JP2867949B2 - Inner sky shape measuring machine - Google Patents

Inner sky shape measuring machine

Info

Publication number
JP2867949B2
JP2867949B2 JP8080141A JP8014196A JP2867949B2 JP 2867949 B2 JP2867949 B2 JP 2867949B2 JP 8080141 A JP8080141 A JP 8080141A JP 8014196 A JP8014196 A JP 8014196A JP 2867949 B2 JP2867949 B2 JP 2867949B2
Authority
JP
Japan
Prior art keywords
plane
horizontal
measuring
rotation
inner space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP8080141A
Other languages
Japanese (ja)
Other versions
JPH09269222A (en
Inventor
彰 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON SAMIKON KK
Original Assignee
NIPPON SAMIKON KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON SAMIKON KK filed Critical NIPPON SAMIKON KK
Priority to JP8080141A priority Critical patent/JP2867949B2/en
Publication of JPH09269222A publication Critical patent/JPH09269222A/en
Application granted granted Critical
Publication of JP2867949B2 publication Critical patent/JP2867949B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lining And Supports For Tunnels (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、既設の構造物など
の内空形状を測定する内空形状測定機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an interior shape measuring device for measuring the interior shape of an existing structure or the like.

【0002】[0002]

【発明が解決しようとする課題】従来、光波測定機とし
て、光の発信部である送光対物レンズからほぼ平行な光
を射出して測定物に光を当て、測定物に乱反射した光の
一部が戻ってきて、これが受信部である受光対物レンズ
により集光され、さらに、フォトダイオードで受光して
その信号を増幅し、送光した光と受光した光との間に
は、距離に比例した時間遅れによる位相差が生じ、この
位相差をさらに高精度に測定するために受信信号を低周
波に周波数変換し、基準位相信号と位相比較を行って位
相遅れ量をデジタル計測し、電気回路的な補足を加えて
測定物までの距離を測定するものなどが知られている。
また、この種の測定機により、構造物の内空形状を測定
するために、発信部と受信部とを備えた測定機本体を水
平回動する水平回動駆動手段を備えたものも開発されて
おり、測定機本体を回動しながら測定することにより、
測定物の内空形状を連続して測定することができる。
尚、内空形状とは、構造物などの内部の空間の断面をい
う。
Conventionally, as a light wave measuring device, substantially parallel light is emitted from a light transmitting objective lens, which is a light transmitting unit, to irradiate the object with light, and one of the light irregularly reflected on the object is measured. The part returns and this is condensed by the light receiving objective lens which is the receiving part, and further received by the photodiode, amplifies its signal, and the distance between the transmitted light and the received light is proportional to the distance In order to measure this phase difference with higher accuracy, the received signal is frequency-converted to a low frequency, the phase is compared with a reference phase signal, and the amount of phase delay is digitally measured. There is also known a method of measuring a distance to a measurement object by adding a supplement.
Further, in order to measure the inner space shape of a structure by using this type of measuring device, a device having a horizontal rotation driving means for horizontally rotating a measuring device main body including a transmitting portion and a receiving portion has been developed. By measuring while rotating the measuring machine body,
It is possible to continuously measure the inner space shape of the measurement object.
The inner space shape refers to a cross section of an internal space such as a structure.

【0003】そして、この測定機の使用が有効なものと
して、トンネルの内面に従来の現場打ちコンクリート覆
工に代えて薄くて軽量なプレキャスト覆工を設ける所謂
PCL工法(Precasut Concrete L
ining)などがある。この工法では、例えば特開昭
61−186697号公報などで知られているように、
既設のトンネルの内面にプレキャスト板を設けるもので
あり、このプレキャスト板の製造前に既設のトンネル内
面の実際の寸法を測定し、これに合わせてプレキャスト
板を製造する。しかし、このようにトンネルなどの構造
物の内空形状を測定するには、従来の測定機では、断面
を輪切りにするようにして測定位置毎に測定を行わなけ
ればならず、その都度、測定機をトンネル長さ方向に移
動して測定しなければならないため、計測機の移動及び
設置に時間がかかるという問題がある。また、トンネル
等では曲り勾配などもあり、その曲り勾配なども立体的
に測定できるものが望まれている。
As an effective use of this measuring device, a so-called PCL method (Precast Concrete L) in which a thin and lightweight precast lining is provided on the inner surface of the tunnel instead of the conventional cast-in-place concrete lining.
ining). In this method, for example, as known in JP-A-61-186697, etc.
A precast plate is provided on the inner surface of an existing tunnel. Before manufacturing the precast plate, the actual dimensions of the inner surface of the existing tunnel are measured, and a precast plate is manufactured according to the measured dimensions. However, in order to measure the inner space shape of a structure such as a tunnel in this way, with a conventional measuring device, it is necessary to perform measurement at each measurement position so that a cross section is cut into a circle. Since the measurement must be performed by moving the machine in the length direction of the tunnel, there is a problem that it takes time to move and install the measuring machine. In a tunnel or the like, there is a bend gradient, and a device capable of measuring the bend gradient three-dimensionally is desired.

