JP2870152B2 - Manufacturing method of sealing plate with insulated terminal and sealed alkaline battery using it - Google Patents

Manufacturing method of sealing plate with insulated terminal and sealed alkaline battery using it

Info

Publication number
JP2870152B2
JP2870152B2 JP2208610A JP20861090A JP2870152B2 JP 2870152 B2 JP2870152 B2 JP 2870152B2 JP 2208610 A JP2208610 A JP 2208610A JP 20861090 A JP20861090 A JP 20861090A JP 2870152 B2 JP2870152 B2 JP 2870152B2
Authority
JP
Japan
Prior art keywords
insulating
hole
terminal
sealing
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2208610A
Other languages
Japanese (ja)
Other versions
JPH0492360A (en
Inventor
善一郎 伊藤
守 飯田
隆文 藤井
真治 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2208610A priority Critical patent/JP2870152B2/en
Publication of JPH0492360A publication Critical patent/JPH0492360A/en
Application granted granted Critical
Publication of JP2870152B2 publication Critical patent/JP2870152B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、密閉形アルカリ電池、殊に金属製の電池容
器の開口端に、封口板を構成する金属製の蓋板の周縁を
溶接して密閉する方式の小型の密閉形アルカリ電池用絶
縁端子付き封口板の構成,製法、および前記封口板を用
いた密閉形アルカリ電池に関するものである。
Description: BACKGROUND OF THE INVENTION The present invention relates to a sealed alkaline battery, in particular, a peripheral edge of a metal cover plate forming a sealing plate is welded to an open end of a metal battery container to seal the battery. The present invention relates to a configuration and a manufacturing method of a small sealing plate with insulating terminals for a sealed alkaline battery, and a sealed alkaline battery using the sealing plate.

従来の技術 ポータブル電子機器などの発達と共に、大電流放電に
適しているなど放電特性が優れている、あるいは簡単な
充電操作によって反復使用ができるなどの理由により、
単5形〜単2形サイズ相当の密閉形アルカリ一次電池、
あるいは密閉形アルカリ蓄電池などの密閉形アルカリ電
池が広く使用されてきた。しかし、機器開発の展開につ
れて、機器の小型化,薄形化が進み、その電源として用
いる密閉形アルカリ電池に関しても、小型・高容量で、
高信頼性のものが要望されるようになってきた。このよ
うな要望に対して、電池形状および電池の密閉方式等に
検討が加えられ、形態として一辺が10mm以下の角形,角
薄形(矩形状)または小判形の筒状のもの、あるいは直
径10mm以下の円筒形など、機器への収納性の良い小型の
密閉形アルカリ電池が検討されて、その一部は実用化さ
れつつある。これらの電池は、エネルギー密度および強
度の観点から、金属製の有底筒状の電池容器を用いて発
電要素を収納し、金属製の蓋板等で構成した封口板を用
いて密封される。その密封方式として、従来、主に円筒
形電池に採用されてきたクリンプ式封口法(金属製封口
板の周縁に、環状絶縁パッキングを嵌入したものを電池
容器開口端に載置し、前記容器開口端縁を内方に折曲し
て密封する方式)を適用した場合、電池容器の形状,大
きさとの関連で、加工性および信頼性に問題点を生じや
すかった。そのため、金属製の蓋板に一方の電極の外部
端子となる小型の絶縁端子を設けた封口板を、前記電池
容器の開口端上に載置し、レーザビームなどによって、
前記封口板の蓋板周縁を前記電池容器の開口端縁に、シ
ーム溶接をして密封する方法が検討され、精度良く、信
頼性の高い溶接封止が可能となり、この方式が採用され
つつある。しかし、電池として信頼性の高い密封状態を
得るには、前記封口板に設ける絶縁端子についても、小
型化を図る中で気密性,耐漏液性を確保する必要があ
る。前記の電池形状に対応する、小型化可能な絶縁端子
の構成方法には、大別して2種類の方式が考えられる。
一つは、実公昭50-9530号公報などに記載された、通常
ハーメチックシール端子と呼ばれ、ガラス質など無機絶
縁物を用いて、封口板を構成する蓋板の透孔に端子ピン
を固着する方法があり、いま一つはリベット状の端子
(以下、端子リベットと呼ぶ)を合成樹脂製の絶縁パッ
キングを介して、前記蓋板の透孔に挿入し、端子リベッ
トの脚部を締着して固定する方法がある。しかし、前者
は気密性にすぐれるものの、絶縁物あるいはその封着材
が、アルカリ電解液に侵されやすく、また落下衝撃に弱
いなど信頼性に欠ける問題点があり、汎用,小型のアル
カリ電池には通常、主に後者の方式が採用され、電池の
形態に対応して形状的な検討を加えたものが採用されて
おり、次にその例を述べる。
2. Description of the Related Art With the development of portable electronic devices, etc., it has excellent discharge characteristics, such as being suitable for large current discharge, or because it can be repeatedly used by a simple charging operation.
Sealed alkaline primary batteries of size AA to AA,
Alternatively, sealed alkaline batteries such as sealed alkaline storage batteries have been widely used. However, as the development of equipment has progressed, the equipment has become smaller and thinner.
High reliability is required. In response to such demands, consideration has been given to the shape of the battery and the sealing method of the battery, etc. The form is a square, square thin (rectangular) or oval tube with a side of 10 mm or less, or a 10 mm diameter. Small sealed alkaline batteries, such as the following cylindrical ones, which are easy to store in equipment have been studied, and some of them are being put to practical use. From the viewpoints of energy density and strength, these batteries house a power generation element using a metal bottomed cylindrical battery container, and are sealed using a sealing plate formed of a metal lid plate or the like. As the sealing method, a crimp-type sealing method conventionally used mainly for cylindrical batteries (a metal sealing plate having a peripheral insulating ring fitted with an annular insulating packing is placed at the opening end of the battery container, and the container opening is closed. When the edge is bent inward to seal, the processability and reliability tend to cause problems in relation to the shape and size of the battery container. Therefore, a sealing plate provided with a small insulating terminal serving as an external terminal of one electrode on a metal lid plate is placed on the opening end of the battery container, and a laser beam or the like is used.
A method of sealing the periphery of the lid plate of the sealing plate to the opening edge of the battery container by seam welding has been studied, and accurate and highly reliable welding sealing has become possible. This method is being adopted. . However, in order to obtain a highly reliable sealed state as a battery, it is necessary to secure the airtightness and the liquid leakage resistance of the insulating terminals provided on the sealing plate while reducing the size. There are roughly two types of methods for forming a miniaturized insulating terminal corresponding to the battery shape described above.
One is usually called a hermetic seal terminal described in Japanese Utility Model Publication No. 50-9530, etc., and a terminal pin is fixed to the through hole of the lid plate that constitutes the sealing plate using an inorganic insulator such as glass. Another method is to insert a rivet-shaped terminal (hereinafter referred to as a terminal rivet) into the through hole of the cover plate through an insulating packing made of synthetic resin, and tighten the leg of the terminal rivet. There is a way to fix. However, although the former is excellent in airtightness, the insulator or its sealing material is liable to be attacked by an alkaline electrolyte and has a problem of lack of reliability such as being weak against a drop impact. Usually, the latter method is mainly adopted, and a method in which the shape is examined in accordance with the form of the battery is adopted, and an example thereof will be described below.

端子リベット(あるいは端子ピン)と、蓋板に設けた
透孔の間に介在する絶縁パッキングは、一般に2〜3分
割して構成され、端子リベットの脚部を締着することに
よって、圧縮一体化が図られている。特開昭56-107470
号公報には、3分割構成の絶縁パッキング(絶縁樹脂
体)、すなわち、テフロン樹脂製の外径の異なる3枚の
環状絶縁板を積重して用いる例が示されている(同公報
第2図)。また、実公昭46-21539号公報に開示されたよ
うに、封口板にかしめ固着される脚部に貫通孔(排気
孔)を設けたリベット(ハトメ端子)と、金属キャップ
と、ゴム製弁体とからなる防爆安全弁付きの端子部を形
成する方式の応用として、絶縁パッキングを介してリベ
ットをかしめ固着した実開昭62-1369号公報の実施例で
は、2分割した絶縁パッキングが図示されている。
The insulating packing interposed between the terminal rivet (or terminal pin) and the through-hole provided in the cover plate is generally divided into two or three parts, and is compressed and integrated by tightening the terminal rivet legs. Is planned. JP-A-56-107470
Japanese Patent Laid-Open Publication No. H10-21069 discloses an insulating packing (insulating resin body) having a three-part structure, that is, an example in which three annular insulating plates made of Teflon resin and having different outer diameters are stacked and used. Figure). Further, as disclosed in Japanese Utility Model Publication No. 46-21539, a rivet (eyelet terminal) having a through hole (exhaust hole) in a leg portion fixed to a sealing plate, a metal cap, and a rubber valve body As an application of the method of forming a terminal portion with an explosion-proof safety valve consisting of, in the embodiment of Japanese Utility Model Laid-Open No. 62-1369 in which a rivet is caulked and fixed via an insulating packing, an insulating packing divided into two parts is illustrated. .

第7図は、上記2例の絶縁端子の絶縁パッキングの構
成方法を示す側面要部断面図である。7−1は、上記後
者の2分割した絶縁パッキングを用いた絶縁端子(但し
安全弁機構は省略)の組み立て中の状態を示したもので
ある。封口板81は、透孔82aを設けた金属製の蓋板82
と、2分割されて前記蓋板の上・下面に配設された合成
樹脂製の絶縁パッキング83,84、脚部85aを有する端子リ
ベット85と、一方の極性のリードワッシャー86とで構成
されている。前記2分割された絶縁パッキングの上面側
パッキング83には、7−2に示したように上記蓋板の透
孔82aを通して蓋板下面に突出する高さhとした環状カ
ラー部83aが設けられ、このカラー部を前記透孔に挿通
して蓋板下面に突出させ、その先端に、カラー挿入孔84
aを設けた下面側パッキング84を嵌入することによっ
て、前記透孔82aの内壁面およびその周縁上・下面に絶
縁層を形成している。そして、前記上面側パッキング83
に設けられたリベット孔83bに、図示のごとく端子リベ
ット85の脚部85aを挿入し、その先端にリードワッシャ
ー86を嵌入後、第8図の封口板81組み立て完成図に示し
たように、前記脚部85aの先端をかしめることにより、
端子リベット85を蓋板82に締着固定して、絶縁端子87付
きの封口板81を形成している。7−3は、前者の3分割
された絶縁パッキングの構成を示す側断面図であり、こ
れを7−1の封口板81に適用した場合を例として、構成
条件を示すと、3枚の環状絶縁板93,94,95にはリベット
脚部85aを挿入する孔が設けられ、中間の絶縁板94の外
径φおよび厚さtは、蓋板82の透孔82aの内径および
厚さに合致する寸法として透孔内に嵌入し、蓋板の上・
下面に絶縁板93,95をそれぞれ配設した後、リベット脚
部85aを3枚の絶縁板の孔に貫通させ、ワッシャーを介
してリベット脚部先端を第8図のものと同様にかしめ固
着し、絶縁端子を形成している。
FIG. 7 is a cross-sectional view of a main part of a side view showing a method of configuring insulating packing of the above-described two examples of insulating terminals. 7-1 shows a state in which an insulating terminal (the safety valve mechanism is omitted) using the latter two divided insulating packings is being assembled. The sealing plate 81 is a metal lid plate 82 having a through hole 82a.
A terminal rivet 85 having synthetic resin insulating packings 83 and 84, legs 85a, and a lead washer 86 having one polarity. I have. An annular collar portion 83a having a height h projecting from the lower surface of the lid plate through the through hole 82a of the lid plate is provided in the upper packing 83 of the insulating packing divided into two as shown in 7-2. The collar portion is inserted through the through-hole and projected to the lower surface of the lid plate.
The insulating layer is formed on the inner wall surface of the through hole 82a and the upper and lower peripheral edges thereof by fitting the lower packing 84 provided with a. Then, the upper side packing 83
As shown in the drawing, the leg portion 85a of the terminal rivet 85 is inserted into the rivet hole 83b provided therein, and a lead washer 86 is fitted at the tip thereof, and as shown in the completed assembly diagram of the sealing plate 81 in FIG. By caulking the tip of the leg 85a,
The terminal rivet 85 is fastened and fixed to the cover plate 82 to form the sealing plate 81 with the insulating terminal 87. FIG. 7-3 is a sectional side view showing a configuration of the former three-part divided insulating packing. In a case where this is applied to a sealing plate 81 of 7-1 as an example, three ring-shaped insulating packings are shown. holes for inserting the rivet legs 85a are provided on the insulating plate 93, 94, and 95, the outer diameter phi 1 and a thickness t of the intermediate insulating plate 94, the inner diameter and the thickness of the through hole 82a of the cover plate 82 Fit into the through hole as matching dimensions,
After the insulating plates 93 and 95 are provided on the lower surface, the rivet legs 85a are passed through the holes of the three insulating plates, and the ends of the rivet legs are caulked and fixed in the same manner as in FIG. 8 via washers. , Insulating terminals are formed.

