JP2008027607A - Electric power storage device, cell for electric power storage device, and its manufacturing method - Google Patents

Electric power storage device, cell for electric power storage device, and its manufacturing method Download PDF

Info

Publication number
JP2008027607A
JP2008027607A JP2006195547A JP2006195547A JP2008027607A JP 2008027607 A JP2008027607 A JP 2008027607A JP 2006195547 A JP2006195547 A JP 2006195547A JP 2006195547 A JP2006195547 A JP 2006195547A JP 2008027607 A JP2008027607 A JP 2008027607A
Authority
JP
Japan
Prior art keywords
cell
power storage
storage device
gasket
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006195547A
Other languages
Japanese (ja)
Inventor
Takashi Mizukoshi
崇 水越
Toshihiko Nishiyama
利彦 西山
Naoki Takahashi
直樹 高橋
Tetsuya Yoshinari
哲也 吉成
Tomoki Shinoda
知希 信田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2006195547A priority Critical patent/JP2008027607A/en
Publication of JP2008027607A publication Critical patent/JP2008027607A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cell for an electric power storage device, which has no effect of heat and pressure on the inside of the cell; and to provide the manufacturing method of the cell. <P>SOLUTION: In the cell for the electric power storage device, a gasket 7 made of non-conductive rubber surrounding the outer peripheral surfaces of a pair of electrodes arranged through a separator and the bonding part of the electrodes and a current collector made of conductive rubber covering the upper and lower surfaces of the gasket 7 are cured, and the gasket other than the bonding part and the current collector are not cured. The manufacturing method contains a process of surrounding the outer peripheral surfaces of the pair of electrodes arranged through the separator with the gasket 7 made of the non-conductive rubber and covering the electrodes and the upper and lower surfaces of the gasket 7 with the current collector made of the conductive rubber; a process of pouring an electrolyte into the cell; and a process heating and pressing with a curing jig having a projecting pressing part in a contact part between the gasket 7 and the current collector. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、未加硫ゴムを加硫、接着することによってセルを密閉する、電力蓄積デバイス、例えばプロトンポリマー電池等の電池または、電気二重層コンデンサのセルおよびその製造方法に関する。   The present invention relates to a power storage device, for example, a battery such as a proton polymer battery, or an electric double layer capacitor cell, and a method for manufacturing the same, in which the cell is sealed by vulcanizing and bonding unvulcanized rubber.

近年、電力蓄積デバイスにおいて、大型品としては、電池、電気二重層キャパシタが、自動車用のバッテリーとして使用されるなど、市場の急拡大が予想されている。小型品としては、ユビキタス時代の到来により、新たなモバイル用電子機器、屋内で使用するコ−ドレス機器の増加や、技術進歩による機器の高機能化が進むため消費電力の上昇が予想され、電池、電気二重層キャパシタの需要が増加するとともに、エネルギー密度の向上、小型化の要求が非常に強くなっている。   In recent years, as power storage devices, large-scale products such as batteries and electric double layer capacitors are used as automobile batteries, and the market is expected to expand rapidly. As small products, with the advent of the ubiquitous era, new mobile electronic devices and cordless devices used indoors will increase, and advanced functions will increase due to technological advances. As the demand for electric double layer capacitors increases, the demand for improved energy density and miniaturization has become very strong.

バックアップ電源用途においても、機器の小型化にともない、コイン型電池、コイン型電気二重層コンデンサ等は小型、軽量化が開発の重要な課題になっており、電極材料の性能、利用率向上によるエネルギー密度の向上、セルの密閉技術、外装効率の向上等が必要になっている。   In backup power supply applications, coin size batteries and coin-type electric double layer capacitors are becoming important issues for development due to the downsizing of devices, and the energy gained by improving the performance and utilization of electrode materials. Improvements in density, cell sealing technology, and improvement in exterior efficiency are required.

セルの外装は、従来、電解液がアルカリ溶液あるいは有機溶媒の場合には、電池、キャパシタ用の外装材として、特許文献1に開示されているように一般的には、導電性や液のバリア性に関して非常に優れた金属材料が用いられる。しかし、電解液が酸溶液の場合、一部の貴金属を除いて、金属材料が腐食するため、外装材として使用することができない。そこで、電解液に酸溶液を使用する場合、カーボン材料あるいはゴム材にカーボン粉末(カーボンフィラーなど)を分散させた導電性ゴムが用いられる。また、外装材に導電性ゴムを用いる場合、外装の組立方法(接着方式)として、接着剤を用いる方法も考えられるが、組立の容易性という点では加硫接着の方が優れている。   Conventionally, when the electrolytic solution is an alkaline solution or an organic solvent, the outer packaging of the cell is generally a conductive or liquid barrier as disclosed in Patent Document 1 as an outer packaging material for batteries and capacitors. Metal materials that are very good in terms of properties are used. However, when the electrolytic solution is an acid solution, the metal material corrodes except for some noble metals, and thus cannot be used as an exterior material. Therefore, when an acid solution is used as the electrolytic solution, a conductive rubber in which carbon powder (carbon filler or the like) is dispersed in a carbon material or a rubber material is used. When conductive rubber is used for the exterior material, a method using an adhesive is also conceivable as an exterior assembly method (adhesion method), but vulcanization adhesion is superior in terms of ease of assembly.

セル内の電解液として酸溶液、外装材として導電性ゴムを用いて加硫により接着する製造方法においては、特許文献2に開示されているように予め電解液を電極あるいはセパレータに保持させて密閉する方法と、特許文献3に開示されているような電解液注入用の針を形成しておき加硫接着後に電解液を注入する方法などがある。   In the production method in which an acid solution is used as an electrolyte solution in a cell and a conductive rubber is used as an exterior material to adhere by vulcanization, as disclosed in Patent Document 2, the electrolyte solution is held in advance on an electrode or a separator and sealed. And a method of injecting an electrolytic solution after vulcanization adhesion by forming a needle for injecting an electrolytic solution as disclosed in Patent Document 3.

予め電解液を電極あるいはセパレータに保持させて密閉する方法では、ゴムの加硫接着を数kgf/cm2の圧力をかけて、百数十℃で数十分間加熱する必要があるため長時間の加熱がセルに与える影響が特に問題になる。熱により電解液の膨張あるいは沸騰が起こりゴムの加硫界面に電解液がしみ出し、加硫不十分となり外装材の信頼性が低下したり、セル外部への電解液の透過が起こり、加硫後のセル内部の電解液量が不十分な状態になる。電解液注入用の孔を形成する方法は特に小型化、薄型化する場合には孔部が障害となっていた。 In the method in which the electrolytic solution is held in advance on an electrode or a separator and sealed, it is necessary to apply a pressure of several kgf / cm 2 and heat the rubber for vulcanization at several tens of degrees Celsius for several tens of minutes. The influence of heating on the cell is a particular problem. The expansion or boiling of the electrolyte occurs due to heat, and the electrolyte oozes out to the rubber vulcanization interface, resulting in insufficient vulcanization, reducing the reliability of the exterior material, and causing the electrolyte to permeate outside the cell, resulting in vulcanization. The amount of electrolyte in the subsequent cell is insufficient. In the method of forming the hole for injecting the electrolyte, the hole is an obstacle particularly when the hole is made smaller and thinner.

特開2000−348977号公報JP 2000-348777 A 特開平5−217803号公報JP-A-5-217803 特開2002−358949号公報JP 2002-358949 A

セルの密閉技術、外装効率の向上を満たすためには、集電体、ガスケットといった部材を可能な限り薄くすることが求められる。しかし、外装を薄くすることはガス透過性の悪化によるセルの密閉性低下、上述したような製造工程でのセルへの影響、小型品の製造方法の確立等が必要となっていた。   In order to satisfy the improvement in cell sealing technology and exterior efficiency, it is required to make members such as current collectors and gaskets as thin as possible. However, thinning the exterior has required reduction in cell sealing due to deterioration in gas permeability, influence on the cell in the manufacturing process as described above, establishment of a manufacturing method for small products, and the like.

セパレータを介して配置された正負極それぞれの電極活物質と導電助材と結着剤とを含有する一対の電極の外周面を囲う非導電性ゴムからなるガスケットの上下面を覆う、導電性ゴムからなる集電体を含むセルを作製する際、セル内部に電解液を注液後、導電性ゴムと非導電性ゴムを加硫により接着し、セルを封止する。この封止のための加硫は、通常、数kgf/cm2の圧力をかけて、百数十℃で数十分間加熱する必要があり、この間、セル内部の電極、セパレータ、電解液には熱と圧力による負荷がかかっているため、外装材の信頼性が低下したり、加硫後のセル内部の電解液量が減少する。 Conductive rubber covering the upper and lower surfaces of a gasket made of non-conductive rubber that surrounds the outer peripheral surfaces of a pair of electrodes containing positive electrode and negative electrode active materials, conductive assistants, and binders arranged via a separator When a cell including a current collector made of is prepared, an electrolytic solution is injected into the cell, and then conductive rubber and non-conductive rubber are bonded by vulcanization to seal the cell. Vulcanization for sealing usually requires heating at a few tens of degrees centigrade for several tens of degrees by applying a pressure of several kgf / cm 2 , during which time the electrodes, separators, and electrolytes inside the cell Since the load due to heat and pressure is applied, the reliability of the exterior material is lowered, and the amount of the electrolyte in the cell after vulcanization is reduced.

このような状況下にあって、本発明の課題は、セル内部への熱および圧力の影響のない小型、薄型の電力蓄積デバイス用セルおよびその製造方法ならびに電力蓄積デバイスを提供することにある。   Under such circumstances, an object of the present invention is to provide a small and thin cell for a power storage device that is not affected by heat and pressure inside the cell, a method for manufacturing the same, and a power storage device.

前記課題を解決するため本発明の電力蓄積デバイス用セルは、セパレータを介して配置された一対の電極の側部外周面を囲う非導電性ゴムからなるガスケットと前記電極と前記ガスケットの上下面を覆う導電性ゴムからなる集電体の密着部分が加硫され、前記密着部分を除く集電体が加硫されていないことを特徴とする。   In order to solve the above-described problems, a cell for a power storage device according to the present invention includes a gasket made of non-conductive rubber surrounding a side outer peripheral surface of a pair of electrodes disposed via a separator, an electrode, and upper and lower surfaces of the gasket. The contact portion of the current collector made of the conductive rubber to be covered is vulcanized, and the current collector excluding the contact portion is not vulcanized.

また、本発明の電力蓄積デバイス用セルの製造方法は、セパレータを介して配置された一対の電極の外周面を非導電性ゴムからなるガスケットで囲い、前記電極と前記ガスケットの上下面を導電性ゴムからなる集電体で覆うセルを作製する工程と、前記セルの内部に電解液を注入する工程と、前記ガスケットと前記集電体の接触部に凸状加圧部を有する加硫用治具を用いて加熱および加圧する工程を含むことを特徴とする。   In the method for producing a cell for a power storage device of the present invention, the outer peripheral surfaces of a pair of electrodes arranged via a separator are surrounded by a gasket made of non-conductive rubber, and the electrodes and the upper and lower surfaces of the gasket are electrically conductive. A step of producing a cell covered with a current collector made of rubber, a step of injecting an electrolyte into the cell, and a vulcanizing treatment having a convex pressure portion at a contact portion between the gasket and the current collector. The method includes a step of heating and pressurizing using a tool.

また、前記加硫用治具を用い、前記セルを加熱、加圧後、一度冷却する工程を少なくとも2回繰り返すとよい。また、前記加硫用治具を前記セルの片面のみ加熱する工程を含むとよい。また、前記セルの加熱温度が160〜190℃であるとよい。また、電力蓄積デバイスは、前記電力蓄積デバイス用セルを金属ケースに入れ、前記金属ケース表面を加熱し、前記導電性ゴムからなる集電体が加硫され、金属ケースと接着するとよい。   The step of cooling the cell once after heating and pressurizing using the vulcanizing jig may be repeated at least twice. Moreover, it is good to include the process of heating only the one side of the said cell for the said jig | tool for vulcanization | cure. Moreover, the heating temperature of the said cell is good in it being 160-190 degreeC. In addition, the power storage device may be configured such that the power storage device cell is placed in a metal case, the surface of the metal case is heated, and the current collector made of the conductive rubber is vulcanized and bonded to the metal case.

本発明によれば、加硫用治具の加圧部が接着部分の形状に合わせて凸状に加工してあるものを用い、集電体である導電性ゴムとガスケットである非導電性ゴムの接触部分のみに熱、圧力をかけ加硫することにより、セル内部への、熱、圧力による負荷を最小限にすることができ、特性の良好な小型、薄型化した電力蓄積デバイス用セルおよびその製造方法ならびに電力蓄積デバイスが得られる。   According to the present invention, a conductive rubber that is a current collector and a non-conductive rubber that is a gasket are used in which the pressing portion of the vulcanizing jig is processed into a convex shape in accordance with the shape of the bonded portion. By applying heat and pressure only to the contact area of the battery, the load due to heat and pressure inside the cell can be minimized, and the cell for the power storage device that has a small size and a thin profile with good characteristics and The manufacturing method and the power storage device are obtained.

また、一般的にゴムの加硫は温度を上げることにより時間を短縮できることから、セルへの熱影響も考慮し、片方のみを加熱した加硫用治具でセルを挟み、セルを片面ずつ、両面で長時間加硫する条件よりも高い温度で、短時間で断続的に繰り返し加硫することにより、従来に比べセル内部への温度、圧力の影響を最小限に抑え、加硫の時間を短縮できる。   In general, rubber vulcanization can shorten the time by raising the temperature, so considering the heat effect on the cell, sandwiching the cell with a vulcanizing jig heated only on one side, the cell side by side, By vulcanizing repeatedly and intermittently in a short time at a temperature higher than the conditions for long-term vulcanization on both sides, the effect of temperature and pressure on the inside of the cell is minimized and the vulcanization time is reduced. Can be shortened.

次に、本発明の実施の形態について、図面を参照して説明する。図1は、加硫用治具の平面図、図2は図1の加硫用治具のA−A線断面図、図3は、コイン型プロトンポリマー電池の断面図、図4はプロトンポリマー電池用セルの構造を示す断面図である。   Next, embodiments of the present invention will be described with reference to the drawings. 1 is a plan view of a vulcanizing jig, FIG. 2 is a cross-sectional view of the vulcanizing jig of FIG. 1 along the line AA, FIG. 3 is a cross-sectional view of a coin-type proton polymer battery, and FIG. It is sectional drawing which shows the structure of the battery cell.

電力蓄積デバイスの例として、コイン型プロトンポリマー電池について本発明の実施の形態を説明する。コイン型プロトンポリマー電池は、図3に示すように蓄電作用を有するセル8を単独または直列に複数個積層された状態で配置され、絶縁パッキング9を介して下蓋となる缶11と上蓋となるキャップ10とで機械かしめして得られる。   As an example of a power storage device, an embodiment of the present invention will be described for a coin-type proton polymer battery. As shown in FIG. 3, the coin-type proton polymer battery is arranged in a state where a plurality of cells 8 having a power storage function are singly or stacked in series, and serves as a can 11 and an upper lid through an insulating packing 9. It is obtained by mechanical caulking with the cap 10.

セル8の構造は、例えば図4に示すように、正極3および負極4がセパレータ5を介して対向配置されており、プロトン源を含む水溶液または非水溶液である電解液が各電極中およびセパレータ5中に存在している。各極に含まれる電極活物質としては目的とする起電力を発現可能な酸化還元電位の差となる組み合わせで適宜選択されたプロトン伝導型高分子を使用する。そして、その周囲は集電体6およびガスケット7で封止されており集電体6は正負電極3,4と外部との電気的接触をとる機能を併せ持つ。   For example, as shown in FIG. 4, the structure of the cell 8 is such that the positive electrode 3 and the negative electrode 4 are arranged to face each other with a separator 5 interposed therebetween, and an electrolyte solution that is an aqueous solution or non-aqueous solution containing a proton source is in each electrode and the separator 5. Exists inside. As the electrode active material contained in each electrode, a proton-conducting polymer that is appropriately selected in combination with a difference in redox potential capable of expressing the target electromotive force is used. And the circumference | surroundings are sealed with the collector 6 and the gasket 7, and the collector 6 has a function which takes the electrical contact with the positive / negative electrodes 3 and 4 and the exterior.

電解液は有機溶媒系と水溶液系に大別されるが、プロトンポリマー電池ではプロトン源を含む水溶液の方が特に高容量となるため、専ら酸性水溶液が使用される。そのため集電体6、ガスケット7、およびセパレータ5には耐酸性を有する材料が使用される。例えば、集電体6にはカーボンなどを添加して導電性を付与したブチルゴムやエラストマー等、ガスケット7にはブチルゴムや熱可塑性のエラストマーなどの軟質プラスチック等が一般的に使用されている。   The electrolytic solution is roughly classified into an organic solvent system and an aqueous solution system. In the proton polymer battery, since an aqueous solution containing a proton source has a particularly high capacity, an acidic aqueous solution is exclusively used. Therefore, a material having acid resistance is used for the current collector 6, the gasket 7, and the separator 5. For example, butyl rubber or elastomer to which conductivity is imparted by adding carbon or the like to the current collector 6, and soft plastics such as butyl rubber or thermoplastic elastomer are generally used for the gasket 7.

セル8は所定の個数、例えば25個を前述のように組み立てた後(図4参照)、図1、図2に示す加硫用治具2を加熱しガスケット7と集電体6の接着部分を加圧することにより加硫する。その際、加硫用治具の凸状加圧部が、セル8のガスケット7の位置に対応するように設定する。   After assembling a predetermined number of cells 8, for example 25, as described above (see FIG. 4), the vulcanizing jig 2 shown in FIGS. 1 and 2 is heated to bond the gasket 7 and the current collector 6 together. Is vulcanized by pressurizing. At that time, the convex pressurizing portion of the vulcanizing jig is set so as to correspond to the position of the gasket 7 of the cell 8.

なお、電気二重層コンデンサは基本的に前述のプロトンポリマー電池と同様の構造を有しており正極3および負極4に含まれる電極活物質として活性炭を使用したものであり、セパレータ、ガスケット、集電体を用いることは同様である。   The electric double layer capacitor basically has the same structure as the proton polymer battery described above, and uses activated carbon as the electrode active material contained in the positive electrode 3 and the negative electrode 4, and includes a separator, gasket, current collector Using the body is similar.

正極活物質であるインドール3量体に導電材として気相成長カーボン20重量%(以下wt%と記載)を粉末ブレンダーで混合し、混合物にポリテトラフルオロエチレン(以下PTFE)粒子が10wt%となるように60%PTFEディスパージョンを添加し、攪拌脱泡機で混合した後、乾燥した。得られた混合物に水を100wt%加え、乳鉢で混練した。その後、混練物をロール成型機により圧延し、厚さ0.2mmのシート状電極を得た。得られたシート状正極をφ2.3mmで打ち抜き、薄円板状の正極を得た。   The indole trimer, which is a positive electrode active material, is mixed with 20% by weight of vapor-grown carbon (hereinafter referred to as wt%) as a conductive material by a powder blender, and the mixture contains 10% by weight of polytetrafluoroethylene (hereinafter referred to as PTFE) particles. 60% PTFE dispersion was added as described above, mixed with a stirring deaerator, and then dried. 100 wt% of water was added to the obtained mixture and kneaded in a mortar. Thereafter, the kneaded product was rolled with a roll molding machine to obtain a sheet-like electrode having a thickness of 0.2 mm. The obtained sheet-like positive electrode was punched out with a diameter of 2.3 mm to obtain a thin disc-like positive electrode.

負極活物質としてのポリフェニルキノキサリンに導電材としてのケッチェンブラックEC600JD(ライオン社製)を負極活物質に対して25wt%加え粉末ブレンダーで混合した。得られた混合粉末にm−クレゾールを負極活物質と導電材の合計重量に対して100wt%加え、ニーダで1時間混練した。得られた混練物にさらにm−クレゾールを加え混合スラリーの粘度が1000mPa・sとなるようにホモジナイザーで30分混合し、スラリーを得た。   25 wt% of ketjen black EC600JD (manufactured by Lion Corporation) as a conductive material was added to polyphenylquinoxaline as a negative electrode active material with respect to the negative electrode active material and mixed with a powder blender. 100 wt% of m-cresol was added to the obtained mixed powder with respect to the total weight of the negative electrode active material and the conductive material, and kneaded with a kneader for 1 hour. M-Cresol was further added to the obtained kneaded material and mixed for 30 minutes with a homogenizer so that the viscosity of the mixed slurry was 1000 mPa · s to obtain a slurry.

得られた電極スラリーをポリエチレンテレフタレート(以下PET)上に塗布し、乾燥後、PETを剥離することで負極シートを得た。得られたシート状負極をφ2.3mmで打ち抜き、薄円板状の負極を得た。   The obtained electrode slurry was applied onto polyethylene terephthalate (hereinafter referred to as PET), dried, and then the PET was peeled off to obtain a negative electrode sheet. The obtained sheet-like negative electrode was punched out with a diameter of 2.3 mm to obtain a thin disc-shaped negative electrode.

セパレータとしては、PTFE製、厚み50μm(ゴアテックス社製)、導電性ゴムとしては、カーボン添加の導電性未加硫ブチルゴム、厚み70μm(藤倉ゴム工業社製)、非導電性ゴムとしては、未加硫ブチルゴム、厚み280μm(藤倉ゴム工業社製)、電解液は20%硫酸を使用した。   The separator is made of PTFE, thickness 50 μm (manufactured by Gore-Tex), the conductive rubber is carbon-added conductive unvulcanized butyl rubber, the thickness is 70 μm (manufactured by Fujikura Rubber Industries), and the non-conductive rubber is not yet Vulcanized butyl rubber, thickness 280 μm (manufactured by Fujikura Rubber Industry Co., Ltd.), and 20% sulfuric acid was used as the electrolyte.

大きさ90mm×90mmの導電性未加硫ブチルゴム上に、大きさ90mm×90mmの未加硫ブチルゴムに電極配置用のφ2.5mmの孔を15mmピッチで縦横それぞれ5列で合計25個開けたものをガスケットとして配置し、ゴムの粘着性を利用し圧着し、電極配置用の孔に正極を挿入し正極挿入シートを得た。また、同様のシートに負極を挿入しその上から、φ2.8mmのセパレータを圧着したものを負極挿入シートとした。各電極挿入シートに電解液をそれぞれ注液し、真空中で貼り合わせた。   On a conductive unvulcanized butyl rubber of size 90 mm x 90 mm, a total of 25 holes of φ2.5 mm for electrode placement in a 90 mm x 90 mm size are arranged in 5 rows each in a 15 mm pitch. Was placed as a gasket, pressure-bonded using the adhesiveness of rubber, and the positive electrode was inserted into the hole for electrode placement to obtain a positive electrode insertion sheet. Further, a negative electrode was inserted into the same sheet and a separator having a diameter of 2.8 mm was pressure-bonded thereon to obtain a negative electrode insertion sheet. An electrolyte solution was poured into each electrode insertion sheet and bonded in a vacuum.

得られたシートを、図1、図2に示すように凸状加圧部1を有する加硫用治具2で加圧部とガスケット部分が対応するように両面から挟み、加硫条件、温度120℃、時間30分、圧力10kgf/cm2で、電極が挿入されている孔の同心円上の外径φ5.0mm、内径φ2.5mmの範囲の、導電性未加硫ブチルゴムと未加硫ブチルゴムの接触部分を加硫し接着することにより電極、セパレータ、電解液が存在するセル部分を封止した。このシートを電極が挿入されている孔の同心円上φ3.5mmで打ち抜くことにより図4に示すようなセルとした。1シートからセルは25個得られる。 As shown in FIGS. 1 and 2, the obtained sheet is sandwiched from both sides with a vulcanizing jig 2 having a convex pressure part 1 so that the pressure part and the gasket part correspond to each other, and vulcanization conditions, temperature Conductive unvulcanized butyl rubber and unvulcanized butyl rubber at an outer diameter of φ5.0 mm and an inner diameter of φ2.5 mm on the concentric circle of the hole into which the electrode is inserted at 120 ° C. for 30 minutes and a pressure of 10 kgf / cm 2 The cell portion where the electrode, separator, and electrolytic solution were present was sealed by vulcanizing and bonding the contact portion. This sheet was punched out with a diameter of 3.5 mm on the concentric circle of the hole into which the electrode was inserted, whereby a cell as shown in FIG. 4 was obtained. 25 cells are obtained from one sheet.

これにより得られたセルを2個直列になるように配置し、スレンレス鋼製キャップおよびスレンレス鋼製ケースからなる外装容器中にPPS製絶縁パッキングを介して一体化し、その後かしめ封止することにより図3に示すようなコイン型プロトンポリマー電池を得た。   The two cells thus obtained are arranged in series, integrated into an outer container composed of a stainless steel cap and a stainless steel case via a PPS insulating packing, and then caulked and sealed. A coin-type proton polymer battery as shown in 3 was obtained.

また、加硫による接着強度を評価するため、厚み280μmの未加硫ブチルゴム2枚を上述と同条件の温度120℃、時間30分、圧力10kgf/cm2で凸状加圧部を有する加硫用治具を用いて加硫し、剥離試験機により測定した1つのセルに相当する加硫部分の剥離強度の平均値を表1に示す。 In addition, in order to evaluate the adhesive strength by vulcanization, two vulcanized butyl rubbers having a thickness of 280 μm were vulcanized having a convex pressure part at a temperature of 120 ° C. for 30 minutes and a pressure of 10 kgf / cm 2 under the same conditions as described above. Table 1 shows the average value of the peel strength of the vulcanized portion corresponding to one cell, which was vulcanized with a jig for use and measured with a peel tester.

また、加硫による電解液の減少量を評価するため、ガスケットの内径を直径φ15mmと正極、負極、セパレータ、電解液の入っていない完全に空のセル100個の平均重量を求め、正極、負極、セパレータを入れずに電解液のみを50μL注液したセルを作製し、その重量から空セルの平均重量の値を引くことにより加硫後にセル内部に残っている電解液の重量の概算値を求めた。この値と、電解液50μLの重量との差を加硫による電解液の減少量とした。また、セルの1kHzにおける内部抵抗を測定した。   In addition, in order to evaluate the decrease amount of the electrolytic solution due to vulcanization, the inner diameter of the gasket is 15 mm in diameter, and the average weight of 100 positive cells, negative electrodes, separators and 100 completely empty cells not containing the electrolytic solution is obtained. A cell in which only 50 μL of electrolyte solution was injected without a separator was added, and an approximate value of the weight of electrolyte solution remaining inside the cell after vulcanization was obtained by subtracting the average weight value of empty cells from the weight. Asked. The difference between this value and the weight of the electrolytic solution 50 μL was defined as the amount of decrease in the electrolytic solution due to vulcanization. Moreover, the internal resistance at 1 kHz of the cell was measured.

正極、負極挿入一体化シートを加硫条件、温度160℃、時間30秒、圧力10kgf/cm2で加硫し、一度冷却し、再び同じ条件で加硫を行い、冷却する。この加硫と冷却を5回繰り返した他は実施例1と同様の方法で接着強度、電解液の減少量、1kHzにおける内部抵抗の評価を行った。 The positive electrode and negative electrode insertion integrated sheet is vulcanized under vulcanization conditions, temperature 160 ° C., time 30 seconds, pressure 10 kgf / cm 2 , cooled once, vulcanized again under the same conditions, and cooled. Except for repeating this vulcanization and cooling five times, the adhesive strength, the amount of decrease in the electrolyte solution, and the internal resistance at 1 kHz were evaluated in the same manner as in Example 1.

加硫する際に加硫用治具の片方のみを加熱し、加硫条件、温度160℃、時間30秒、圧力10kgf/cm2で、正極、負極挿入一体化シートを片面方向から加硫し、それを一度冷却し、シートを反転させ、はじめに加硫した面と反対の面から同じ条件で再び加硫し、その後冷却する。加硫と冷却、そして加熱面の反転を繰り返しながら、片面ずつ加硫をすすめた。これを片面に対して3回ずつ行った以外は実施例1と同様の方法で接着強度、電解液の減少量、1kHzにおける内部抵抗の評価を行った。 When vulcanizing, only one of the vulcanizing jigs is heated, and the positive and negative electrode insertion integrated sheet is vulcanized from one side direction under vulcanization conditions, temperature 160 ° C., time 30 seconds, pressure 10 kgf / cm 2. Then, it is cooled once, the sheet is turned over, vulcanized again from the surface opposite to the vulcanized surface under the same conditions, and then cooled. While repeating vulcanization, cooling, and reversal of the heating surface, vulcanization was promoted on each side. The adhesive strength, the amount of decrease in electrolytic solution, and the internal resistance at 1 kHz were evaluated in the same manner as in Example 1 except that this was performed three times on one side.

片面に対する加硫回数を5回とした以外は実施例3と同様に加硫をすすめ、実施例1と同様の方法で接着強度、電解液の減少量、1kHzにおける内部抵抗の評価を行った。   Vulcanization was carried out in the same manner as in Example 3 except that the number of times of vulcanization on one side was changed to 5, and adhesive strength, amount of decrease in electrolytic solution, and internal resistance at 1 kHz were evaluated in the same manner as in Example 1.

加硫条件の温度を180℃、時間25秒とした以外は実施例4と同様に加硫をすすめ、実施例1と同様の方法で接着強度、電解液の減少量、1kHzにおける内部抵抗の評価を行った。また、鉛フリーリフローを、プレヒート160℃、120秒、ピーク260℃、5秒の条件で行った際の1kHzにおける内部抵抗の変化を測定した。   Vulcanization was carried out in the same manner as in Example 4 except that the temperature of the vulcanization condition was 180 ° C. and the time was 25 seconds, and the adhesive strength, the amount of decrease in electrolytic solution, and the internal resistance at 1 kHz were evaluated in the same manner as in Example 1. Went. Moreover, the change in internal resistance at 1 kHz when lead-free reflow was performed under conditions of preheating 160 ° C., 120 seconds, peak 260 ° C., and 5 seconds was measured.

電極活物質として比表面積1500m2/gの活性炭を用い、導電材としてカーボンブラックを活性炭に対して20重量%粉末ブレンダーで混合し、混合物にPTFE粒子が10wt%となるように60%PTFEディスパージョンを添加し、攪拌脱泡機で混合し、その後乾燥した。得られた混合物に水を180wt%加え、乳鉢で混練した。その後、混練物をロール成型機により圧延し、厚さ0.2mmのシート状電極を得た。得られたシート状活性炭電極をφ2.3mmで打ち抜き、薄円板状の活性炭電極を得た。加硫方法は実施例5と同様の方法で行い、電気二重層コンデンサ用セルとし、1kHzにおける内部抵抗を測定した。 Activated carbon having a specific surface area of 1500 m 2 / g is used as the electrode active material, carbon black is mixed as a conductive material with a 20% by weight powder blender with respect to the activated carbon, and 60% PTFE dispersion is added to the mixture so that the PTFE particles become 10 wt%. Was added, mixed with a stirring deaerator, and then dried. 180 wt% of water was added to the obtained mixture and kneaded in a mortar. Thereafter, the kneaded product was rolled with a roll molding machine to obtain a sheet-like electrode having a thickness of 0.2 mm. The obtained sheet-like activated carbon electrode was punched out with a diameter of 2.3 mm to obtain a thin disk-like activated carbon electrode. The vulcanization method was performed in the same manner as in Example 5 to obtain an electric double layer capacitor cell, and the internal resistance at 1 kHz was measured.

(比較例1)
加硫を、正極、負極挿入一体化シートをステンレス鋼製のプレートで挟みシートを加圧状態にし、それを120℃で40分間、炉内で加熱することにより行った以外は実施例1と同様の方法で接着強度、電解液の減少量、1kHzにおける内部抵抗の評価を行った。
(Comparative Example 1)
Vulcanization was performed in the same manner as in Example 1 except that the positive electrode and negative electrode insertion integrated sheet was sandwiched between stainless steel plates and the sheet was pressed and heated in a furnace at 120 ° C. for 40 minutes. In this method, the adhesive strength, the amount of decrease in the electrolytic solution, and the internal resistance at 1 kHz were evaluated.

(比較例2)
加硫は、正極、負極挿入一体化シートをステンレス鋼製のプレートで挟みシートを加圧状態にし、それを120℃で40分間、炉内で加熱することにより行った。加硫の方法以外は実施例6と同様にして1kHzにおける内部抵抗を測定した。
(Comparative Example 2)
Vulcanization was performed by sandwiching the positive and negative electrode-inserted integrated sheet between stainless steel plates and putting the sheet in a pressurized state, and heating it in a furnace at 120 ° C. for 40 minutes. The internal resistance at 1 kHz was measured in the same manner as in Example 6 except for the vulcanization method.

表1に、実施例1〜実施例5、比較例1の剥離強度の各平均値を示した。   Table 1 shows average values of peel strengths of Examples 1 to 5 and Comparative Example 1.

Figure 2008027607
Figure 2008027607

表1から分かるように、本発明による方法で加硫を行った実施例1〜実施例5は従来法で加硫した比較例1と比較して、接着強度は同等であり、実施例2、実施例5に関しては、比較例1を上回る結果であった。   As can be seen from Table 1, Examples 1 to 5 vulcanized by the method according to the present invention have the same adhesive strength compared to Comparative Example 1 vulcanized by the conventional method. Regarding Example 5, the result exceeded that of Comparative Example 1.

表2に、実施例1〜実施例5、比較例1のそれぞれ測定と計算から求めた加硫による、おおよその電解液重量減少率を示した。   Table 2 shows the approximate electrolyte solution weight reduction rate by vulcanization obtained from the measurements and calculations of Examples 1 to 5 and Comparative Example 1, respectively.

Figure 2008027607
Figure 2008027607

この結果は、セル内部への熱が電解液量にどの程度影響しているかを示すもので、従来法で加硫した比較例1では、加硫により電解液が15wt%減少しているのに対し、実施例1〜5では5wt%以下、特に実施例3〜5に関しては1wt%以下であり、熱の影響が大幅に抑えられている。   This result shows how much the heat to the inside of the cell affects the amount of the electrolyte solution. In Comparative Example 1 vulcanized by the conventional method, the electrolyte solution was reduced by 15 wt% by vulcanization. On the other hand, in Examples 1-5, it is 5 wt% or less, especially about Examples 3-5, it is 1 wt% or less, and the influence of heat is suppressed significantly.

表3に、実施例1〜実施例6、比較例1、比較例2の1kHzにおける内部抵抗の平均値を示した。   Table 3 shows the average value of internal resistance at 1 kHz in Examples 1 to 6, Comparative Example 1, and Comparative Example 2.

Figure 2008027607
Figure 2008027607

内部抵抗が高くなる主な原因は、セル内の電解液量が減少するためである。この結果は、上述の電解液量の減少量の結果と一致しており、従来法で加硫した比較例1が最も高く、次は実施例1であった。比較例1、実施例1では、加硫の際に温度は低いが、長時間、熱を加えていたため、電解液がセル外部へ透過する時間が長くなり、電解液量が減ること、セル内の圧力が長時間高い状態になることにより、集電体が変形し集電体と電極の接触性が低下することが内部抵抗を高くしていると考えられる。   The main reason for the high internal resistance is that the amount of electrolyte in the cell decreases. This result is consistent with the result of the decrease in the amount of the electrolyte solution described above, and Comparative Example 1 vulcanized by the conventional method is the highest, followed by Example 1. In Comparative Example 1 and Example 1, the temperature was low during vulcanization, but since heat was applied for a long time, the time for the electrolyte to permeate outside the cell became longer, the amount of the electrolyte decreased, It is considered that the internal resistance is increased because the current collector is deformed and the contact property between the current collector and the electrode is lowered due to the pressure of the electrode being high for a long time.

実施例2に比べ実施例3〜実施例5の内部抵抗が低くなっているが、これは、両面ではなく片面ずつ熱を加え加硫することによりセル内部等への熱の影響が抑えられ上述のように電解液の透過等が減少したためと考えられる。実施例6と比較例2を比較した場合にも同様の結果が得られた。   The internal resistance of Examples 3 to 5 is lower than that of Example 2, but this is because the influence of heat on the inside of the cell and the like is suppressed by applying heat to one side instead of both sides and vulcanizing. This is probably because the permeation of the electrolyte solution decreased. Similar results were obtained when Example 6 and Comparative Example 2 were compared.

表4に、実施例5、比較例1で得られたセルを鉛フリー対応条件で、それぞれリフロー試験した後の1kHzにおける内部抵抗を示した。   Table 4 shows the internal resistance at 1 kHz after the cells obtained in Example 5 and Comparative Example 1 were subjected to a reflow test under the lead-free conditions.

Figure 2008027607
Figure 2008027607

従来法で加硫した比較例1では、内部抵抗が表3の値に比べ50%程度に増加しているのに対し、実施例1では15%程度の増加に収まっている。この増加は、リフローした際、内圧上昇によりコインケースが膨らみ集電体であるブチルゴムとコインケース、電極の接触が悪くなることが原因の一つであり、その差が実施例5と比較例1の差になっていると考えられる。実施例5で得られたセルでは、リフロー前の状態で、集電体であるブチルゴムのガスケットとの接着部分以外は未加硫であるため、この未加硫部分がリフローの熱により加硫しコインケース、電極と接着し、比較例1に比べて内部抵抗の上昇が抑えられたと考えられる。実際にリフロー後のコインケースとセルを分解してみるとコインケース、電極と内部セルの集電体であるブチルゴムは強固に接着している。   In Comparative Example 1 vulcanized by the conventional method, the internal resistance increased to about 50% compared to the values in Table 3, whereas in Example 1, the increase was about 15%. This increase is one of the causes that the coin case bulges due to an increase in internal pressure when reflowed, and the contact between the butyl rubber as the current collector, the coin case, and the electrode is deteriorated, and the difference is between Example 5 and Comparative Example 1. It is thought that this is the difference. In the cell obtained in Example 5, since the portion other than the portion bonded to the current collector butyl rubber gasket was unvulcanized before reflow, this unvulcanized portion was vulcanized by the heat of reflow. It is considered that the increase in internal resistance was suppressed as compared with Comparative Example 1 by bonding with a coin case and an electrode. When the coin case and the cell after reflow are actually disassembled, the coin case, the electrode, and the butyl rubber which is the current collector of the internal cell are firmly bonded.

実施例の結果より、本発明の加硫方法を用いることにより、従来法に比べ接着強度はほぼ同等であり、セル内部に与える熱影響が小さく、加硫時間が短縮でき、耐リフロー性が良好なセルを得る加硫方法を提供できる。尚、実施例では加熱温度を160℃としたが、190℃より高いと電解液の減少の可能性があり好ましくない。又、セルの加熱、加圧後冷却について3〜5回繰り返す例としたが、2回でも効果が得られる。   From the results of the examples, by using the vulcanization method of the present invention, the adhesive strength is almost the same as that of the conventional method, the thermal effect on the inside of the cell is small, the vulcanization time can be shortened, and the reflow resistance is good. A vulcanization method for obtaining a simple cell can be provided. In the examples, the heating temperature was set to 160 ° C. However, if the heating temperature is higher than 190 ° C., the electrolyte solution may be decreased, which is not preferable. Moreover, although it was set as the example repeated 3 to 5 times about the heating of a cell and cooling after pressurization, an effect is acquired even twice.

加硫用治具の平面図。The top view of the jig | tool for vulcanization | cure. 図1の加硫用治具のA−A線断面図。The AA sectional view taken on the line of the vulcanizing jig of FIG. コイン型プロトンポリマー電池の断面図。Sectional drawing of a coin-type proton polymer battery. プロトンポリマー電池用セルの構造を示す断面図。Sectional drawing which shows the structure of the cell for proton polymer batteries.

符号の説明Explanation of symbols

1 凸状加圧部
2 加硫用治具
3 正極
4 負極
5 セパレータ
6 集電体
7 ガスケット
8 セル
9 絶縁パッキング
10 キャップ
11 缶
DESCRIPTION OF SYMBOLS 1 Convex pressure part 2 Vulcanizing jig 3 Positive electrode 4 Negative electrode 5 Separator 6 Current collector 7 Gasket 8 Cell 9 Insulation packing 10 Cap 11 Can

Claims (6)

セパレータを介して配置された一対の電極側部外周面を囲う非導電性ゴムからなるガスケットと前記電極と前記ガスケットの上下面を覆う導電性ゴムからなる集電体の前記ガスケットの上下面との密着部分が加硫され、前記密着部分を除く集電体が加硫されていないことを特徴とする電力蓄積デバイス用セル。   A gasket made of non-conductive rubber that surrounds a pair of electrode side portion outer peripheral surfaces disposed via a separator, and upper and lower surfaces of the gasket of a current collector made of conductive rubber that covers the upper and lower surfaces of the electrode and the gasket A cell for a power storage device, characterized in that a close contact portion is vulcanized and a current collector excluding the close contact portion is not vulcanized. セパレータを介して配置された一対の電極の外周面を非導電性ゴムからなるガスケットで囲い、前記電極と前記ガスケットの上下面を導電性ゴムからなる集電体で覆うセルを作製する工程と、前記セルの内部に電解液を注入する工程と、前記ガスケットと前記集電体の接触部に凸状加圧部を有する加硫用治具を用いて加熱および加圧する工程を含むことを特徴とする電力蓄積デバイス用セルの製造方法。   A step of enclosing the outer peripheral surfaces of a pair of electrodes disposed via a separator with a gasket made of non-conductive rubber, and covering the electrodes and the upper and lower surfaces of the gasket with a current collector made of conductive rubber; and A step of injecting an electrolyte into the cell, and a step of heating and pressurizing using a vulcanizing jig having a convex pressurizing portion at a contact portion between the gasket and the current collector, A method for manufacturing a cell for a power storage device. 前記加硫用治具を用い、前記セルを加熱、加圧後、一度冷却する工程を少なくとも2回繰り返すことを特徴とする請求項2記載の電力蓄積デバイス用セルの製造方法。   3. The method of manufacturing a cell for a power storage device according to claim 2, wherein the step of cooling the cell once after heating and pressurizing using the vulcanizing jig is repeated at least twice. 前記加硫用治具を前記セルの片面のみ加熱する工程を含むことを特徴とする請求項2または3に記載の電力蓄積デバイス用セルの製造方法。   The method for manufacturing a cell for a power storage device according to claim 2, further comprising a step of heating the vulcanizing jig only on one side of the cell. 前記セルの加熱温度が160〜190℃であることを特徴とする請求項2〜4のいずれか1項に記載の電力蓄積デバイス用セルの製造方法。   5. The method for manufacturing a cell for a power storage device according to claim 2, wherein the heating temperature of the cell is 160 to 190 ° C. 6. 請求項2から5のいずれか1項に記載の電力蓄積デバイス用セルの製造方法で得られた電力蓄積デバイス用セルを金属ケースに入れ、前記金属ケース表面を加熱し、前記導電性ゴムからなる集電体が加硫され、金属ケースと接着したことを特徴とする電力蓄積デバイス。   The power storage device cell obtained by the method for manufacturing a power storage device cell according to any one of claims 2 to 5 is placed in a metal case, the surface of the metal case is heated, and the conductive rubber is used. A power storage device in which a current collector is vulcanized and bonded to a metal case.
JP2006195547A 2006-07-18 2006-07-18 Electric power storage device, cell for electric power storage device, and its manufacturing method Pending JP2008027607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006195547A JP2008027607A (en) 2006-07-18 2006-07-18 Electric power storage device, cell for electric power storage device, and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006195547A JP2008027607A (en) 2006-07-18 2006-07-18 Electric power storage device, cell for electric power storage device, and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2008027607A true JP2008027607A (en) 2008-02-07

Family

ID=39118060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006195547A Pending JP2008027607A (en) 2006-07-18 2006-07-18 Electric power storage device, cell for electric power storage device, and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2008027607A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014056799A (en) * 2012-09-14 2014-03-27 Nok Corp Bipolar secondary battery and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014056799A (en) * 2012-09-14 2014-03-27 Nok Corp Bipolar secondary battery and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US9577276B2 (en) Fuel cell membrane electrode assembly
US9461279B2 (en) Battery
JP5839802B2 (en) Gasket for electrochemical cell and electrochemical cell
KR20130009691A (en) Cylindrical-type secondary battery
JP2003092149A (en) Nonaqueous electrolyte secondary battery and its manufacturing method
JP2008257962A (en) All solid lithium secondary battery
CN110140229B (en) Secondary battery and method of manufacturing the same
CN110998951A (en) Electrode sheet manufacturing method, all-solid-state battery, and all-solid-state battery manufacturing method
JP2007305306A (en) Coin type electrochemical element and its manufacturing method
JP3436189B2 (en) Electric double layer capacitor and method of manufacturing the same
JP2008282679A (en) Sealed battery
JP4986241B2 (en) Electrochemical device and manufacturing method thereof
JP2008123875A (en) Coin type electrochemical element
JP5018855B2 (en) Electrochemical device and manufacturing method thereof
CN103682184A (en) Power battery cover plate
CN107431154A (en) Rectangular secondary cell
JP2003197474A (en) Energy device and manufacturing method therefor
JP2009135384A (en) Surface-mounting rectangular power storage cell
JP2008027607A (en) Electric power storage device, cell for electric power storage device, and its manufacturing method
EP1691384B1 (en) Coin-shaped storage cell
JP2009266530A (en) Sealing plate for battery, and battery using it
JP5039884B2 (en) Electrochemical cell
JP2008117559A (en) Coin type electrochemical element
JP2010067537A (en) Method of manufacturing nonaqueous electrolyte secondary battery
KR20100128102A (en) Supercapacitor and manufacture method of the same