【0004】そこで、本発明は、所定の範囲の内空形状
を効率よく短時間で測定することができる内空形状測定
機を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an inner space shape measuring instrument capable of efficiently measuring a predetermined range of the inner space shape in a short time.

【0005】[0005]

【課題を解決するための手段】請求項1の発明は、測定
物の内空幅方向中央の基準位置に設置される設置部と、
該設置部に設けられ、その垂直方向を軸心とし水平面を
回動面とする平面回動軸を360°回動する平面回動駆
動手段と、該平面回動駆動手段の平面回動軸に設けら
れ、設置部に対して水平方向を軸心方向とする水平回動
軸を360°回動する水平回動駆動手段と、発信部と受
信部とにより測定点までの距離を測定する測定機本体で
あって、前記水平回動駆動手段の水平回動軸に、前記発
信部と受信 部の向きを該水平回転軸に直交する方向にし
て固定される測定機本体と、を備え、 前記水平回動軸の
軸心方向が前記測定物の長さ方向から、この長さ方向に
直交する幅方向に近付くに連れて、前記平面回動軸の平
面回動角度が次第に小さくなるように、前記平面回動駆
動手段の回動が制御され、立体的に内空形状を測定する
であり、水平回動駆動手段と平面回動駆動手段とによ
り、測定機本体を平面及び水平方向に回動して測定する
ことにより、測定機を移動することなく、内空形状を所
定の範囲で三次元的に測定することができる。また、長
さ方向に長いものの中空形状を正確に測定できる。
According to a first aspect of the present invention, there is provided a measuring method comprising:
An installation section installed at a reference position in the center of the object in the width direction of the inner space,
It is provided in the installation part, and the vertical direction is set as the axis and the horizontal plane is
A plane rotation drive that rotates a plane rotation axis as a rotation plane by 360 °
Moving means and a plane rotation axis of the plane rotation driving means.
Horizontal rotation about the installation part
A horizontal rotation driving means for rotating the shaft by 360 °;
With the measuring unit that measures the distance to the measurement point
The horizontal rotation axis of the horizontal rotation driving means is
The direction of the transmitting part and the receiving part is set to the direction orthogonal to the horizontal rotation axis.
And a measuring device main body fixed to the horizontal rotating shaft.
The axis direction is from the length direction of the measured object to this length direction.
As approaching the orthogonal width direction, the flatness of the plane
In order to gradually reduce the plane rotation angle, the plane rotation drive
The rotation of the moving means is controlled, and the inner space shape is measured three-dimensionally.
The horizontal rotation driving means and the plane rotation driving means.
Measurement by rotating the measuring machine body in the horizontal and horizontal directions.
This makes it possible to define the interior shape without moving the measuring machine.
Measurement can be performed three-dimensionally within a certain range. Also, long
A hollow shape that is long in the vertical direction can be measured accurately.

【0006】[0006]

【発明の実施形態】以下、本発明の実施例を添付図面を
参照して説明する。図1乃至図5は本発明の第1実施例
を示し、測定機は、距離センサである測定機本体1を備
え、この測定機本体1は、反射受光時間差測定方式のも
のなどが使用され、発光手段を備えた発信部である送光
対物レンズ2と、光の受信部である受光対物レンズ3と
が、前後方向に並んで設けられ、前記送光対物レンズ2
からほぼ平行な光を射出して測定物に光を当て、測定物
に乱反射した光の一部が測定機本体1側に戻ってきて、
これを前記受光対物レンズ3により集光し、さらに、フ
ォトダイオードで受光してその信号を増幅し、送光した
光と受光した光との間には、距離に比例した時間遅れに
よる位相差が生じ、この位相差をさらに高精度に測定す
るために受信信号を低周波に周波数変換し、基準位相信
号と位相比較を行って位相遅れ量をデジタル計測し、電
気回路的な補足を加えて測定物までの距離を算出する距
離測定制御手段4を内蔵している。尚、この制御手段4
を、前記測定機本体1と別体で設けて両者を信号ケーブ
ル等で電気的に接続するようにしてもよい。
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIGS. 1 to 5 show a first embodiment of the present invention, in which a measuring instrument includes a measuring instrument main body 1 which is a distance sensor, and the measuring instrument main body 1 uses a reflection light receiving time difference measuring method or the like. A light transmitting objective lens 2 serving as a transmitting unit having a light emitting unit and a light receiving objective lens 3 serving as a light receiving unit are provided side by side in the front-rear direction.
And emits light substantially parallel to the object to be measured, and a part of the light irregularly reflected on the object returns to the measuring instrument body 1 side,
This light is condensed by the light-receiving objective lens 3, and further received by a photodiode to amplify the signal. A phase difference between the transmitted light and the received light is caused by a time delay proportional to the distance. In order to measure this phase difference with higher accuracy, the received signal is frequency-converted to a lower frequency, the phase is compared with the reference phase signal, the phase delay is digitally measured, and the measurement is performed by adding an electric circuit supplement. A distance measurement control unit 4 for calculating a distance to an object is built in. The control means 4
May be provided separately from the measuring device main body 1 and both may be electrically connected by a signal cable or the like.

【0007】前記測定機本体1の後部は、取付ボルト5
により回動板6に固定され、この回動板6には水平回動
軸7の先端が固定され、この水平回動軸7は、水平回動
駆動手段8を内蔵した回動ケース9に回動可能に設けら
れ、前記水平回動軸7を一対の軸受10,10に軸支し、そ
の水平回動軸7の基端にステッピングモータ11を連結し
ている。そして、前記水平回動軸7及びステッピングモ
ータ11により前記水平回動手段8を構成している。前記
回動ケース9内の上部には、前記水平回動軸7の回動量
を検出する符号器たるエンコーダー12が設けられ、この
エンコーダ12の軸に歯付車13を設けると共に、前記水平
回動軸8の中央基端側に歯付車14を設け、それら両歯付
車13,14にタイミング歯付ベルト15を掛装している。ま
た、前記水平回動軸8の中央先端側に歯車16を設け、前
記水平回動軸8の左右方向一側で前記回動ケース9内に
軸17を回動可能に軸支し、この軸17に前記歯車16に噛合
する歯車18を設け、この歯車18にストッパ片18Aを設
け、このストッパ片18Aが前記回動ケース9内に突設し
たストッパ19に当接する。
The rear part of the measuring instrument body 1 is provided with mounting bolts 5.
, The tip of a horizontal rotation shaft 7 is fixed to the rotation plate 6, and the horizontal rotation shaft 7 is turned to a rotation case 9 having a built-in horizontal rotation driving means 8. The horizontal rotation shaft 7 is supported by a pair of bearings 10, 10, and a stepping motor 11 is connected to the base end of the horizontal rotation shaft 7. The horizontal rotation shaft 8 and the stepping motor 11 constitute the horizontal rotation means 8. An encoder 12 serving as an encoder for detecting an amount of rotation of the horizontal rotation shaft 7 is provided at an upper portion in the rotation case 9. A toothed wheel 13 is provided on the shaft of the encoder 12, and the horizontal rotation A toothed wheel 14 is provided on the central base end side of the shaft 8, and a timing toothed belt 15 is mounted on the two toothed wheels 13, 14. A gear 16 is provided at the center end of the horizontal rotation shaft 8, and a shaft 17 is rotatably supported in the rotation case 9 on one side in the left-right direction of the horizontal rotation shaft 8. A gear 18 meshing with the gear 16 is provided at 17, and a stopper piece 18A is provided on the gear 18, and the stopper piece 18A comes into contact with a stopper 19 projecting into the rotating case 9.