なお、アルカリ電解液を用いた密閉形電池は、電解液
の漏出現象が発生しやすいので(後述参考)、円筒形電
池で採用されているごとく耐漏液性を保持するために、
絶縁パッキングと蓋板の間に密着性の良いシール剤(ア
ルカリ電池では、通常アスファルトあるいはタールピッ
チを主体としたもの)を介在させる必要がある(後述参
照)。上記2分割された絶縁パッキングの場合、前記実
開昭62-1369号公報では、パッキングの表面にシール剤
を塗布したものを用いると述べられている。具体的には
第7図の7−1に示すように、組み込み前の絶縁パッキ
ング83および84の少なくとも蓋板82の上・下面と接する
部分に、前記アスファルト等のシール剤を塗着し、シー
ル膜87を形成して用いていた。
Since a sealed battery using an alkaline electrolyte is liable to cause leakage of the electrolyte (see below), in order to maintain leakage resistance as used in a cylindrical battery,
It is necessary to interpose a sealing agent having good adhesion (alkaline batteries usually have asphalt or tar pitch as a main component) between the insulating packing and the lid plate (see below). In the case of the above-mentioned two-part insulating packing, Japanese Utility Model Application Laid-Open No. 62-1369 describes that a packing having a surface coated with a sealant is used. Specifically, as shown at 7-1 in FIG. 7, at least portions of the insulating packings 83 and 84, which are in contact with the upper and lower surfaces of the cover plate 82, before being assembled, are coated with the sealing agent such as the asphalt to form a seal. The film 87 was formed and used.

アルカリ電池の封止(密閉)部分からの電解液の漏出
については、実公昭37-164号公報,特公昭46-15254号公
報等に述べられているごとく、アルカリ性電解液は電池
容器,蓋などの壁面をはう傾向があり、封止部片をぬら
し毛管作用によって、電池の封止部分から外部にしみ出
す性質を持っている。この現象は負極と接続される金属
面、すなわち封止部分の負極端子側に強く現われ、漏液
を生じやすい。これは一般に電気的毛管作用による漏液
現象として知られている。本発明の対象とする小型の密
閉形アルカリ電池は、前述したように、金属製の電池容
器に金属製の蓋板をレーザビーム等によって溶接し密閉
しているが、一般的に電池容器は負極端子を兼ねるよう
に設計されるため、正常な電池使用状態では負電位とな
る蓋板と絶縁パッキングの接する部分は、上述したよう
に電解液が漏出しやすい。このような理由から、アルカ
リ電池の場合は、絶縁パッキングを機械的に強く締めつ
けるだけでは、十分な耐漏液性を得られず、シール剤を
併用した多くの案が検討されてきた。その結果、実開昭
37-119号公報,特公昭46-15254号公報などに述べられて
いるごとく、耐電解液性を有し、絶縁パッキングの材質
より柔らかで、パッキングおよび金属面と密着性の良い
材料が選択され、アスファルト,タールピッチ,タール
・エポキシ樹脂などの単独あるいは混合物、またはこれ
らに油状物,オレフィン系化合物,防錆剤などを加えた
シール剤が一般に用いられ、密閉形アルカリ電池の耐漏
液性改善に効果を示している(他にビニール系,アクリ
ル系など熱可塑性で耐アルカリ性の合成塗料あるいは接
着剤を用いる例もあるが、改善効果は前記のものより低
かった)。
As described in Japanese Utility Model Publication No. 37-164 and Japanese Examined Patent Publication No. 46-15254, the leakage of the electrolyte from the sealed portion of the alkaline battery is described as follows. And has the property that the sealing piece is wetted out of the sealed portion of the battery by the wetting and capillary action. This phenomenon appears strongly on the metal surface connected to the negative electrode, that is, on the negative electrode terminal side of the sealing portion, and liquid leakage easily occurs. This is generally known as a liquid leakage phenomenon due to electric capillary action. As described above, a small sealed alkaline battery to which the present invention is applied is sealed by welding a metal cover plate to a metal battery container with a laser beam or the like, but generally the battery container is a negative electrode. Since it is designed so as to also serve as a terminal, the electrolyte solution easily leaks from the portion where the cover plate and the insulating packing come into a negative potential in a normal battery use state as described above. For these reasons, in the case of an alkaline battery, sufficient leakage resistance cannot be obtained only by mechanically tightening the insulating packing, and many proposals using a sealant have been studied. As a result,
As described in JP-B-37-119, JP-B-46-15254, etc., a material having electrolytic resistance and being softer than the material of the insulating packing and having good adhesion to the packing and the metal surface is selected. , Asphalt, tar pitch, tar / epoxy resin, etc., or a mixture thereof, or a sealant containing an oily substance, an olefinic compound, a rust inhibitor, etc., is generally used to improve the leakage resistance of sealed alkaline batteries. The effect is shown (there is also a case of using a thermoplastic and alkali-resistant synthetic paint or adhesive such as a vinyl-based or acrylic-based resin, but the improvement effect was lower than the above-mentioned one).

発明が解決しようとする課題 このような従来の密閉形アルカリ電池に用いている絶
縁端子付き封口板の構成では、部品点数が多くなり、組
み立て工程が複雑になると共に、小型電池用の封口板に
適用した場合は、分割した絶縁パッキングの成形加工の
精度が、封口板の組み立て作業性および端子部分の密封
性に影響を及ぼし、封口板の組み立て不良あるいは端子
部分の耐漏液性を低下させる大きな要素となるなどの課
題を有していた。
Problems to be Solved by the Invention In the configuration of the sealing plate with insulating terminals used in such a conventional sealed alkaline battery, the number of parts increases, the assembly process becomes complicated, and the sealing plate for a small battery is used. If applied, the accuracy of the forming process of the divided insulating packing will affect the assembly workability of the sealing plate and the sealing performance of the terminal part, and a large factor that may cause poor assembly of the sealing plate or decrease the liquid leakage resistance of the terminal part. And other issues.

例えば、第7図7−1,7−2に示した2分割パッキン
グを用いた場合は、蓋板の透孔82a(内径φ)と上面側
パッキングの環状カラー部83a(外径φ)を、また下
面側パッキングのカラー挿入孔84a(内径φ)と前記
環状カラー部とを、それぞれ嵌合させた場合の嵌合精度
が、上述したように、封口板81の組み立て状態に大きく
影響する。すなわち、前記それぞれの嵌合すき間が小さ
いか負の値になった場合は、組み立て工程において嵌合
できない。あるいは各パッキングが変形して組み立て不
良となったり、密封不良や絶縁不良を発生することが多
く、通常は若干のすき間(クリアランス)を設けるよう
に設計されていた。絶縁パッキング83,84、蓋板の透孔8
2a、リベット脚部85a(外径)など各部品の加工精度を
高め、各嵌合すき間を0.02〜0.05mm程度に押えられれ
ば、リベット脚部85aの先端をかしめ締着する際に、適
正なかしめ加圧力の範囲内でシール剤の効果が得られ、
端子部分の耐漏液性の安定化が可能となるが、小型化さ
れた封口板の場合、組み立て作業がむずかしくなり、生
産性を低下させるという問題があった。また、複数の金
型を用いて、前記の各部品を量産する場合に上記の嵌合
精度を確保するには、金型加工と保守に高精度が要求さ
れ管理を困難にしていた。ことに、密閉形アルカリ電池
用絶縁パッキングとして、一般に用いられるナイロン6,
ナイロン66(商標,ポリアミド樹脂)など吸湿による寸
法変化の大きい樹脂を採用した場合は、周囲の環境変化
(湿度,温度)によって寸法変化を生じやすく、上記し
た嵌合精度を確保するのは困難であった。このような場
合通常は、上記各嵌合部分の嵌合公差範囲として、0.05
〜0.2mm程度を目標に製作運用され、リベット脚部85a先
端に加えるかしめ加圧力を増減しながら、少数ロット単
位で調整してかしめ作業を行なう必要があった。しか
し、このような方法によっても、組み立て時に上・下面
の絶縁パッキングの嵌合ずれによる変形破損あるいは絶
縁端子部分の気密性不十分などの組み立て不良を生じや
すく、また、第8図に示したように、組み立て完了後の
端子部の絶縁パッキング周辺にすき間G1,G2が残り、耐
漏液性を低下させたり、あるいはリベット脚部のかしめ
加圧力が過大となって蓋板82に反りなどの変形を生じさ
せ、蓋板を電池容器開口端に溶接する際に溶接不良を発
生させる原因となるなどの課題を有していた。
For example, when the two-part packing shown in FIGS. 7-1 and 7-2 is used, the through-hole 82a (inner diameter φ) of the cover plate and the annular collar portion 83a (outer diameter φ 1 ) of the upper packing are used. Further, the fitting accuracy when the collar insertion hole 84a (inner diameter φ 2 ) of the lower packing and the annular collar portion are fitted to each other greatly affects the assembled state of the sealing plate 81 as described above. . That is, if the respective fitting gaps are small or negative, the fitting cannot be performed in the assembly process. Alternatively, each packing is often deformed, resulting in defective assembly, poor sealing or poor insulation, and is usually designed to provide a slight gap. 83,84 insulating packing, 8 through holes in the lid plate
2a, rivet leg 85a (outer diameter), etc. If the machining accuracy of each part is improved and each fitting gap is pressed down to about 0.02 to 0.05mm, the tip of rivet leg 85a will be caulked and tightened properly. The effect of the sealant is obtained within the range of caulking pressure,
Although it is possible to stabilize the leakage resistance of the terminal portion, in the case of a miniaturized sealing plate, there is a problem that the assembling work becomes difficult and the productivity is reduced. Further, in order to secure the above-described fitting accuracy when mass-producing each of the above components using a plurality of dies, high accuracy is required for die processing and maintenance, which makes management difficult. In particular, nylon 6, which is generally used as an insulating packing for sealed alkaline batteries,
When a resin such as nylon 66 (trademark, polyamide resin), which has a large dimensional change due to moisture absorption, is used, dimensional changes are likely to occur due to environmental changes (humidity, temperature), and it is difficult to secure the above-described fitting accuracy. there were. In such a case, usually, the fitting tolerance range of each fitting portion is 0.05
It was manufactured and operated with a target of about 0.2 mm, and the caulking operation had to be performed in small lot units while increasing or decreasing the caulking pressure applied to the tip of the rivet leg 85a. However, even with such a method, defective assembly such as deformation and damage due to misalignment of the upper and lower insulating packings or insufficient airtightness of the insulating terminal portion is likely to occur at the time of assembling, and as shown in FIG. In addition, gaps G1 and G2 remain around the insulating packing of the terminal after the assembly is completed, reducing the liquid leakage resistance or crimping the rivet legs due to excessive crimping force and warping the cover plate 82. Therefore, when the cover plate is welded to the opening end of the battery container, there is a problem that a welding failure occurs.

このような封口板組み立て工程における嵌合上のトラ
ブルを解消するために、本発明者らは、前記した絶縁パ
ッキングを分割せずに、蓋板の透孔82aを通して透孔内
壁面および蓋板82の上下面に、通常インサートモールド
法と呼ばれる樹脂成形法によって、一体に形成する方法
の適用を試みたが、この方法によっても絶縁パッキング
を構成する合成樹脂と蓋板の金属面との密着性は不十分
であり、この部分でのアルカリ電解液の電気的毛管作用
による漏出を防止することはできなかった。従って端子
部分の耐漏液性を確保するには、上記したシール剤の併
用が必須条件であり、前記の方式では、蓋板の上下面に
絶縁パッキングを形成する前の工程で、シール剤を蓋板
表面に塗布しておく必要がある。しかし、本発明者らの
検討結果によれば、シール剤を塗布した蓋板を樹脂成形
金型に装填し、この金型内に絶縁パッキング構成材であ
る加熱溶融した樹脂を加圧注入(前記ナイロン66等で、
溶融温度270〜300℃、注入圧力500〜1000kg/cm2)する
と、蓋板およびその表面のシール剤は溶融樹脂とほぼ同
温度まで急激に加熱昇温され、上記した従来のシール剤
を用いた場合は、この時点で熱損傷を受けてシール剤と
しての機能を失うと共に、形成された絶縁パッキングの
物性を低下させることがわかった。すなわち、前記蓋板
の透孔(第7図の82a)の内周縁および透孔周縁の蓋板
の上下面に塗布するシール剤として、上述したアスファ
ルト,タールピッチなどの単独またはそれらを主成分と
したもの、あるいはビニール系塗料などの従来のシール
剤を適用した場合は、耐熱性が低いために、上記の溶融
樹脂に接触すると、数十秒間の成形時間内にシール剤の
塗膜(薄層)は、溶融または軟化して蓋板から剥離し、
流入間隙の小さい前記透孔付近では高圧で注入された溶
融樹脂の流入速度が早くなることによって、シール剤は
流出して樹脂内に拡散または膜状として混入されてしま
い、シール剤として機能しないのみならず、絶縁パッキ
ングの強度劣化など物性低下の因子となっていた。この
ような理由から、前記したシール剤を併用して絶縁パッ
キングを一体に形成する方法は実用化困難であった。
In order to eliminate such a trouble in fitting in the sealing plate assembling process, the present inventors did not divide the above-mentioned insulating packing, but through the through-hole 82a of the lid plate and the through-hole inner wall surface and the lid plate 82. We tried to apply the method of integrally forming the upper and lower surfaces by a resin molding method usually called insert molding method, but even with this method, the adhesion between the synthetic resin constituting the insulating packing and the metal surface of the lid plate was It was insufficient, and it was not possible to prevent leakage of the alkaline electrolyte at this portion by the electric capillary action. Therefore, in order to ensure the leakage resistance of the terminal portion, the combined use of the above-mentioned sealant is an essential condition, and in the above-described method, the sealant is covered with the sealant in a step before forming the insulating packing on the upper and lower surfaces of the cover plate. It must be applied to the board surface. However, according to the study results of the present inventors, a lid plate coated with a sealant is loaded into a resin molding die, and a resin heated and melted as an insulating packing component is injected under pressure into the die (as described above). With nylon 66 etc.
When the melting temperature is 270 to 300 ° C and the injection pressure is 500 to 1000 kg / cm 2 ), the sealing agent on the lid plate and the surface thereof is rapidly heated to almost the same temperature as the molten resin, and the above-mentioned conventional sealing agent is used. In this case, it was found that at this point, the heat-damaged material lost its function as a sealant, and also deteriorated the physical properties of the formed insulating packing. That is, as a sealant applied to the inner peripheral edge of the through-hole (82a in FIG. 7) and the upper and lower surfaces of the lid plate around the through-hole, the above-mentioned asphalt, tar pitch or the like alone or as a main component If a conventional sealant such as a paint or a vinyl paint is applied, the heat resistance is low, so if it comes into contact with the above-mentioned molten resin, the sealant coating film (thin layer) will be formed within a molding time of several tens of seconds. ) Melts or softens and peels off the lid plate,
In the vicinity of the through hole where the inflow gap is small, the inflow speed of the molten resin injected at a high pressure is increased, so that the sealant flows out and is diffused or mixed into the resin as a film. However, it has been a factor of deterioration of physical properties such as deterioration of strength of insulating packing. For these reasons, it has been difficult to put the method of forming the insulating packing integrally using the above-mentioned sealant together into practical use.

前記の絶縁パッキングを蓋板に一体に形成する方式に
おける漏液防止策の別案として、実開昭61-119256号公
報あるいは実開昭60-3553号公報第2図などに見られる
ように、蓋板の透孔周縁に蓋板の上面または下面側に向
けて環状の立ち上がり部を設ける(第6図参考,後
述)、あるいは実公昭36-26438号公報あるいは実開昭63
-106059号公報に述べられているように、リベットの頭
部裏面に環状の鋭角突起(図示せず)を設けることによ
って、封口板組み立て時に前記透孔の立ち上がり部ある
いは鋭角突起が前記絶縁パッキングに食いこむようにし
て、この部分の気密性向上を図る案がある。本発明者ら
は、この案を前記した絶縁パッキングを一体に形成する
方法に応用することを検討した。その一例として、第6
図に透孔に立ち上がり部を設けた場合を示す。図におい
て、封口板71は、透孔72aの周縁に上方に向けて立ち上
がり部72bを設けた蓋板72,前記蓋板の上下面に一体に形
成した絶縁パッキング74,端子リベット85,ワッシャー86
とから構成され、リベット脚部85aをかしめ締着する際
に、前記立ち上がり部72bを絶縁パッキングに食いこま
せて、この部分での密封性の向上を図ったものである。
しかし、絶縁パッキングをインサートモールド法で形成
する場合は、前記立ち上がり部の形状に沿って溶融樹脂
が流れて成形されるため、立ち上がり部を食いこますこ
とはできず、気密性向上への効果は少なかった。また、
前記立ち上がり部を設ける方法およびリベット頭部に鋭
角突起を設ける方法は、何れも量産時にはプレス加工に
よって形成されるため、均一な環状突起が得難く、上記
したアルカリ電解液特有の電気的毛管作用による漏液を
防止するには不十分であった。これらの方法は、むしろ
第6図に示したごとき、分割された絶縁パッキングにシ
ール剤87を併用した場合に効果が見られた。このよう
に、絶縁パッキングを蓋板に一体に形成する改良策には
シール剤および加工上に課題を有していた。
As another measure for preventing liquid leakage in a method in which the insulating packing is formed integrally with the lid plate, as shown in FIG. 2 of Japanese Utility Model Laid-Open No. 61-119256 or Japanese Utility Model Laid-Open No. 60-3553, FIG. An annular rising portion is provided on the periphery of the through hole of the cover plate toward the upper surface or the lower surface side of the cover plate (refer to FIG. 6, described later), or Japanese Utility Model Publication No. 36-26438 or Japanese Utility Model Publication No. 63-26438.
As described in Japanese Patent No. -106059, by providing an annular acute projection (not shown) on the back surface of the head of the rivet, the rising portion of the through hole or the acute projection is attached to the insulating packing when assembling the sealing plate. There is a plan to improve the airtightness of this part by digging into it. The present inventors have studied applying this idea to the above-described method of integrally forming the insulating packing. As an example, the sixth
The figure shows a case where a rising portion is provided in the through hole. In the figure, a sealing plate 71 is provided with a lid plate 72 provided with a rising portion 72b upward at the periphery of a through hole 72a, an insulating packing 74 integrally formed on the upper and lower surfaces of the lid plate, a terminal rivet 85, a washer 86.
When the rivet leg portion 85a is caulked and fastened, the rising portion 72b is made to bite into the insulating packing to improve the sealing performance at this portion.
However, when the insulating packing is formed by the insert molding method, since the molten resin flows along the shape of the rising portion and is molded, the rising portion cannot be digged in. There were few. Also,
Both the method of providing the rising portion and the method of providing the acute angle projection on the rivet head are formed by press working during mass production, so that it is difficult to obtain a uniform annular projection, and the above-described electrical capillary action unique to the alkaline electrolyte. It was not enough to prevent liquid leakage. These methods were rather effective when the sealant 87 was used in combination with the divided insulating packing as shown in FIG. As described above, the improvement measures for integrally forming the insulating packing with the lid plate have problems in the sealant and processing.

本発明はこのような課題を解決するもので、蓋板の透
孔周縁に、耐熱,密着性に優れた耐電解液性の絶縁シー
ル層を設けた後、基板の上・下面に一体に絶縁パッキン
グを形成したものを用いて、絶縁端子を構成することに
より、組み立て工程を簡略化し作業性を安定向上させた
絶縁端子付き封口板の新規な製法と、その封口板を用い
た気密性,耐漏液性に優れた密閉形アルカリ電池を提供
することを目的とするものである。
The present invention solves this problem by providing an insulating seal layer having excellent heat resistance and adhesiveness on the periphery of a through hole of a lid plate, and then integrally insulating the upper and lower surfaces of the substrate. A new method of manufacturing a sealing plate with insulating terminals that simplifies the assembly process and stably improves workability by configuring insulating terminals by using the one with the packing formed, and airtightness and leakage resistance using the sealing plates. It is an object of the present invention to provide a sealed alkaline battery having excellent liquid properties.

課題を解決するための手段 本発明は、上記の目的を達成するため、透孔を設けた
金属製の蓋板の、透孔周縁を囲む上下面もしくは何れか
片面と透孔の内壁面に、フッ素樹脂と耐熱,耐電解液性
を有する結着剤を主体とした複合物からなる絶縁シール
剤を用いて絶縁シール層を形成し、次いで絶縁シール層
の表面を含めた蓋板の上下面および透孔の内壁面に一体
に、端子リベットの脚部挿入孔を有する合成樹脂からな
る絶縁パッキング層を射出成型等によって形成した後、
前記脚部挿入孔に端子リベットの脚部を挿入し、その先
端を適正な加圧力で締着固定して、絶縁端子付き封口板
を形成したものである。
Means for Solving the Problems The present invention, in order to achieve the above object, a metal lid plate provided with a through-hole, on the upper and lower surfaces surrounding the periphery of the through-hole or any one surface and the inner wall surface of the through-hole, An insulating seal layer is formed using an insulating sealant made of a composite mainly composed of a fluororesin and a binder having heat resistance and electrolyte resistance, and then the upper and lower surfaces of the lid plate including the surface of the insulating seal layer and After integrally forming an insulating packing layer made of a synthetic resin having leg insertion holes for terminal rivets on the inner wall surface of the through hole by injection molding or the like,
The terminal rivet leg is inserted into the leg insertion hole, and the tip is fastened and fixed with an appropriate pressing force to form a sealing plate with insulating terminals.

本発明はまた前記したごとく、蓋板の透孔周縁にフッ
素樹脂と結着剤を主体とした絶縁シール層を設けた後
に、この蓋板の上下面および透孔の内壁面に一体に絶縁
パッキング層を形成し、前記絶縁パッキング層に端子リ
ベットを挿入,締着固定してなる絶縁端子付き封口板を
用いて、発電要素を収納した金属製の電池容器の開口端
に載置し、前記蓋板の周縁を電池容器の開口端に溶接,
密封して、密閉形アルカリ電池を構成したものである。
As described above, the present invention also provides an insulating seal layer formed mainly of a fluororesin and a binder around the perimeter of the through hole of the lid plate, and then integrally forms an insulating packing on the upper and lower surfaces of the lid plate and the inner wall surface of the through hole. A layer is formed, and a terminal rivet is inserted into the insulating packing layer, and the terminal rivet is inserted and fastened and fixed. The periphery of the plate is welded to the open end of the battery container,
A sealed alkaline battery is formed by sealing.

作用 上記の方法によると、蓋板にあらかじめ設ける絶縁シ
ール層が、パッキング樹脂成形時の溶融樹脂の加圧注入
に耐え得るので、射出成形等によって蓋板の上下面に一
体に絶縁パッキング層を形成する際の問題点が解消さ
れ、前記絶縁シール層および絶縁パッキング部分に生じ
る嵌合すき間がなくなることによって、気密性の安定し
た絶縁端子を作ることができると共に、従来の絶縁端子
付き封口板の製法と比べて工程が簡略化され、製作が容
易となる。
According to the above method, the insulating sealing layer provided in advance on the lid plate can withstand the pressure injection of the molten resin during the molding of the packing resin, so that the insulating packing layer is integrally formed on the upper and lower surfaces of the lid plate by injection molding or the like. In addition, the problem of the above is solved, and by eliminating the fitting gap generated in the insulating seal layer and the insulating packing portion, it is possible to produce an insulated terminal having a stable airtightness and a conventional method of manufacturing a sealing plate with an insulated terminal. The process is simplified as compared with, and the production becomes easy.

また、この方法による封口板を用いることによって、
蓋板周縁を電池容器開口端に溶接する工程において、蓋
板の変形による溶接不良の発生を抑止することができる
とともに、絶縁シール層は主剤のフッ素樹脂と結着剤の
相乗効果によって、撥水性,耐熱性,耐電解液性の向上
と、可撓性が付与されて、蓋板金属面への密着性が確保
され、蓋板の透孔周縁の金属面の電解液によるぬれを抑
制して、電気的毛管作用による電解液のしみ出しを防止
することができ、前記絶縁端子部分の気密性の安定化と
相まって、耐漏液性に優れた絶縁端子付き封口板を備え
た密閉形アルカリ電池が得られる。
Also, by using the sealing plate by this method,
In the process of welding the edge of the lid plate to the opening end of the battery container, it is possible to suppress the occurrence of poor welding due to the deformation of the lid plate, and the insulating seal layer is made water-repellent by the synergistic effect of the main component fluororesin and the binder. , Heat resistance, improvement of electrolyte resistance and flexibility, adhesion to the metal surface of the cover plate is ensured, and wetting of the metal surface around the through hole of the cover plate by the electrolyte is suppressed. In addition, the sealed alkaline battery provided with a sealing plate with an insulating terminal excellent in liquid leakage resistance can be prevented from leaking out of the electrolytic solution due to the electric capillary action, and in combination with the stabilization of the airtightness of the insulating terminal portion. can get.

実開昭 本発明は、上記したように、小形の角形(角薄形,矩
形状を含む)、小判形および小径の円筒形の電池に適用
する絶縁端子付き封口板と、それを用いた密閉形アルカ
リ電池を対象とするが、ここでは角形の電池とその封口
板を例に、以下図によって説明する。
As described above, the present invention relates to a sealing plate with an insulating terminal applied to a small square (including a square thin shape and a rectangular shape), an oval shape and a small-diameter cylindrical battery, and a sealing plate using the same. The present invention is directed to a shape-type alkaline battery. Here, a rectangular battery and a sealing plate thereof will be described as an example with reference to the drawings.

<1>封口板の製法 第1図の1−1〜1−5に示す各図は、封口板の一辺
の側断面を示し、次に述べる本発明の実施例1,実施例2
の絶縁端子付き封口板の組み立て工程を図示したもので
ある。
<1> Manufacturing Method of Sealing Plate Each of the drawings shown in FIGS. 1-1 to 1-5 shows a side cross section of one side of the sealing plate.
2 is a diagram illustrating an assembling process of the sealing plate with insulating terminals of FIG.

実施例1 第1図において、1−1の2は封口板を構成する角形
・金属製の蓋板を示し、ニッケルめっき鋼板またはステ
ンレス鋼板を、プレス加工によって周縁が平坦な皿状に
成形したもので、中央部分に絶縁端子(後述)を固定す
る透孔2aを設けたものである。次に、1−2に示すよう
に、この蓋板2の透孔2aの周縁を囲む上下面および透孔
の内壁面2bに、フッ素樹脂粉末と耐熱,耐アルカリ電解
液性の結着剤を主体として、溶媒に分散させて液状ある
いはペースト状に調製した絶縁シール剤を、塗着,乾
燥,加熱して(詳細後述)、絶縁シール層3を形成す
る。この封口板を適用する電池の使用条件が、高温高湿
を含む環境下で長期間使用される場合は、上記1−2の
例のように、絶縁シール層3は、蓋板の透孔周縁を囲む
上下面に形成することが望ましい。しかし、電池の使用
環境条件が比較的に緩い場合は、絶縁シール層3の形成
範囲を蓋板の透孔周縁の何れか片面のみにしても、実用
的に十分な効果が得られる。
Example 1 In FIG. 1, 1-1-2 indicates a rectangular / metallic cover plate constituting a sealing plate, which is formed by pressing a nickel-plated steel plate or a stainless steel plate into a dish with a flat peripheral edge by pressing. Thus, a through hole 2a for fixing an insulating terminal (described later) is provided at the center. Next, as shown in 1-2, a fluororesin powder and a heat-resistant and alkali-resistant electrolytic solution binder are applied to the upper and lower surfaces surrounding the periphery of the through hole 2a of the lid plate 2 and the inner wall surface 2b of the through hole. As a main component, an insulating sealant dispersed in a solvent and prepared in a liquid or paste form is applied, dried, and heated (described later in detail) to form an insulating seal layer 3. When the use condition of the battery to which this sealing plate is applied is to be used for a long time in an environment including high temperature and high humidity, as in the example of the above-mentioned 1-2, the insulating sealing layer 3 is formed on the periphery of the through hole of the lid plate. It is desirable to form on the upper and lower surfaces surrounding. However, if the operating environment conditions of the battery are relatively mild, a practically sufficient effect can be obtained even if the formation range of the insulating sealing layer 3 is set to only one of the peripheries of the through hole of the lid plate.

次いで、インサートモールド法(通称名;例えば金属
製シャフトの周りに樹脂製のカバーを一体に成形するよ
うな方法)を適用した所定形状のキャビティーをもった
樹脂成形金型(図面省略)に、前記の絶縁シール層3を
設けた蓋板2を装填した後、前記金型を装着した射出成
形機のシリンダー温度を290〜300℃に設定して溶融した
ポリアミド樹脂(ナイロン66)を、射出圧力700〜1000k
g/cm2,成形サイクル20〜30秒で前記金型内に加圧注
入,成形して、1−3に示したように、前記絶縁シール
層3の表面を含めた蓋板2の上面4a,下面4bおよびリベ
ット脚部挿入孔4dを除いた透孔2aの内壁面4cに一体に、
絶縁パッキング層4を形成する。
Next, a resin molding die (not shown) having a cavity of a predetermined shape to which an insert molding method (common name; for example, a method of integrally molding a resin cover around a metal shaft) is applied. After the lid plate 2 provided with the insulating seal layer 3 is loaded, the polyamide resin (nylon 66) melted by setting the cylinder temperature of the injection molding machine equipped with the mold to 290 to 300 ° C. is injected. 700-1000k
g / cm 2 , with a molding cycle of 20 to 30 seconds, and pressurized and molded into the mold, and as shown in 1-3, the upper surface 4a of the lid plate 2 including the surface of the insulating seal layer 3 , The lower wall 4b and the inner wall surface 4c of the through hole 2a excluding the rivet leg insertion hole 4d,
An insulating packing layer 4 is formed.

続いて、1−4に示したように前記絶縁パッキング層
4に設けたリベット脚部挿入孔4dに、ニッケルめっき鋼
などを用いて成形した端子リベット5のリベット脚部5a
を(このとき、前記挿入孔4dの内周縁,リベット脚部5a
の外周に、必要に応じてアスファルトなど従来のシール
剤を塗布しておく)、図示矢印Aで示したように挿入し
て絶縁パッキング4の下面に突出させ、その突出先端
に、リベット孔7aを設けた正極リード接続用のリードワ
ッシャー7を、図示矢印Bのように嵌入し、次いでリベ
ット脚部5aの先端を、かしめ型を用い、蓋板2に反りな
どの変形を生じない範囲の適正な加圧力によって、1−
5の矢印Cのようにかしめることにより、端子リベット
5を絶縁パッキング層4および蓋板2に締着固定して絶
縁端子6を形成した、絶縁端子付き封口板1を得る。
Subsequently, as shown in 1-4, the rivet leg 5a of the terminal rivet 5 molded using nickel-plated steel or the like is inserted into the rivet leg insertion hole 4d provided in the insulating packing layer 4.
(At this time, the inner peripheral edge of the insertion hole 4d, the rivet leg 5a
If necessary, a conventional sealing agent such as asphalt is applied to the outer periphery of the insulating packing 4) and inserted as shown by the arrow A in the drawing to protrude from the lower surface of the insulating packing 4, and a rivet hole 7a is formed at the protruding tip. The provided lead washer 7 for connecting the positive electrode lead is fitted as shown by the arrow B in the drawing, and then the tip of the rivet leg 5a is caulked using a crimping die so that the cover plate 2 is not deformed such as warpage. Depending on the applied pressure,
By crimping as shown by arrow C in FIG. 5, the terminal rivet 5 is fastened and fixed to the insulating packing layer 4 and the cover plate 2 to form the insulating terminal 6 and the sealing plate 1 with the insulating terminal is obtained.

次に、前記した絶縁シール層3の形成方法について説
明する。まず上述した液状あるいはペースト状の絶縁シ
ール剤を用いる例について述べる。
Next, a method for forming the insulating seal layer 3 will be described. First, an example in which the above-mentioned liquid or paste-like insulating sealant is used will be described.

絶縁シール剤は、フッ素樹脂の粉末と、結着剤として
エポキシ樹脂などの、一液型または二液混合型の熱硬化
性樹脂(未硬化物)の単独、あるいはそれを主体に耐
熱,耐アルカリ性の熱可塑性樹脂を加えたものを主剤と
し、必要に応じて少量の分散充填剤を添加したものに、
塗着方法に対応して適量の溶媒を加え、液状もしくはペ
ースト状に調製したものを使用する。上記において、フ
ッ素樹脂としては、ポリ四フッ化エチレン樹脂(PTF
E),四フッ化エチレン・六フッ化プロピレン共重合樹
脂(FEP),四フッ化エチレン・パーフルオロアルキル
ビニルエーテル共重合樹脂(PFA)が適応するが(注;
これらのフッ素樹脂単独では、金属面への結着力は弱
く、シール剤として使えない)、絶縁パッキングを形成
する樹脂の溶融温度が高い(270℃程度以上)、あるい
は絶縁シール層の撥水性を大にしたい場合は、四フッ化
エチレン樹脂を用いるのが好ましい。何れも、約30μm
以下の粉末としたものを用いるが、塗着性,撥水性の観
点から、およそ0.5〜10μmの粒径としたものが好まし
い。結着剤については、前記したごとく、射出成形など
によって絶縁パッキングを形成する際に、絶縁シール層
2は熱溶融樹脂に接触して加熱されるが、その1成形サ
イクル(通常10〜60秒以内)の間に絶縁シール層3が溶
融拡散(樹脂内に)、あるいは剥離を生じないようにす
る必要がある。本発明の絶縁シール層3では、フッ素樹
脂粉末の併用により、結着剤の耐熱性,耐電解液性(主
に耐アルカリ)は単独で用いる場合よりも向上するもの
の、その選択は重要な要素となる。このような観点か
ら、加熱されたときの密着力(接着強度)を確保するた
めに、結着剤として耐アルカリ性の熱硬化性樹脂(例え
ばエポキシ樹脂、あるいはその変性樹脂、他の樹脂との
複合物)を主体に用いる。結着剤として、エポキシ樹脂
を用いる場合について述べると、樹脂分としてビスフェ
ノールA型エポキシ,ノボラック型エポキシ,環状脂肪
族系エポキシ等が使用できるが、シール剤の調製,塗着
作業性などの点ではビスフェノールA型が使いやすい。
また耐熱性,密着性の良好なものを得るために、硬化剤
との組合せは、硬化温度が120℃以上、好ましくは約150
〜200℃のものを用いるのがよい。前記主剤の練合作業
性,塗着性を高めるために、アルミナ,炭酸カルシウ
ム,ケイ酸カルシウムなどの分散補助充填剤を必要に応
じて少量(主剤合計の15重量%以内程度)加えるとよ
い。次に、上記の具体例を述べる。
The insulating sealant is a one-part or two-part thermosetting resin (uncured) such as a fluororesin powder and an epoxy resin as a binder. The main component is the one with the addition of a thermoplastic resin, and the one with a small amount of a dispersed filler added as necessary.
A liquid or a paste prepared by adding an appropriate amount of a solvent in accordance with the application method is used. In the above, as the fluororesin, polytetrafluoroethylene resin (PTF
E), ethylene tetrafluoride / propylene hexafluoride copolymer resin (FEP) and ethylene tetrafluoride / perfluoroalkyl vinyl ether copolymer resin (PFA) are applicable (Note;
These fluororesins alone have a weak binding force to a metal surface and cannot be used as a sealant), the melting temperature of the resin forming the insulating packing is high (about 270 ° C or higher), or the water repellency of the insulating seal layer is large. In this case, it is preferable to use a tetrafluoroethylene resin. Approximately 30 μm
The following powders are used, but those having a particle size of about 0.5 to 10 μm are preferable from the viewpoint of coating properties and water repellency. As described above, when the insulating packing is formed by injection molding or the like, the insulating seal layer 2 is heated by contacting with the hot-melt resin as described above, but one molding cycle (typically within 10 to 60 seconds) ), It is necessary to prevent the insulating seal layer 3 from melting and diffusing (into the resin) or peeling. In the insulating seal layer 3 of the present invention, the combined use of the fluororesin powder improves the heat resistance and the electrolyte resistance (mainly the alkali resistance) of the binder as compared with the case where the binder is used alone, but the selection is an important factor. Becomes From such a viewpoint, in order to secure the adhesive force (adhesive strength) when heated, an alkali-resistant thermosetting resin (for example, epoxy resin, a modified resin thereof, or a composite with another resin) is used as a binder. Object) is mainly used. As for the case where an epoxy resin is used as the binder, bisphenol A type epoxy, novolak type epoxy, cycloaliphatic epoxy and the like can be used as the resin component, but in terms of preparation of sealant, coating workability, etc. Bisphenol A type is easy to use.
In addition, in order to obtain a material having good heat resistance and adhesiveness, the combination with a curing agent should be performed at a curing temperature of 120 ° C. or higher, preferably about 150 ° C.
It is preferable to use one having a temperature of 200 ° C. In order to improve the kneading workability and coating property of the main agent, a small amount of a dispersion auxiliary filler such as alumina, calcium carbonate, calcium silicate or the like may be added as needed (about 15% by weight or less of the total of the main agent). Next, the above specific example will be described.

実施例1A 結着剤として一液型のエポキシ樹脂を用いるもので、
潜在性硬化剤としてヘキサメチレンテトラミン,イミダ
ゾールの誘導体,ジシアンジアミドなどを、あらかじめ
添加しておき、加熱によって硬化反応させるタイプなの
で、塗着作業性がよい。
Example 1A Using a one-pack type epoxy resin as a binder,
Hexamethylenetetramine, imidazole derivatives, dicyandiamide, and the like are added in advance as a latent curing agent, and the curing reaction is performed by heating, so that the coating workability is good.

上記配合のものに、トルエン,キシレン,メチルイソ
ブチルケトンなどの溶媒を適量加えて練合して、ペース
ト状(低粘度)の絶縁シール剤を調製した。これを、蓋
板2の透孔2a周縁の所定面に、スタンプ,ロール転写な
どの方法で塗着,乾燥して、約30μm厚さの塗膜を設
け、次いで加熱炉に入れ170〜200℃で5〜30分間加熱し
てエポキシ樹脂を硬化させ、絶縁シール層3を形成す
る。得られた絶縁シール層3はこのままでも目的を達す
るが、さらに280〜300℃の焼成炉で2〜5分間焼成する
ことによって、絶縁シール層の表面のフッ素樹脂粉体層
が焼結され、長期間すぐれた撥水性と耐酸化性を付与す
ることができるので、この焼成工程を加えることが望ま
しい(後述の実施例についても同様である)。焼成工程
を加えた実施例の絶縁シール層3を設けた蓋板2に、絶
縁パッキング材として使用されているポリプロピレン,
ポリアミド,ポリアセタール(共重合物)などの樹脂材
料を用い、シリンダー温度を240〜320℃に変化させて、
絶縁パッキングを形成し、封口板として組み立ててみた
が、絶縁シール層に異常は生じなかった。
An appropriate amount of a solvent such as toluene, xylene, or methyl isobutyl ketone was added to the above mixture, and the mixture was kneaded to prepare a paste-like (low-viscosity) insulating sealant. This is applied to a predetermined surface of the periphery of the through hole 2a of the cover plate 2 by a method such as stamping or roll transfer and dried to form a coating film having a thickness of about 30 μm, and then placed in a heating furnace at 170 to 200 ° C. For 5 to 30 minutes to cure the epoxy resin and form the insulating seal layer 3. Although the obtained insulating seal layer 3 achieves its purpose as it is, it is further baked in a firing furnace at 280 to 300 ° C. for 2 to 5 minutes, whereby the fluororesin powder layer on the surface of the insulating seal layer is sintered, It is desirable to add this baking step because the water repellency and the oxidation resistance excellent in the period can be imparted (the same applies to the examples described later). The cover plate 2 provided with the insulating seal layer 3 of the embodiment to which the baking step is added is provided with polypropylene used as an insulating packing material,
Using a resin material such as polyamide, polyacetal (copolymer), and changing the cylinder temperature to 240-320 ° C,
When an insulating packing was formed and assembled as a sealing plate, no abnormality occurred in the insulating sealing layer.

実施例1B 結着剤として、二液混合型のエポキシ樹脂を用いる例
を示す。硬化剤として、酸無水物あるいは芳香族ポリア
ミンなど高温硬化型のものを用い、150〜180℃で硬化処
理を行う。配合は、実施例1Aの固型分の配合表のものに
準じ、フッ素樹脂粉末は樹脂および硬化剤に分けて加え
それぞれ練合しておくと、二液混合の際に均一に混合し
やすい。また粘度調整には、前記した溶媒を用いるが、
添加量が多くなる場合は、ジグリシジル・エーテル系な
どの反応性希釈剤(低分子エポキシ化合物)を使用すれ
ば、硬化反応時に固型成分となるので、塗着,乾燥時の
気泡発生などのトラブル減少に効果がある。また、樹脂
分として、上記のごとくエポキシ単独等でなく、複数の
樹脂系の複合物を用いれば、耐熱性あるいは密着性をさ
らに改善することができる。例えばエポキシとビスマレ
イミドなどの複合物は、密着力を低下させずに上記の例
よりさらに高い射出成形温度の樹脂成形に対応可能とな
る。
Example 1B An example is shown in which a two-pack type epoxy resin is used as a binder. As the curing agent, a high-temperature curing type such as an acid anhydride or an aromatic polyamine is used, and a curing treatment is performed at 150 to 180 ° C. The compounding is performed according to the compounding table of the solid component in Example 1A. If the fluororesin powder is divided into the resin and the curing agent and then kneaded, it is easy to mix uniformly during the two-liquid mixing. For the viscosity adjustment, the above-mentioned solvent is used,
If the addition amount is large, a reactive diluent (low molecular weight epoxy compound) such as diglycidyl ether can be used as a solid component during the curing reaction, which causes troubles such as air bubbles during coating and drying. Effective for reduction. Further, if a plurality of resin-based composites are used as the resin component instead of the epoxy alone as described above, the heat resistance or the adhesion can be further improved. For example, a compound such as epoxy and bismaleimide can be used for resin molding at an injection molding temperature higher than that of the above example without lowering the adhesion.

実施例1C 結着剤として、前記したエポキシ樹脂あるいはその複
合物などの熱硬化性樹脂に、高融点,耐アルカリ性の熱
可塑性樹脂、例えばポリエーテルサルホン(PES)ある
いはポリエーテルアミドの粉末を混合して用いるもの
で、その合計配合量は、実施例1Aの固型分の配合表のエ
ポキシ樹脂相当量とし、上記熱硬化性樹脂と熱可塑性樹
脂との比は1:0.2〜1(重量部)とする。このように熱
可塑性樹脂を併用すると、実施例1Aに示した焼成工程を
実施した場合にフッ素樹脂および蓋板との接着力を高め
て、密着性の良好な絶縁シール層を形成することができ
る。
Example 1C A high-melting-point, alkali-resistant thermoplastic resin such as polyethersulfone (PES) or polyetheramide powder was mixed with the above-mentioned thermosetting resin such as the epoxy resin or a composite thereof as a binder. The total compounding amount is the equivalent amount of the epoxy resin in the solid composition table of Example 1A, and the ratio between the thermosetting resin and the thermoplastic resin is 1: 0.2 to 1 (parts by weight). ). When the thermoplastic resin is used in combination as described above, when the firing step shown in Example 1A is performed, the adhesive strength between the fluororesin and the lid plate is increased, and an insulating seal layer having good adhesion can be formed. .

実施例2 第1図によって説明した実施例1の封口板の製法にお
いて、1−2の絶縁シール層3を形成する絶縁シール剤
の結着剤として、紫外線硬化型のエポキシ系樹脂を用い
る例を示す。ビスフェノールAジグリシジルエーテルに
紫外線カチオン開始剤(例えばコンプレックスハライド
のアリルジアゾニウム塩)を加えたもの、あるいはビス
フェノール系エポキシにアクリル酸を反応させて得られ
るエポキシアクリレートなどを、実施例1Aの一液型エポ
キシ樹脂に代えて用いれば、絶縁シール剤を蓋板に塗着
液(溶媒を含む場合には乾燥後)、各種の紫外線ランプ
トンネルに入れて紫外線を照射することにより10〜30秒
程度で硬化処理が行える。適用する電池の使用環境条件
が比較的緩い場合は、前記硬化処理のみのものでも絶縁
シール層の目的を達することができるので、この方法を
適用すれば、加工時間が短縮できるとともに、機械化に
よる連続加工が可能となる。
Example 2 In the method of manufacturing the sealing plate of Example 1 described with reference to FIG. 1, an example in which an ultraviolet-curable epoxy resin is used as a binder of the insulating sealant forming the 1-2 insulating seal layer 3 will be described. Show. Bisphenol A diglycidyl ether to which an ultraviolet cationic initiator (for example, an allyldiazonium salt of complex halide) is added, or epoxy acrylate obtained by reacting acrylic acid with bisphenol epoxy is used as a one-part epoxy resin of Example 1A. If used in place of resin, an insulating sealant is applied to the lid plate (after drying if a solvent is included), and cured in about 10 to 30 seconds by irradiating ultraviolet rays through various UV lamp tunnels Can be performed. When the use environment conditions of the battery to be applied are relatively mild, the object of the insulating seal layer can be achieved even with only the above-described curing treatment, so that by applying this method, the processing time can be shortened and continuous processing by mechanization can be achieved. Processing becomes possible.

実施例3 第1図に示した封口板製法の工程において、絶縁シー
ル層3の形成法を、1−2に示した液状絶縁シール剤を
塗着する方法(実施例1参照)に代えて、シート状とし
た絶縁シール剤を、第2図の2A-1に示したように、蓋板
の透孔2aに相当する孔31aを有する所定の薄膜リング状
に成形した絶縁シール剤片31を、蓋板2の透孔2aの周縁
を囲むように積重し、図示矢印Dのごとく積重方向に加
圧した後、またはホットプレス型を用いて加圧しなが
ら、180〜200℃に加熱して絶縁シール剤片31を硬化、蓋
板に密着させて、2A-2,2Bに示したように、蓋板の片面
または両面に絶縁シール層3を形成する。上記絶縁シー
ル剤片31は、前記実施例に示したビスフェノールAある
いは環状脂肪族系のエポキシ樹脂の高粘度のもの、また
は半固形状のものに潜在性硬化剤を組合せたものを結着
剤とし、これにフッ素樹脂粉末,充填剤等を加え練合し
た後、押出し成形などの方法でシール状とし、次いで前
記したように、打抜き加工などで所定形状の薄膜リング
状としたものであり、硬化処理前は、加圧により若干の
粘着性が生じるので、蓋板2の所定面に容易に仮接着す
ることができる。前記の方法によれば狭い面でも、容易
に均一な厚さの絶縁シール層3を形成することができ
る。
Example 3 In the process of the sealing plate manufacturing method shown in FIG. 1, the method of forming the insulating sealing layer 3 was changed to the method of applying the liquid insulating sealing agent shown in 1-2 (see Example 1), As shown in FIG. 2A-1, the sheet-shaped insulating sealant is formed into a predetermined thin film ring-shaped insulating sealant piece 31 having a hole 31a corresponding to the through hole 2a of the lid plate, After being stacked so as to surround the periphery of the through hole 2a of the cover plate 2 and pressurized in the stacking direction as shown by the arrow D in the drawing, or while being pressurized by using a hot press mold, it is heated to 180 to 200 ° C. The insulating sealant piece 31 is cured and brought into close contact with the lid plate, and as shown in 2A-2 and 2B, the insulating seal layer 3 is formed on one or both sides of the lid plate. The insulating sealant piece 31 is made of a high viscosity bisphenol A or cycloaliphatic epoxy resin as shown in the above-described embodiment, or a combination of a semi-solid epoxy resin and a latent curing agent as a binder. The mixture is kneaded with a fluororesin powder, a filler, etc., kneaded, and then formed into a seal by extrusion or the like, and then into a thin film ring of a predetermined shape by punching or the like, as described above. Before the treatment, a slight tackiness is generated by pressurization, so that it can be easily temporarily adhered to a predetermined surface of the lid plate 2. According to the method described above, the insulating seal layer 3 having a uniform thickness can be easily formed even on a narrow surface.

実施例4 第4図は、端子構成が異なる本発明の別の実施例、す
なわち端子部分に安全弁を備えた、防爆式絶縁端子付き
封口板101の側断面を示したものである。前記実施例1
(第1図の封口板の組み立て工程図)で述べたように、
蓋板2の透孔2a周縁の所定面に絶縁膜シール層3を設
け、次いでリベット脚部挿入孔4dを有する絶縁パッキン
グ層4を形成した後、第4図に示したように、貫通孔を
設けた中空状のリベット脚部51aを備えた端子リベット5
1を用い、前記リベット脚部挿入孔4d(第1図参照)に
リベット脚部51aを挿入して絶縁パッキング層4の下面
に突出させ、正極リードを接続するためのリードワッシ
ャー7を図示のごとく嵌入した後、前述のように、リベ
ット脚部51aの先端をかしめによって締着固定する。次
いで、弁口51bを設けた端子リベット51の頭部と金属製
のキャップ端子52とで形成される空室内に、合成ゴム製
などの弾性弁体53を、前記弁口51bを常時は閉塞するよ
うに配設し、キャップつば52aを端子リベット頭部に溶
接などによって固定して、復帰式の安全弁を形成するも
のであり、主に密閉径アルカリ蓄電池に適用する。防爆
装置としては、他に、第1図の例において蓋板の一部分
に薄肉部を設け(図示せず)、電池内圧力が過大になれ
ば前記薄肉部が裂けて排気する、非復帰式のものとして
もよい。
Embodiment 4 FIG. 4 shows a side cross section of another embodiment of the present invention having a different terminal configuration, that is, a sealing plate 101 with an explosion-proof insulated terminal provided with a safety valve at a terminal portion. Example 1
(Assembling process diagram of the sealing plate in FIG. 1)
After providing an insulating film sealing layer 3 on a predetermined surface of the periphery of the through hole 2a of the cover plate 2, and then forming an insulating packing layer 4 having rivet leg insertion holes 4d, as shown in FIG. Terminal rivet 5 with hollow rivet legs 51a provided
1, a rivet leg 51a is inserted into the rivet leg insertion hole 4d (see FIG. 1) and protrudes from the lower surface of the insulating packing layer 4, and a lead washer 7 for connecting a positive electrode lead is provided as shown in FIG. After the fitting, as described above, the tip of the rivet leg 51a is tightened and fixed by caulking. Next, an elastic valve body 53 made of synthetic rubber or the like is always closed in an empty room formed by the head of the terminal rivet 51 provided with the valve port 51b and the metal cap terminal 52. In this manner, the cap collar 52a is fixed to the terminal rivet head by welding or the like to form a return-type safety valve, and is mainly applied to a sealed-diameter alkaline storage battery. In addition, as an explosion-proof device, a non-return type, in which a thin portion is provided in a part of the cover plate (not shown) in the example of FIG. 1 and the thin portion is torn and exhausted when the pressure in the battery becomes excessive, is used. It may be a thing.

実施例5 第1図の1−6,1−7に示す各図は、前記実施例1と
は絶縁パッキング層の形状が部分的に異なる、別の例の
封口板11の、組み立て工程の一部を図示したものであ
る。すなわち、極板群との接続用に、リベット孔17aを
有し、先端を長くしたL字状のリード板17を用い、この
リード板と電池容器間の絶縁、および極板群と蓋板2と
の間に介在して極板群の短絡を防止するための、絶縁台
座15を別に設けた場合の一例を示したものである。1−
6に示したように、絶縁パッキング層14は、蓋板2の下
面側14bの延出長さを短くしているが、1−7に示した
ように、リベット脚部5aをかしめ締着した場合、密閉効
果は主に蓋板2の透孔2aの内周縁の上下面の角付近に対
応する部分に生じる。従って、下面側14b長さは図示の
ごとく、リベット脚部5aのかしめ部分の先端付近に対応
する長さがあれば、気密性を確保することができるの
で、実施例1の場合と同様の耐漏液効果を得ることがで
きる。
Embodiment 5 FIGS. 1-6 and 1-7 in FIG. 1 show one example of an assembling process of a sealing plate 11 of another example in which the shape of the insulating packing layer is partially different from that of the embodiment 1. FIG. That is, an L-shaped lead plate 17 having a rivet hole 17a and a long tip is used for connection with the electrode plate group, insulation between the lead plate and the battery container, and the electrode plate group and the cover plate 2 are provided. This shows an example of a case where an insulating pedestal 15 is separately provided to prevent a short circuit of the electrode plate group by being interposed therebetween. 1-
As shown in FIG. 6, the insulating packing layer 14 has a shorter extension length on the lower surface side 14b of the cover plate 2, but as shown in 1-7, the rivet leg 5a is caulked and fastened. In this case, the sealing effect mainly occurs in the portion corresponding to the corners of the upper and lower surfaces of the inner peripheral edge of the through hole 2a of the cover plate 2. Therefore, if the length of the lower surface side 14b is as shown in the drawing, and if there is a length corresponding to the vicinity of the tip of the caulked portion of the rivet leg 5a, airtightness can be ensured, so that the same leak-proofing as in the first embodiment. A liquid effect can be obtained.

<2>電池の実施例 第3図は、本発明の製法によって得た絶縁端子付き封
口板を用いて密封した、角形の密閉形アルカリ電池の一
実施例の一方の側面の要部断面を示したものである。8
はニッケルめっき鋼製の有底,角筒形の電池容器であ
り、この容器内にニッケルなどの網あるいは多孔シート
を基材として、二酸化マンガン,酸化銀等の正極活物質
粉末を塗着した正極板、および酸化亜鉛粉末を塗着した
後、電解還元などによって多孔金属化した亜鉛負極板
を、ポリアミド不織布あるいはポリオレフィン微孔性シ
ートなどのセパレータを介して交互に複数枚を積重し、
亜鉛酸アルカリ電解液を所定量含浸させたアルカリ一次
電池の極板群、もしくはニッケル多孔基板に、正極活物
質として水酸化ニッケルを、負極活物質として水酸化カ
ドミウムを各々充填し化成処理を行って正極板および負
極板としたもの、あるいは水素吸蔵合金粉を充填した負
極板を組み合わせて、セパレータを介して上記のように
積重し、アルカリ電解液を含浸させたアルカリ蓄電池極
板群を、発電要素9として収納し、その負極リードは電
池容器8に接続される。電池容器8を密封する絶縁端子
付き封口板1は、前記封口板の製法の実施例1に示した
ものを用いる。すなわち第3図において、2はニッケル
めっき鋼製の蓋板であり、第1図に示したように透孔2a
の周縁には、前記実施例1Aで述べたフッ素樹脂粉末と一
液型エポキシ樹脂(結着剤)を主剤とした絶縁シール層
3が形成されており、4はナイロン66(ポリアミド樹
脂)を用いて蓋板の上下面に一体に形成した絶縁パッキ
ング層、5はニッケルめっき鋼製の端子リベット、7は
ニッケル薄板製のリードワッシャーであり、前記端子リ
ベットのリベット脚部5a先端をかしめることによって、
図示のように蓋板2,絶縁シール層3,絶縁パッキング層4,
端子リベット5を一体に締着して、絶縁端子6を構成し
たものである。この封口板のリードワッシャー7の先端
に、前記発電要素9の正極リード9aを溶接接続した後、
封口板1を電池容器8開口端に嵌入し、前記蓋板2の周
縁と電池容器8の開口端の接合部分に、レーザビームを
照射してシーム溶接を行い、溶接部10を形成して電池容
器を密封したものである。前記において密閉形アルカリ
蓄電池では防爆機能を要求されることが多いが、その場
合は第3図に示した封口板1に代えて、上記第4図に示
した実施例4の防爆式絶縁端子付き封口板101を用いて
同様に密封することができる。
<2> Embodiment of Battery FIG. 3 shows a cross section of a main part of one side of one embodiment of a sealed rectangular alkaline battery sealed with a sealing plate with insulating terminals obtained by the method of the present invention. It is a thing. 8
Is a bottomed, square cylindrical battery container made of nickel-plated steel, in which a positive electrode active material powder such as manganese dioxide, silver oxide, etc. is coated using a mesh or a porous sheet of nickel or the like as a base material. After coating the plate, and zinc oxide powder, a zinc negative electrode plate that has been porous metallized by electrolytic reduction or the like, a plurality of sheets are alternately stacked via a separator such as a polyamide nonwoven fabric or a polyolefin microporous sheet,
An electrode group of an alkaline primary battery impregnated with a predetermined amount of an alkali zincate electrolyte, or a nickel porous substrate, was charged with nickel hydroxide as a positive electrode active material and cadmium hydroxide as a negative electrode active material, and subjected to a chemical conversion treatment. A positive electrode plate and a negative electrode plate or a negative electrode plate filled with a hydrogen storage alloy powder are combined, stacked as described above via a separator, and an alkaline storage battery electrode group impregnated with an alkaline electrolyte is generated. It is housed as element 9 and its negative electrode lead is connected to battery case 8. As the sealing plate 1 with insulating terminals for sealing the battery container 8, the sealing plate shown in Example 1 of the manufacturing method of the sealing plate is used. That is, in FIG. 3, reference numeral 2 denotes a cover plate made of nickel-plated steel, and as shown in FIG.
The insulating seal layer 3 mainly composed of the fluororesin powder and the one-pack type epoxy resin (binder) described in the above Example 1A is formed on the periphery of. Insulating packing layers integrally formed on the upper and lower surfaces of the cover plate, 5 is a terminal rivet made of nickel-plated steel, 7 is a lead washer made of a thin nickel plate, and is formed by caulking a rivet leg 5a of the terminal rivet. ,
As shown, cover plate 2, insulating seal layer 3, insulating packing layer 4,
The terminal rivets 5 are integrally fastened to form an insulating terminal 6. After welding the positive electrode lead 9a of the power generating element 9 to the tip of the lead washer 7 of the sealing plate,
The sealing plate 1 is fitted into the opening end of the battery container 8, and the joint between the peripheral edge of the lid plate 2 and the opening end of the battery container 8 is irradiated with a laser beam to perform seam welding, thereby forming a welded portion 10 to form a battery. The container was sealed. In the above, the sealed alkaline storage battery is often required to have an explosion-proof function. In that case, instead of the sealing plate 1 shown in FIG. 3, the explosion-proof insulating terminal of the fourth embodiment shown in FIG. It can be similarly sealed using the sealing plate 101.

なお、本発明では、上記実施例で述べたように、絶縁
シール剤として、フッ素樹脂(粉末)と耐熱,耐電解液
性の結着剤を主体とした複合物を用いているが、耐熱
性,撥水性の向上対策については、別途、フッ素樹脂を
少量の界面活性剤によって水に分散させた水性ディスパ
ージョンのごとく、結着剤を加えないものを用いて、フ
ッ素樹脂単独の絶縁シール層を形成する方法(参考例
1)も検討したが、封口板組み立て工程およびシール層
の物性に問題点があり、不十分なものであった。すなわ
ち、水性デイスパージョンから形成した薄い層は、200
℃前後以下での加熱乾燥では界面活性剤が多量に残留す
るために撥水性が不十分であり、界面活性剤を除去する
には300〜360℃程度で数十分間焼成する必要があるが、
蓋板の表面酸化,熱変形等の問題点が生じやすい。また
前記焼成済のものも含めて、形成されたシール層は、融
点は高い(PTFEで327℃)が、比較的低温度で軟化がは
じまる(約200℃から)こと、および表面がニッケルま
たはその合金,ステンレス鋼などの金属薄板製の蓋板と
の密着力が小さく、絶縁パッキング層4を射出成形によ
って形成する際に、加熱,流動圧力の影響を受けて蓋板
面から浮き上がったり、剥離を生じたり、あるいは端子
リベット5をかしめ締着する際の部分加圧によって、シ
ール層と蓋板の密着が不完全となり、アルカリ電解液の
場合の電気的毛管現象による電解液のしみ出しを長期
間、安定して防止することは困難であるなどの問題点が
あった。また、フッ素樹脂単独の薄層の場合、PTFEなど
はピンホールを多数生じ、シール層の効果が減少する傾
向も見られた。
In the present invention, as described in the above embodiment, a composite mainly composed of a fluororesin (powder) and a heat-resistant and electrolyte-resistant binder is used as the insulating sealant. For measures to improve the water repellency, separately use an insulating seal layer made of fluororesin alone using a binder that does not contain a binder, such as an aqueous dispersion in which fluororesin is dispersed in water with a small amount of a surfactant. Although a method of forming the same (Reference Example 1) was also examined, there were problems in the sealing plate assembling step and the physical properties of the sealing layer, which were insufficient. That is, a thin layer formed from an aqueous dispersion is 200
In the case of drying by heating at about ℃ or less, the water repellency is insufficient because a large amount of surfactant remains, and it is necessary to bake at about 300 to 360 ° C for several tens minutes to remove the surfactant. ,
Problems such as surface oxidation and thermal deformation of the cover plate are likely to occur. In addition, the formed sealing layer, including the fired one, has a high melting point (327 ° C. for PTFE), but begins to soften at a relatively low temperature (from about 200 ° C.), and has a surface of nickel or its nickel. Adhesion with a cover plate made of a thin metal plate such as an alloy or stainless steel is small, and when the insulating packing layer 4 is formed by injection molding, the insulating packing layer 4 is lifted or peeled off from the cover plate surface under the influence of heating and flow pressure. The sealing layer and the cover plate become incompletely adhered due to the occurrence or partial pressurization when the terminal rivet 5 is caulked and fastened. However, there is a problem that it is difficult to stably prevent it. In addition, in the case of a thin layer of a fluororesin alone, PTFE and the like tend to cause many pinholes and the effect of the seal layer tends to decrease.

次に、上記した本発明の製法および従来例の方法によ
って、絶縁端子付き封口板を製作した場合の、組み立て
不良の発生状況および組み立て作業性について述べる。
封口板を構成する蓋板,端子リベットなどの構成部品は
各々同仕様のものを用い、蓋板は第5図(上面側斜視
図)の5−2に示した上面が矩形状(短辺S,長辺L,なお
第3図および第1図の図示例は短辺側断面に相当する)
の角形電池に適用するために、5−1の2のごとく短形
状,(S)7mm×(L)15mm,厚さ0.4mmのニッケルめっ
き鋼板製のものを用い、端子リベット5は脚部外径2mm
のものを用いた。製法,構造については、本発明のもの
は前記実施例1(絶縁シール層3の形成法は実施例1Aに
よる)の方法を適用し、また従来例のものは第7図7−
1,7−2に示したように、絶縁パッキングを上,下に2
分割して、別々に成形して用いる方式を適用し、シール
膜87(7−1図)としてブロンアスファルトを主体とす
るシール塗料を塗着して製作した。各々1回10,000個を
製作し、これを5回繰り返した結果、従来例のもので
は、上,下の絶縁パッキング83,84を蓋板に組み込む、
あるいは、前記絶縁パッキングに、端子リベットの脚部
を挿入する際の、嵌合ずれが原因で生ずる絶縁パッキン
グの変形などの不良発生が平均3.5%であり、端子リベ
ットのかしめ締着工程における蓋板の長辺方向(第5図
5−1のL参照)の反り変形不良が平均0.3%生じ、リ
ードワッシャー欠落などの、その他の工程不良が0.03%
であり、合計3.8%余の組み立て不良が発生した。これ
に比べて、本発明の製法による組み立て工程不良は、端
子リベットのかしめ締着工程における蓋板2の軽度の反
り変形が0.012%、前記のその他の工程不良が平均0.036
%、合計0.048%となり、従来例の場合の1/80程度に減
少した。また、本発明の製法によれば、前記従来例の方
法に比べて、工程が簡略化されるために、封口板の製作
費用(工数)を、従来例のものより約20%低減すること
ができた。次いで上記により製作した本発明および従来
例の絶縁膜端子付き封口板、並びに前記したごとく本発
明の製法と異なる別の対策案によって製作した参考例の
封口板(下記参照)を用いて、前述のアルカリ蓄電池極
板群を収納した角形の密閉形アルカリ蓄電池を構成し
た。次に、これらの電池を環境試験槽を用いて、絶縁端
子部分の漏液テストを行った。試験電池は次に示す6種
類の封口板を用いて密封して比較した。No.1は前記本発
明によるものであり、No.2は実施例説明で述べた参考例
1のものであり、本発明で用いた絶縁シール剤に代えて
フッ素樹脂水性ディスパージョンを用い、蓋板に塗着,
乾燥後、約290℃・5分間の熱処理を行って、絶縁シー
ル層3を形成したものである。No.3は本発明の封口板を
製作する際に、絶縁シール層3を省いたものであり(参
考例2)、No.4は前記No.3の構成条件に加えて、第6図
によって説明したごとく、蓋板の透孔周縁に立ち上がり
部を設けたものである(参考例3)。No.5は前記した従
来例のものであり、No.6はNo.5の従来例の封口板構成に
おいて、7−1に示したシール膜87を省いたものである
(従来例参考品)。なお、前記の各封口板は、何れも端
子リベットの脚部外周に、前記No.5の従来例の封口板の
絶縁パッキングに適用したものと同じシール剤を、塗着
乾燥して組み立てた。環境試験は下記2種類の条件とし
た。
Next, a description will be given of the state of occurrence of assembly failure and assembly workability when a sealing plate with insulating terminals is manufactured by the above-described manufacturing method of the present invention and the method of the conventional example.
The components such as the lid plate and the terminal rivet which constitute the sealing plate are of the same specifications, and the upper surface of the lid plate shown in 5-2 in FIG. 5 (upper side perspective view) is rectangular (short side S). , Long side L, and the example shown in FIGS. 3 and 1 corresponds to the short side cross section)
In order to apply to the prismatic battery of (5), use a nickel-plated steel plate with a short shape like 5-1-2, (S) 7 mm × (L) 15 mm, thickness 0.4 mm, and the terminal rivet 5 2mm diameter
Was used. As for the manufacturing method and structure, the method of the first embodiment (the method of forming the insulating seal layer 3 is the same as that of the embodiment 1A) is applied to the present invention, and the conventional example is shown in FIG.
As shown in 1,7-2, put the insulating packing up and down
A method of dividing and separately molding and using the same was applied, and a seal paint mainly composed of bron asphalt was applied as a seal film 87 (FIG. 7-1). As a result of producing 10,000 pieces each once and repeating this five times, in the conventional example, the upper and lower insulating packings 83 and 84 are incorporated into the cover plate.
Alternatively, when the legs of the terminal rivet are inserted into the insulating packing, defects such as deformation of the insulating packing caused by misalignment occur at an average of 3.5%, and the cover plate in the terminal rivet caulking step is tightened. In the long side direction (see L in FIG. 5A), warpage deformation failure occurs on average 0.3%, and other process defects such as missing lead washers are 0.03%.
In total, more than 3.8% of assembly failures occurred. On the other hand, the defect in the assembling process according to the manufacturing method of the present invention is as follows.
%, A total of 0.048%, which was reduced to about 1/80 of that of the conventional example. Further, according to the manufacturing method of the present invention, the manufacturing cost (man-hours) of the sealing plate can be reduced by about 20% compared to the conventional example because the process is simplified as compared with the conventional method. did it. Next, using the sealing plate with the insulating film terminal of the present invention and the conventional example manufactured as described above, and the sealing plate of the reference example (see below) manufactured by another measure different from the manufacturing method of the present invention as described above, A square sealed alkaline storage battery containing the alkaline storage battery electrode group was constructed. Next, these batteries were subjected to a liquid leakage test at an insulating terminal portion using an environmental test tank. The test batteries were sealed using the following six types of sealing plates for comparison. No. 1 is according to the present invention described above, and No. 2 is according to Reference Example 1 described in the description of the embodiment, and a fluorine resin aqueous dispersion was used in place of the insulating sealant used in the present invention, Painted on board,
After drying, heat treatment is performed at about 290 ° C. for 5 minutes to form the insulating seal layer 3. No. 3 is obtained by omitting the insulating sealing layer 3 when manufacturing the sealing plate of the present invention (Reference Example 2). As described above, a rising portion is provided on the periphery of the through hole of the lid plate (Reference Example 3). No. 5 is the above-mentioned conventional example, and No. 6 is the sealing plate configuration of the conventional example of No. 5, except that the sealing film 87 shown in 7-1 is omitted (reference example of the conventional example). . Each of the sealing plates was assembled by applying the same sealing agent as that applied to the insulating packing of the No. 5 conventional sealing plate to the outer periphery of the leg portion of the terminal rivet, followed by drying. The environmental test was performed under the following two conditions.

A.ヒートサイクル試験 上記24hを1サイクルとして繰り返す。A. Heat cycle test The above 24h is repeated as one cycle.

B.高温高湿保存試験 70℃・湿度90〜95%の試験槽に放置。B. High-temperature and high-humidity storage test Leave in a test tank at 70 ° C and 90-95% humidity.

試験電池は各々300個とし、満充電状態で試験を開
始、以降10〜15日毎に補充電を行い、試験を継続した。
試験の結果(絶縁端子部分からの漏液率)を第1表に示
す。
The test was started in a fully charged state with 300 test batteries each. After that, supplementary charging was performed every 10 to 15 days, and the test was continued.
Table 1 shows the results of the test (the rate of liquid leakage from the insulating terminal portion).

第1表の漏液率に示したように、No.1本発明によるも
のは、No.5の従来例の封口板、すなわち2分割した絶縁
パッキングの表面に前記したごとくブロンアスファルト
系のシール膜を形成したものと比べて、同等以上の耐漏
液性を有することがわかる。また、絶縁端子部分の密封
性向上のために、前記したごとく絶縁シール層を設けて
いるが、これを省いたNo.3の参考例2,No.4の参考例3、
および従来例におけるNo.5とNo.6の比較結果、との対比
から、従来例で用いているシール膜と同等以上の効果の
あることがわかる。また、フッ素樹脂単独で絶縁シール
層を形成したNo.2の参考例1の結果との比較から、絶縁
シール層の形成法の重要性がわかる。なお、本発明にお
ける絶縁シール層3は、十分な絶縁性を有する材質でな
ければならない。その理由は、蓋板の透孔2a周縁の金属
表面に電気絶縁性と撥水性を付与する手段として、前述
の絶縁シール層3を設けるものであり、これによって、
前記透孔周縁の表面を、電気的毛管作用により電解液が
はう(クリープ)現象をも抑止して、蓋板2と絶縁パッ
キング層4との接面からの電解液の漏出防止を図ったも
のであり、絶縁シール層の絶縁性が低下すると上記の抑
止効果が減少するからである。前記のごとく、透孔周縁
に絶縁シール層を密着させて形成した本発明のものは、
従来例のように絶縁パッキングの表面にシール膜を設け
たものと比べて、量産品においても透孔周縁の液ぬれ抑
止効果が安定して得られる。これは第1表に示した漏液
テスト品(本発明品No.1,従来例No.5)の試験終了後の
ものの絶縁端子部分を分解観察した結果からも確認され
た。
As shown in the liquid leakage rate in Table 1, No. 1 according to the present invention is No. 5 of the conventional sealing plate, that is, a blown asphalt-based sealing film as described above on the surface of the insulating packing divided into two parts. It can be seen that it has the same or higher resistance to liquid leakage as compared with the one formed with. In addition, in order to improve the sealing property of the insulating terminal portion, the insulating sealing layer is provided as described above. However, this is omitted. Reference Example 2 of No. 3, Reference Example 3 of No. 4,
From the comparison with No. 5 and No. 6 in the conventional example, it can be seen that there is an effect equal to or more than that of the seal film used in the conventional example. In addition, comparison with the result of Reference Example 1 of No. 2 in which the insulating seal layer was formed of the fluororesin alone shows the importance of the method of forming the insulating seal layer. Note that the insulating seal layer 3 in the present invention must be made of a material having sufficient insulating properties. The reason is that the above-described insulating seal layer 3 is provided as a means for imparting electrical insulation and water repellency to the metal surface around the through hole 2a of the lid plate.
The surface of the perimeter of the through hole is also prevented from swelling (creep) by the electrolytic solution due to the electric capillary action, thereby preventing leakage of the electrolytic solution from the contact surface between the cover plate 2 and the insulating packing layer 4. This is because, when the insulating property of the insulating seal layer is reduced, the above-described suppression effect is reduced. As described above, the present invention in which the insulating seal layer is closely adhered to the periphery of the through hole,
Compared to a conventional example in which a sealing film is provided on the surface of an insulating packing, even in a mass-produced product, the effect of suppressing liquid wetting at the periphery of the through hole can be stably obtained. This was also confirmed from the results of disassembly observation of the insulated terminal portion of the liquid leak test product (product No. 1 of the present invention, No. 5 of the prior art) shown in Table 1 after the test was completed.

なお本発明では、上記したごとく、フッ素樹脂と耐
熱,耐電解液性(耐アルカリ)の結着剤を主体とする複
合物からなる絶縁シール剤を用いて、絶縁シール層3を
設けているが、これは、従来例として述べた分割成形の
絶縁パッキングを嵌合して用いる方式の、絶縁端子組み
立て工程における課題解消のために、絶縁パッキングの
構成法として、射出成形など熱溶融した樹脂を用いて、
蓋板2の上下面に一体に成形する方法を採用する場合に
生ずる絶縁端子部分の耐漏液性低下に対処したものであ
って、絶縁シール層3に求められる適当な可撓性と金
属面への接着力、耐熱接着強度が大、耐電解液性が
あること、撥水性を有することなどを、複合物の相乗
効果によって、総合的に満足させたものである。上記の
漏液試験結果にも一部示したが、前記のフッ素樹脂ある
いは結着剤を、それぞれ単独で用いた場合は、絶縁パッ
キング層を成形する際、もしくは絶縁端子組み立て時に
劣化を生じたり、耐漏液性が不十分であるなどの理由で
適用はできない。
In the present invention, as described above, the insulating seal layer 3 is provided using an insulating sealant composed of a composite mainly composed of a fluororesin and a binder having heat resistance and electrolytic solution resistance (alkali resistance). In order to solve the problem in the insulated terminal assembling process of the method of fitting and using the insulating molding of the split molding described as the conventional example, a hot-melted resin such as injection molding is used as a method of configuring the insulating packing. hand,
This is to cope with a decrease in the leakage resistance of the insulating terminal portion which occurs when the method of integrally molding the upper and lower surfaces of the cover plate 2 is employed. It has been found that the composite has a large synergistic effect, such as high adhesive strength, heat-resistant adhesive strength, resistance to electrolytic solution, and water repellency. Although partially shown in the above liquid leakage test results, when the above-mentioned fluororesin or the binder is used alone, when the insulating packing layer is molded, or when the insulated terminal assembly is deteriorated, It cannot be applied because of insufficient liquid leakage resistance.

また、上記実施例による封口板組み立て結果および電
池漏液試験結果に示さなかった他の実施例のものも、同
様の改良効果が得られた。
In addition, the same improvement effect was obtained in the other examples which were not shown in the results of assembling the sealing plate and the results of the battery leakage test according to the above example.

発明の効果 以上のように本発明によれば、蓋板の透孔周縁に、フ
ッ素樹脂と結着剤を主体とした複合物の絶縁シール層を
設けた後、蓋板の透孔周縁を含む上下面に一体に絶縁パ
ッキング層を形成したものを用いて、絶縁端子付き封口
板を製作することにより、樹脂成形時の加熱などによる
絶縁シール層の劣化がないことおよび蓋板の透孔周縁と
絶縁パッキング層との間にすき間を生じないことが相ま
って、絶縁端子部分の気密性がよく、品質の安定した封
口板を容易に生産することができる。また、本発明の製
法によれば、蓋板の変形が解消されるために、電口容器
開口端との溶接が確実容易に行うことができると共に、
気密性,耐漏液性に優れた密閉形アルカリ電池が得られ
ることとなる。
Effect of the Invention As described above, according to the present invention, after providing an insulating seal layer of a composite mainly composed of a fluororesin and a binder on the periphery of the through hole of the cover plate, including the periphery of the through hole of the cover plate By manufacturing a sealing plate with insulating terminals by using an insulating packing layer integrally formed on the upper and lower surfaces, there is no deterioration of the insulating sealing layer due to heating during resin molding, The fact that no gap is formed between the insulating packing layer and the insulating packing layer makes it possible to easily produce a sealing plate having good airtightness of the insulating terminal portion and stable quality. Further, according to the manufacturing method of the present invention, since the deformation of the cover plate is eliminated, welding with the opening end of the electrical terminal container can be reliably and easily performed, and
A sealed alkaline battery having excellent airtightness and liquid leakage resistance can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図,第2図,第3図,第4図および第5図は本発明
の実施例を示し、第1図1−1から1−5は本発明の絶
縁端子付き封口板の組み立て工程を示す封口板の一辺の
側断面図、第1図1−6および1−7は別の実施例を示
す側断面図、第2図は別の実施例により設けた絶縁シー
ル層を示す側断面図、第3図は本発明の製法による絶縁
端子付き封口板により密封した角形の密閉形アルカリ電
池の要部破断面図、第4図は本発明による防爆式絶縁端
子付き封口板を示す側断面図、第5図は漏液テスト供試
電池およびそれに用いた蓋板の外観斜視図、第6図は比
較検討封口板の側断面図、第7図,第8図は従来の製法
による絶縁端子付き封口板および分割絶縁パッキングの
構成を示す側断面図である。 1,11……絶縁端子付き封口板、2……蓋板、2a……透
孔、3……絶縁シール層、31……絶縁シール剤片、4,14
……絶縁パッキング層、4d,14d……リベット脚部挿入
孔、5,51……端子リベット、5a,51a……リベット脚部、
51b……弁口、52……キャップ端子、53……弁体、6,16,
61……絶縁端子、7……リードワッシャー、17……リー
ド板、8……電池容器、9……発電要素、10……溶接
部、101……防爆式絶縁端子付き封口板。
1, 2, 3, 4 and 5 show an embodiment of the present invention, and FIGS. 1-1 to 1-5 show steps of assembling a sealing plate with insulating terminals of the present invention. 1 is a sectional side view of one side of a sealing plate, FIGS. 1-6 and 1-7 are side sectional views showing another embodiment, and FIG. 2 is a side sectional view showing an insulating seal layer provided by another embodiment. FIG. 3 is a fragmentary sectional view of a rectangular sealed alkaline battery sealed with a sealing plate with insulating terminals according to the method of the present invention. FIG. 4 is a side sectional view showing a sealing plate with explosion-proof insulating terminals according to the present invention. Fig. 5 is a perspective view of the appearance of the test battery for liquid leakage test and the lid plate used for the same, Fig. 6 is a sectional side view of the sealing plate for comparative study, and Figs. It is a sectional side view which shows the structure of the attached sealing plate and divided insulating packing. 1,11: sealing plate with insulating terminals, 2: lid plate, 2a: through hole, 3: insulating sealing layer, 31, insulating sealing agent piece, 4, 14
... Insulating packing layer, 4d, 14d ... Rivet leg insertion hole, 5, 51 ... Terminal rivet, 5a, 51a ... Rivet leg,
51b …… Valve, 52 …… Cap terminal, 53 …… Valve, 6,16,
61 ... Insulated terminal, 7 ... Lead washer, 17 ... Lead plate, 8 ... Battery container, 9 ... Power generation element, 10 ... Welded part, 101 ... Sealing plate with explosion-proof insulating terminal.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 浜田 真治 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 昭52−145731(JP,A) 特開 昭55−100651(JP,A) 特開 昭64−642(JP,A) 実開 昭49−6137(JP,U) 実開 平2−36163(JP,U) 実開 昭60−174057(JP,U) (58)調査した分野(Int.Cl.6,DB名) H01M 2/04 - 2/08 H01M 2/30 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shinji Hamada 1006 Kazuma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) References JP-A-52-145731 (JP, A) JP-A-55-55 100651 (JP, A) JP-A-64-642 (JP, A) JP-A-49-6137 (JP, U) JP-A-2-36163 (JP, U) JP-A-60-174057 (JP, U) (58) Field surveyed (Int.Cl. 6 , DB name) H01M 2/04-2/08 H01M 2/30

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】透孔2aを設けた金属製の蓋板2の、前記透
孔2aの周縁を囲む上下両面もしくは何れか片面および透
孔2aの内壁面に、フッ素樹脂と耐熱・耐電解液性を有す
る結着剤を主体とする絶縁シール層3を設け、 次いで、前記絶縁シール層3の表面を含めた蓋板2の上
下面および透孔2aの内壁面に一体に、合成樹脂等からな
る絶縁パッキング層4をインサートモールド法により形
成し、該絶縁パッキング層4はリベット脚部の挿入孔4d
を有するものであり、 次いで、前記リベット脚部挿入孔4dに、端子リベット5
のリベット脚部5aを挿入し、前記脚部5aの先端を締着固
定した、絶縁端子6を形成した密閉形アルカリ蓄電池用
絶縁端子付き封口板の製法。
1. A fluororesin and a heat-resistant / electrolyte-resistant solution are provided on both upper and lower surfaces or any one surface of the metal cover plate 2 provided with the through-hole 2a and surrounding the periphery of the through-hole 2a and on the inner wall surface of the through-hole 2a. An insulating seal layer 3 mainly made of a binder having a property is provided. Then, the upper and lower surfaces of the cover plate 2 including the surface of the insulating seal layer 3 and the inner wall surface of the through hole 2a are integrally formed of synthetic resin or the like. The insulating packing layer 4 is formed by an insert molding method, and the insulating packing layer 4 is inserted into a rivet leg insertion hole 4d.
Then, terminal rivets 5 are inserted into the rivet leg insertion holes 4d.
A method for producing a sealing plate with an insulating terminal for a sealed alkaline storage battery in which an insulating terminal 6 is formed, wherein the rivet leg 5a is inserted and the tip of the leg 5a is fastened and fixed.
【請求項2】フッ素樹脂の粉末と、熱硬化性樹脂の未硬
化物を主体とする結着剤を主剤として、溶媒に分散させ
て調製した液状あるいはペースト状の絶縁シール剤を、
蓋板2の透孔2aの周縁を囲む所定面上に塗着、乾燥し、 次いで、前記絶縁シール剤を塗着した蓋板を加熱して前
記結着剤中の熱硬化性樹脂を硬化させて、絶縁シール層
3を形成する特許請求の範囲第1項記載の密閉形アルカ
リ蓄電池用絶縁端子付き封口板の製法。
2. A liquid or paste-like insulating sealant prepared by dispersing in a solvent using a fluororesin powder and a binder mainly composed of an uncured thermosetting resin as a main component,
It is applied on a predetermined surface surrounding the periphery of the through hole 2a of the lid plate 2 and dried, and then the lid plate coated with the insulating sealing agent is heated to cure the thermosetting resin in the binder. The method for producing a sealing plate with insulating terminals for a sealed alkaline storage battery according to claim 1, wherein the insulating sealing layer 3 is formed.
【請求項3】フッ素樹脂の粉末と、熱硬化性樹脂の未硬
化物からなる結着剤を主剤として、薄膜リング状に成形
した絶縁シール剤片31を、蓋板2の透孔2aの周縁を囲む
所定面上に積重し、 次いで、前記絶縁シール剤片31をその積重方向に押さえ
ながら、あるいは圧着した後に加熱して、絶縁シール層
3を形成する特許請求の範囲第1項記載の密閉形アルカ
リ蓄電池用絶縁端子付き封口板の製法。
3. An insulating sealant piece 31 formed into a thin film ring shape using a binder made of a powder of a fluororesin and an uncured thermosetting resin as a main component, and a peripheral portion of the through hole 2a of the lid plate 2. 2. The insulating sealing layer 3 is formed by stacking on a predetermined surface surrounding the insulating sealing agent piece, and then heating the insulating sealing agent piece 31 while pressing or pressing the insulating sealing agent piece 31 in the stacking direction. Of sealing plates with insulating terminals for sealed alkaline storage batteries.
【請求項4】発電要素9を収納した金属製の電池容器8
と、絶縁端子付き封口板1を有し、 前記封口板1は、透孔2aを設けた金属製の蓋板2と、絶
縁端子6を有し、かつ蓋板2の周縁が電池容器8の開口
端に溶接された電池容器を密封するものであり、 前記絶縁端子6は、リベット脚部5aを備えた端子リベッ
ト5と、リベット脚部挿入孔4bを設けた絶縁パッキング
層4と、絶縁シール層3とを有し、 前記リベット端子5は、リベット脚部5aを前記リベット
脚部挿入孔4dに挿入、締着固定されており、 前記絶縁パッキング層4は、絶縁シール層3を設けた上
記蓋板の上下面および透孔2aの内壁面にインサートモー
ルド法により一体に形成したものであり、 前記絶縁シール層3は、上記蓋板の透孔2aの周縁にフッ
素樹脂と結着剤を主体とする絶縁シール剤により形成し
たものである密閉形アルカリ電池。
4. A metal battery container 8 containing a power generating element 9.
And a sealing plate 1 with an insulating terminal. The sealing plate 1 has a metal cover plate 2 provided with a through hole 2 a and an insulating terminal 6, and the periphery of the cover plate 2 is The insulating terminal 6 seals the battery container welded to the open end. The insulating terminal 6 includes a terminal rivet 5 having a rivet leg 5a, an insulating packing layer 4 having a rivet leg insertion hole 4b, and an insulating seal. The rivet terminal 5 has a rivet leg 5a inserted into the rivet leg insertion hole 4d and is fixedly fastened. The insulating packing layer 4 is provided with an insulating seal layer 3. The upper and lower surfaces of the cover plate and the inner wall surface of the through hole 2a are integrally formed by an insert molding method. The insulating seal layer 3 mainly includes a fluororesin and a binder around the periphery of the through hole 2a of the cover plate. Sealed alkaline battery formed by an insulating sealant.
JP2208610A 1990-08-06 1990-08-06 Manufacturing method of sealing plate with insulated terminal and sealed alkaline battery using it Expired - Fee Related JP2870152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2208610A JP2870152B2 (en) 1990-08-06 1990-08-06 Manufacturing method of sealing plate with insulated terminal and sealed alkaline battery using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2208610A JP2870152B2 (en) 1990-08-06 1990-08-06 Manufacturing method of sealing plate with insulated terminal and sealed alkaline battery using it

Publications (2)

Publication Number Publication Date
JPH0492360A JPH0492360A (en) 1992-03-25
JP2870152B2 true JP2870152B2 (en) 1999-03-10

Family

ID=16559064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2208610A Expired - Fee Related JP2870152B2 (en) 1990-08-06 1990-08-06 Manufacturing method of sealing plate with insulated terminal and sealed alkaline battery using it

Country Status (1)

Country Link
JP (1) JP2870152B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104781946A (en) * 2012-11-26 2015-07-15 日立汽车系统株式会社 Rectangular secondary battery

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69527735T2 (en) * 1994-03-03 2002-12-05 Japan Storage Battery Co. Ltd., Kyoto Safety arrangement for battery
JP2870406B2 (en) * 1994-04-11 1999-03-17 芦森工業株式会社 Pipe repair materials
JPH08106919A (en) * 1994-10-04 1996-04-23 Sanyo Electric Co Ltd Sealed nonaqueous electrolytic secondary battery
KR20010017098A (en) * 1999-08-07 2001-03-05 김순택 Prismatic type sealed battery
US6908705B2 (en) * 1999-12-22 2005-06-21 Shenzhen Lb Battery Co., Ltd. Thin-walled battery for portable electronic equipment
KR100719528B1 (en) * 2001-03-02 2007-05-17 삼성에스디아이 주식회사 Prismatic type secondary battery
JP6077317B2 (en) * 2013-01-29 2017-02-08 株式会社協豊製作所 Terminal for storage battery
JP6015582B2 (en) * 2013-07-19 2016-10-26 株式会社Gsユアサ Electricity storage element
JP6103227B2 (en) * 2013-07-23 2017-03-29 株式会社豊田自動織機 Power storage device
JP6268911B2 (en) * 2013-10-03 2018-01-31 睦月電機株式会社 Sealing body for sealed electrochemical devices
JP6907509B2 (en) * 2016-11-10 2021-07-21 株式会社Gsユアサ Manufacturing method of power storage element, conductive member and power storage element
WO2023220880A1 (en) * 2022-05-16 2023-11-23 宁德时代新能源科技股份有限公司 End cover assembly, battery cell, battery, and electrical device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104781946A (en) * 2012-11-26 2015-07-15 日立汽车系统株式会社 Rectangular secondary battery
EP2924761A4 (en) * 2012-11-26 2016-07-20 Hitachi Automotive Systems Ltd Rectangular secondary battery
CN104781946B (en) * 2012-11-26 2017-12-12 日立汽车系统株式会社 Square secondary cell
US11552377B2 (en) 2012-11-26 2023-01-10 Vehicle Energy Japan Inc. Rectangular secondary battery

Also Published As

Publication number Publication date
JPH0492360A (en) 1992-03-25

Similar Documents

Publication Publication Date Title
JP2870152B2 (en) Manufacturing method of sealing plate with insulated terminal and sealed alkaline battery using it
CN102884669B (en) Light-weight bipolar valve valve regulated lead acid batteries and method thereof
US8021774B2 (en) Secondary battery and method of fabricating the same
US5571632A (en) Nonaqueous electrolyte solution secondary cell and method for producing the same
JP2000268811A (en) Sealed battery, sealing plug for sealed battery, and method of sealing injection hole
US8551672B2 (en) Packaging structure of low-pressure molded fuel cell
US20220093998A1 (en) Secondary Battery and Method for Manufacturing the Same
JP4279987B2 (en) Square sealed battery and manufacturing method thereof
US5182178A (en) Suppression of electrolyte leakage from the terminal of a lead-acid battery
JP2007305306A (en) Coin type electrochemical element and its manufacturing method
JP3494607B2 (en) Lithium secondary battery
JP2002134094A (en) Enclosed type battery
JP2009266530A (en) Sealing plate for battery, and battery using it
CN114714727A (en) Outer packaging aluminum-plastic film for battery, preparation method and battery
KR100719740B1 (en) Secondary battery and method the same
JP4486801B2 (en) Adhesive composition
JP2004281226A (en) Sealed storage battery
JPH1040883A (en) Flat-type organic electrolyte battery, and application method of adhesive to sealing plate for the battery
JP2004211038A (en) Adhesive composition
JPS62126544A (en) Manufacture of battery
JP2517007Y2 (en) Battery sealing structure
JP2008177196A (en) Surface-mounting square power storage cell
JP2008027607A (en) Electric power storage device, cell for electric power storage device, and its manufacturing method
JP2002056828A (en) Nonaqueous electrolyte secondary battery, and electric double layer capacitor
JP2023176994A (en) cylindrical battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees