数G2又はG3を剰算し、上記被
測定電流値を校正する演算手段と、 によって構成したことを特徴とする自動校正機能付電流
測定装置。
A. A current to be measured is supplied to an inverting input terminal.
B. the operational amplifier that selectively connects current detection resistors R 1 , R 2 , and R 3 between the output terminal and the inverting input terminal and outputs a voltage corresponding to the value of the current to be measured; C. a range switch for selectively connecting the current detection resistors R 1 , R 2 , and R 3 between the output terminal and the inverting input terminal of the operational amplifier, and switching a measurement range of the current to be measured; An input terminal derived from the inverting input terminal of the operational amplifier and externally supplying a measured current or a standard current to the inverting input terminal of the operational amplifier; D. a standard battery connection terminal to which a standard voltage is supplied from a standard battery during calibration E. a calibration voltage source that generates a calibration voltage Vr; F. an output voltage of the operational amplifier, a standard voltage supplied to the standard battery connection terminal, and a calibration voltage Vr generated by the calibration voltage source. And the potential voltage are selectively input. Defined an AD converter for converting the G. most for small current detection resistance value resistor R 1 in the current detecting resistor and the reference resistor, the reference resistor R 1
Was applying the calibration voltage Vr through the range change switch to one end of the other of the current detecting resistor R 2 or R 3 in a state of being connected between the inverting input terminal and the output terminal of the operational amplifier, said current sensing A mode changeover switch for switching to a state in which a current determined by the calibration voltage Vr and the respective resistances of the current detection resistors R 2 and R 3 is supplied to the inverting input terminal of the operational amplifier through the resistor R 2 or R 3. H. The standard voltage given to the standard battery connection terminal
Directly input to the transducer, the AD conversion value S F to a common potential voltage difference value K = S F -S Z and the AD converted value S Z of, directly the calibration voltage Vr to the AD converter type, the difference P of the voltage of the common potential value E F that was AD converted AD converted value E Z
= E F -E Z , the voltage value D displayed on the standard battery, and the standard current I connected to the input terminal with the reference resistor connected between the inverting input terminal and the output terminal of the operational amplifier. S
A memory type stores the operational amplifier value a 1 and the AD converting the voltage to be output, and a current value A 1 which is displayed in the standard current source inputs the standard current I S as an initial calibration coefficient, I. above the reference resistor one end of the current detection resistor R 2 in a state of connecting the R 1 with the reference resistor R 1 is greater than the resistance between the inverting input terminal and the output terminal of the operational amplifier given calibration voltage Vr, the operational amplifier in a state in which type the current determined by the resistance value of the calibration voltage Vr to the inverting input terminal and the current detection resistor R 2 of the operational amplifier through the current detection resistor R 2 the value b 2 obtained by AD converting the voltage but the output, the current detecting resistor while connected to the reference resistor R 1 between the inverting input terminal and the output terminal of the operational amplifier R 2
One end of the current detection resistor R 3 with larger resistance value gives the calibration voltage Vr, the calibration voltage Vr and the current detection resistor to the inverting input terminal of the operational amplifier through its current detecting resistor R 3 the value b of the voltage the operational amplifier in a state in which type the current determined by the resistance value is output vessels R 3 and AD conversion
3 , calibration operation control means for measuring, J. the memory for further storing the values b 2 and b 3 obtained by the calibration operation control means, and K. the initial calibration coefficients K and P stored in the memory. , D, a 1 , A 1 and value
By and b 2, b 3 a calibration factor G 2 of the current detecting resistor R 2
Determined by G 2 = A 1 · K · b 2 / a 1 · P · D, the calibration factor G 3 of the current detecting resistor R 3 G 3 = A 1 · K · b 3 / a 1 · P · D
A calculation memory means for storing determined by, the measured current applied to the input terminal and the input to the operational amplifier in L. practical, the calibration coefficient G 2 or G are read in accordance with the measurement range to the voltage output 3. A current measuring device with an automatic calibration function, comprising: a calculating means for calculating the current value to be measured by dividing 3 ;
JP63192422A 1988-08-01 1988-08-01 Current measuring device with automatic calibration function Expired - Lifetime JP2870764B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63192422A JP2870764B2 (en) 1988-08-01 1988-08-01 Current measuring device with automatic calibration function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63192422A JP2870764B2 (en) 1988-08-01 1988-08-01 Current measuring device with automatic calibration function

Publications (2)

Publication Number Publication Date
JPH0240567A JPH0240567A (en) 1990-02-09
JP2870764B2 true JP2870764B2 (en) 1999-03-17

Family

ID=16291056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63192422A Expired - Lifetime JP2870764B2 (en) 1988-08-01 1988-08-01 Current measuring device with automatic calibration function

Country Status (1)

Country Link
JP (1) JP2870764B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007009425A1 (en) * 2005-07-20 2007-01-25 Conti Temic Microelectronic Gmbh Method and apparatus for measuring current
CN104977557A (en) * 2015-07-08 2015-10-14 南车青岛四方机车车辆股份有限公司 Device and method for calibrating contact resistance tester

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100502666B1 (en) 2002-09-02 2005-07-22 주식회사 하이닉스반도체 Resistance calibration circuit
CN101789687B (en) * 2010-03-23 2012-01-25 浙江大学 Average current mode controller based on inductance current self-calibration lossless detection
CN103472426A (en) * 2013-09-26 2013-12-25 国家电网公司 Sinusoidal active power calibration system based on current comparator
CN115840181A (en) * 2023-02-16 2023-03-24 南方电网产业投资集团有限责任公司 Charging pile high-voltage sampling calibration circuit and method and electronic equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007009425A1 (en) * 2005-07-20 2007-01-25 Conti Temic Microelectronic Gmbh Method and apparatus for measuring current
CN104977557A (en) * 2015-07-08 2015-10-14 南车青岛四方机车车辆股份有限公司 Device and method for calibrating contact resistance tester

Also Published As

Publication number Publication date
JPH0240567A (en) 1990-02-09

Similar Documents

Publication Publication Date Title
US5012181A (en) Apparatus for and method of internally calibrating an electrical calibrator
US8253427B2 (en) Resistance bridge architecture and method
GB1572088A (en) Method of and apparatus for automatic measurement of impedance and other parameters with microprocessor calculation techniques
JPH11237455A (en) Circuit and method for detecting voltage of battery
US4859936A (en) Method of and apparatus for determining AC calibration errors and apparatus using device with AC calibration errors
JPH02266258A (en) Measurement of ph and specific ion density
US8358143B2 (en) Internal self-check resistance bridge and method
JP2870764B2 (en) Current measuring device with automatic calibration function
US4933631A (en) Digital AC meter
JP3244212B2 (en) Digital measuring instrument
JP2720970B2 (en) Measuring instrument
JPH08189845A (en) Digital measuring instrument
JP2008014774A (en) Temperature measuring device
JPH08101074A (en) Temperature measuring circuit
JP2994649B2 (en) Voltage applied current measuring device with automatic calibration function
JP2530950B2 (en) Thermistor temperature detection device using AD converter
JPH09119853A (en) Method and apparatus for correction of output value of sensor
JPH04370769A (en) Correction method of voltage and current signal by using a/d converter
JPS6141918A (en) Error correcting device for flying capacitor multiplexer circuit
JPH0373822B2 (en)
JPS6314784B2 (en)
JPH0465993B2 (en)
JP4340863B2 (en) Conversion circuit calibration method and signal input circuit
JPH08292215A (en) Device for measuring battery voltage
JPH11108741A (en) Temperature zero point correcting device for amplifier

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090108

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090108

Year of fee payment: 10