【0008】また、前記回動ケース9の下部に回動脚体
21を設け、この回動脚体21は設置部22の上部に平面回動
軸たる回動部23を設け、この回動部23の上部を前記回動
ケース9に固定し、前記設置部22内に前記回動部23を回
動駆動する平面回動駆動手段24を設け、前記設置部22
は、前記回動ケース9の平面角度検出手段25を内蔵して
いる。さらに、図3に示すように、コンピュータなどか
らなる記憶演算制御手段26に、前記距離測定制御手段4
と水平角度検出手段であるエンコーダー12と平面角度検
出手段25とを電気的に接続し、前記測定制御手段4から
は測定物までの距離データ、前記エンコーダー12からは
測定機本体1の水平角度位置データ、前記平面角度検出
手段25からは測定機本体1の平面角度位置データが前記
記憶演算制御手段26に入力され、それら入力した各デー
タから、前記記憶演算制御手段26は、水平回動中心であ
る水平回動軸7の中心からレンズ2,3迄の長さ、及び
平面回動中心である回動部21の中心からレンズ2,3迄
の長さによる基準位置の補正を行い、測定物の内空形状
をX,Y,Z軸座標で演算し、表示機27などに表示す
る。
A rotating leg is provided at the lower part of the rotating case 9.
21 is provided, and the rotating leg 21 is flatly rotated above the installation portion 22.
A rotating part 23 as an axis is provided, an upper part of the rotating part 23 is fixed to the rotating case 9, and a plane rotating driving means 24 for rotating the rotating part 23 is provided in the installation part 22. , The installation part 22
Has a built-in plane angle detecting means 25 for the rotating case 9. Further, as shown in FIG. 3, the distance measurement control means 4 is provided to a storage operation control means 26 comprising a computer or the like.
And the encoder 12 serving as a horizontal angle detecting means and the plane angle detecting means 25 are electrically connected to each other. Distance data from the measurement control means 4 to the object to be measured is obtained. The data and the plane angle position data of the measuring instrument body 1 are input from the plane angle detection means 25 to the storage operation control means 26, and from the input data, the storage operation control means 26 The reference position is corrected based on the distance from the center of a certain horizontal rotation shaft 7 to the lenses 2 and 3 and the length from the center of the rotation unit 21 which is the plane rotation center to the lenses 2 and 3, and Is calculated on the X, Y, and Z axis coordinates and displayed on the display 27 or the like.

【0009】次に前記構成につき、その作用を説明す
る。例えば、測定物である既設のトンネルTなどの内空
形状を測定する場合は、トンネルTの幅方向中央の基準
なる位置に測定機を固定状態で設置する。尚、トンネ
ルTの基準となる長さ方向をX軸、このX軸に平面直交
する幅方向をY軸、垂直な高さ方向をZ軸として基準と
し、X軸に前記水平回動軸7を合わせて水平に配置す
る。そして、まず、水平回動手段8のみを駆動してトン
ネルTの半径方向を計測し、水平角度位置データと測定
物までの距離データにより半径方向の断面を計測(図4
に示す測定軌跡Sa)する。次に、平面回動駆動手段24
を駆動して測定機本体1を所定角度だけ平面回動して固
定し、水平回動手段8を駆動してトンネルTの内空形状
を計測し、平面角度位置データと水平角度位置データと
測定物までの距離データにより内空形状を計測する。図
4は、説明のために、測定機本体1を平面45度ずつ図
中反時計回り方向に回転したものを例示し、符号aない
しhは回転した測定機本体1の位置を示し、符号Saな
いしShは、符号aないしh位置における測定機本体1
の測定軌跡であり、さらに、符号Sa〜Sb〜に示すよ
うに、測定機本体1を所定角度で平面回転して固定した
位置で内空形状を測定し、これにより、トンネルTの内
空形状を算出し、そのデータを図5に示すように、モニ
ター手段を備えた表示機27に立体表示し、プレキャスト
板に対応する内空形状Taが得られる。尚、図4中測定
軌跡Sc,Sgの上下が鎖線になっているのは、測定機
本体1の測定範囲外を示している。そして、測定軌跡S
a〜Sb〜は平面略等間隔にするために、所定角度ずつ
測定機本体1を平面回動するのではなく、測定機本体1
の向き、すなわち水平回動軸7の向きがX軸方向からY
軸方向に近付くに連れて、平面回動角度を次第に小さく
する
Next, the operation of the above configuration will be described. For example, when measuring the shape of the interior of an existing tunnel T or the like, which is the object to be measured, the reference at the center of the tunnel T in the width direction is used.
The measuring machine in a position placed in a fixed state. In addition, the length direction serving as the reference of the tunnel T is defined as the X axis, the width direction perpendicular to the X axis is defined as the Y axis, and the vertical height direction is defined as the Z axis. And arrange them horizontally. First, only the horizontal rotating means 8 is driven to measure the radius direction of the tunnel T, and the cross section in the radial direction is measured based on the horizontal angle position data and the distance data to the measured object (FIG. 4).
The measurement locus Sa) shown in FIG. Next, the plane rotation driving means 24
Is driven to rotate the measuring machine body 1 by a predetermined angle and fixed, and the horizontal rotation means 8 is driven to measure the inner space shape of the tunnel T, and the plane angle position data and the horizontal angle position data are measured. The inner space shape is measured based on the distance data to the object. FIG. 4 exemplifies a case where the measuring device main body 1 is rotated in a counterclockwise direction in the figure by 45 degrees at a plane of 45 degrees for the sake of description, and symbols a to h indicate the rotated positions of the measuring device main body 1 and symbols Sa. To Sh are the measuring machine body 1 at positions a to h.
Further, as shown by reference numerals Sa to Sb, the inner space shape is measured at a position where the measuring machine main body 1 is plane-rotated at a predetermined angle and fixed, thereby obtaining the inner space shape of the tunnel T. Is calculated, and the data is stereoscopically displayed on a display 27 provided with a monitor means as shown in FIG. 5, and an inner space shape Ta corresponding to the precast plate is obtained. It should be noted that the dashed lines above and below the measurement trajectories Sc and Sg in FIG. And the measurement trajectory S
In order to make the planes substantially equidistant from each other, the measuring apparatus main body 1 is not rotated by a predetermined angle , but is rotated by a predetermined angle.
, That is, the direction of the horizontal rotation shaft 7 is changed from the X-axis direction to Y direction.
The plane rotation angle is gradually reduced as approaching in the axial direction .

【0010】すると、測定機を移動することなく、内空
形状を所定の範囲で三次元的に測定することができ、測
定機を移動させることなく固定した状態で所定の範囲、
すなわち測定機本体1が計測可能な範囲だけ測定を行う
ことができるため、測定物たるトンネルTの内空形状、
すなわち内面形状を効率よく短時間で測定することがで
きる。
Then, the inner space shape can be three-dimensionally measured in a predetermined range without moving the measuring machine, and the predetermined range can be measured in a fixed state without moving the measuring machine.
That is, since the measurement can be performed only in a range that can be measured by the measuring device main body 1, the inner space shape of the tunnel T, which is the measurement object,
That is, the inner surface shape can be efficiently measured in a short time.

【0011】また、所定角度ずつ測定機本体1を平面回
動するのではなく、測定機本体1の向き、すなわち水平
回動軸7の向きがX軸方向からY軸方向に近付くに連れ
て、平面回動角度を次第に小さくして測定したから、ト
ンネルTなどのX軸方向、すなわち長さ方向に長いもの
の内空形状を正確に測定できる。
Further, instead of the measuring machine body 1 by Jo Tokoro angle of being dynamic planar times, the orientation of the measuring unit 1, ie As the orientation of the horizontal rotary shaft 7 approaches the X-axis direction in the Y-axis direction Since the measurement is performed with the plane rotation angle gradually reduced, the inner space shape of the tunnel T or the like that is long in the X-axis direction, that is, the length direction can be accurately measured.

【0012】図6は本発明の第2実施例を示し、上記第
1実施例と同一部分に同一符号を付し、図6は、前記測
定機により、室内の内空形状を測定し、これをモニター
手段を備えた前記表示機27に立体表示したものであり、
突出箇所31は測定物である部屋の出窓、縦凹部32は柱箇
所を示し、このように本発明の測定機を用いることによ
り、各種の内空形状を測定して立体的に表示することが
できると共に、必要な部分の寸法データを得ることがで
きる。
FIG. 6 shows a second embodiment of the present invention. In FIG. 6, the same parts as those in the first embodiment are denoted by the same reference numerals, and FIG. Are stereoscopically displayed on the display device 27 having monitor means,
The protruding portion 31 indicates a bay window of a room to be measured, and the vertical concave portion 32 indicates a column portion. Thus, by using the measuring device of the present invention, it is possible to measure various interior shapes and display them three-dimensionally. It is possible to obtain the dimensional data of the necessary parts.

【0013】尚、本発明は上記各実施例に限定されるも
のではなく、本発明の容易の範囲内において、種々の変
形実施が可能である。例えば、実施態様では測定機本体
は、光を発光、受光するタイプのものを例にして説明し
たが、超音波またはレーザー光線などを利用して距離を
測定するものなど、測定機本体は各種タイプのものを用
いることができる。また、測定機から離れた位置には、
測定物に反射シート等の光、超音波またはレーザー光線
等を反射するターゲットを設けておけば、測定可能範囲
が拡大すると共に測定精度が向上する。
The present invention is not limited to the above embodiments, and various modifications can be made within the scope of the present invention. For example, in the embodiment, the measuring instrument body is described as an example of a type that emits light and receives light.However, such as a type that measures a distance using an ultrasonic wave or a laser beam, the measuring instrument body is of various types. Can be used. Also, at a position away from the measuring machine,
If a target such as a reflection sheet that reflects light, ultrasonic waves, laser beams, or the like is provided on the measurement object, the measurable range is expanded and the measurement accuracy is improved.

【0014】[0014]

【発明の効果】本願の発明は、測定物の長さ方向水平面
を回動する平面回動駆動手段と、前記水平面に平行な水
平回動軸の水平回動駆動手段とからなる内空形状測定機
であるから、測定物の内空形状を基準位置において、そ
の位置を変えずに、立体的に測定することができ、所定
の範囲の内空形状を効率よく短時間で測定することがで
きるとともに、水平回動軸の軸心方向が測定物の長さ方
向から、この長さ方向に直交する幅方向に近付くに連れ
て、平面回動軸の平面回動角度が次第に小さくなるよう
に平面回動駆動手段が制御されるから、長さ方向に長い
ものの中空形状を正確に測定することができる。
According to the present invention, the horizontal plane in the longitudinal direction of the object to be measured is provided.
Plane rotation driving means for rotating the water, and water parallel to the horizontal plane.
Inner sky shape measuring device consisting of horizontal rotation drive means for flat rotation shaft
Therefore, the inner shape of the object to be measured is
Can be measured three-dimensionally without changing the position of the object, and it is possible to efficiently measure the shape of the interior space within a predetermined range in a short time, and the axis direction of the horizontal rotation axis is the length of the object to be measured. One
From the direction, approaching in the width direction orthogonal to this length direction
So that the plane rotation angle of the plane rotation axis becomes gradually smaller.
Since the plane rotation driving means is controlled in the above-described manner, a hollow shape which is long in the length direction can be accurately measured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例を示す測定機の縦断面であ
る。
FIG. 1 is a longitudinal section of a measuring instrument showing a first embodiment of the present invention.

【図2】本発明の第1実施例を示す測定機の平断面図で
ある。
FIG. 2 is a plan sectional view of the measuring instrument showing the first embodiment of the present invention.

【図3】本発明の第1実施例を示すブロック図である。FIG. 3 is a block diagram showing a first embodiment of the present invention.

【図4】本発明の第1実施例を示す測定方法を説明する
平面説明図である。
FIG. 4 is an explanatory plan view illustrating a measurement method according to the first embodiment of the present invention.

【図5】本発明の第1実施例を示す表示機により表示し
たトンネルの内空形状の斜視図である。
FIG. 5 is a perspective view of an inner shape of a tunnel displayed by a display device showing the first embodiment of the present invention.

【図6】本発明の第2実施例を示す表示機により表示し
た部屋の内空形状の斜視図である。
FIG. 6 is a perspective view of an inner space shape of a room displayed by a display device showing a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 測定器本体 2 送光対物レンズ(発信部) 3 受光対物レンズ(受信部)7 水平回動軸 8 水平回動駆動手段22 設置部 23 回動部 (平面回動軸) 24 平面回動駆動手段 T トンネル(測定物) DESCRIPTION OF SYMBOLS 1 Measuring instrument main body 2 Light transmission objective lens (transmission part) 3 Light reception objective lens (reception part) 7 Horizontal rotation axis 8 Horizontal rotation drive means 22 Installation part 23 Rotation part (plane rotation axis) 24 Plane rotation drive Means T Tunnel (object to be measured)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 測定物の内空幅方向中央の基準位置に設
置される設置部と、 該設置部に設けられ、その垂直方向を軸心とし水平面を
回動面とする平面回動軸を360°回動する平面回動駆
動手段と、 該平面回動駆動手段の平面回動軸に設けられ、設置部に
対して水平方向を軸心方向とする水平回動軸を360°
回動する水平回動駆動手段と、 発信部と受信部とにより測定点までの距離を測定する測
定機本体であって、前記水平回動駆動手段の水平回動軸
に、前記発信部と受信部の向きを該水平回転軸に直交す
る方向にして固定される測定機本体と、 を備え、 前記水平回動軸の軸心方向が前記測定物の長さ方向か
ら、この長さ方向に直交する幅方向に近付くに連れて、
前記平面回動軸の平面回動角度が次第に小さくなるよう
に、前記平面回動駆動手段の回動が制御され、立体的に
内空形状を測定することを特徴とする内空形状測定機。
An object is provided at a reference position at the center of a measured object in the width direction of the inner space.
The installation part to be placed, and provided in the installation part, the vertical plane as the axis and the horizontal plane
A plane rotation drive that rotates a plane rotation axis as a rotation plane by 360 °
Moving means and a plane rotating shaft of the plane rotating driving means,
On the other hand, the horizontal rotation axis with the horizontal direction as the axial direction is 360 °
A measuring device for measuring a distance to a measuring point by a horizontally rotating driving means that rotates and a transmitting unit and a receiving unit.
A stationary machine main body, wherein a horizontal rotating shaft of the horizontal rotating driving means is provided.
The direction of the transmitting unit and the receiving unit is orthogonal to the horizontal rotation axis.
A measuring unit that is fixed in the that direction, with the axial center direction of the horizontal pivot axis or the longitudinal direction of the workpiece
As you approach the width direction perpendicular to this length direction,
The plane rotation angle of the plane rotation axis is gradually reduced.
In addition, the rotation of the plane rotation driving means is controlled,
An inner space shape measuring machine characterized by measuring the inner space shape.
JP8080141A 1996-04-02 1996-04-02 Inner sky shape measuring machine Expired - Fee Related JP2867949B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8080141A JP2867949B2 (en) 1996-04-02 1996-04-02 Inner sky shape measuring machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8080141A JP2867949B2 (en) 1996-04-02 1996-04-02 Inner sky shape measuring machine

Publications (2)

Publication Number Publication Date
JPH09269222A JPH09269222A (en) 1997-10-14
JP2867949B2 true JP2867949B2 (en) 1999-03-10

Family

ID=13709993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8080141A Expired - Fee Related JP2867949B2 (en) 1996-04-02 1996-04-02 Inner sky shape measuring machine

Country Status (1)

Country Link
JP (1) JP2867949B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0346326U (en) * 1989-09-14 1991-04-30
JPH07113619A (en) * 1993-10-13 1995-05-02 Kawasaki Steel Corp Measuring system for furnace body profile of smelting furnace

Also Published As

Publication number Publication date
JPH09269222A (en) 1997-10-14

Similar Documents

Publication Publication Date Title
KR100612834B1 (en) 3 Dimensional Location Measurement Sensor
US7474256B2 (en) Position detecting system, and transmitting and receiving apparatuses for the position detecting system
JP3799579B2 (en) Position measuring device
JP2001334966A (en) Trailer connecting angle detector
JP2867949B2 (en) Inner sky shape measuring machine
JP2001133495A (en) Antenna-measuring instrument
JP3454736B2 (en) Ultrasonic inspection method and apparatus for low pressure turbine rotor
JPH06300838A (en) Underwater object position detector
JP3118144B2 (en) Hub bolt phase detection method and apparatus
JP2003207580A (en) Laser type snow depth meter
JP2738751B2 (en) Travel control device
JPH10115517A (en) Apparatus for correcting angle sensor of working machine
CN212723325U (en) Laser radar device with inclination is adjusted
JP2003337120A (en) Ultrasonic inspection method for low pressure turbine rotor
JPH02151787A (en) Apparatus for recognizing environment of traveling car
JPH10170268A (en) Light projecting device
JPS61189405A (en) Non-contacting shape measuring instrument
JPH08128994A (en) Array probe in array type flaw detector, and incident angle control device therefor
JPH10332815A (en) Device for measuring laser beam utilization distance, travel speed, and travel direction
JPH0755436A (en) Method and apparatus for measuring tail clearance
JPH1026511A (en) Trackless inspection device and method for detecting position to be inspected of it
JPS6197506A (en) Section measuring apparatus for tunnel
KR101225537B1 (en) Horizontal and vertical directional movement control module for 3D distance measurement instrument
JPH06242165A (en) Antenna supporting base
JP2001074841A (en) Measuring apparatus for distance, moving speed, and moving direction utilizing laser light

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees