JP2864419B2 - Exhaust gas treatment method in copper kneading - Google Patents

Exhaust gas treatment method in copper kneading

Info

Publication number
JP2864419B2
JP2864419B2 JP1056231A JP5623189A JP2864419B2 JP 2864419 B2 JP2864419 B2 JP 2864419B2 JP 1056231 A JP1056231 A JP 1056231A JP 5623189 A JP5623189 A JP 5623189A JP 2864419 B2 JP2864419 B2 JP 2864419B2
Authority
JP
Japan
Prior art keywords
gas
exhaust gas
heat exchanger
converter
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1056231A
Other languages
Japanese (ja)
Other versions
JPH02237621A (en
Inventor
正道 老田
良剛 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP1056231A priority Critical patent/JP2864419B2/en
Publication of JPH02237621A publication Critical patent/JPH02237621A/en
Application granted granted Critical
Publication of JP2864419B2 publication Critical patent/JP2864419B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、銅製錬において酸素富化等により熔錬能力
を向上させた場合にも対応できる銅製錬における排ガス
処理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an exhaust gas treatment method in copper smelting that can cope with the case where the smelting capacity is improved by oxygen enrichment or the like in copper smelting.

〈従来の技術〉 銅製錬においては、排ガス中にSO2が含有されるた
め、SO2をSO3に転化させ、このSO3を濃硫酸に吸収させ
ることによって規定の硫酸を得るというプロセスが行わ
れており、一般には、SO2をSO3に転化するための複数段
の触媒層を有する転化器と、これら触媒層各段に入るガ
ス温度が最適範囲となるように熱交換を行う熱交換器群
とを用いて操業されている。
In <Prior Art> copper smelting, because the SO 2 in exhaust gas is contained, is converted to SO 2 to SO 3, the process line of obtaining the provision of sulfuric acid by absorption of the SO 3 in concentrated sulfuric acid We have, in general, the heat exchanger performing a converter having a catalytic layer of a plurality of stages for the conversion of sO 2 to sO 3, the gas temperature entering these catalyst layers each stage a heat exchanger so that the optimum range It is operated using a group of instruments.

すなわち、例えば第2図に示すように、熔錬炉01の排
ガスは転化器02の触媒層及び熱交換器03をそれぞれ複数
段通過した後、吸収塔04を経て排出されている。ここ
で、転化器02の触媒層に導入されるガスの温度は例えば
420℃となるようにように設定する。又、転化器02中の
触媒層によりSO2がSO3に転化される反応は発熱反応であ
るため、転化器02の触媒層から出るガス温度は例えば59
0℃と上昇する。そこで、熱交換器03では、熔錬炉01か
らの排ガスを転化器02の第1段の触媒層に入る際に例え
ば420℃の温度に保つように加熱すると共に、転化器02
の第1段の触媒層から出る例えば590℃のガスを転化器0
2の第2段の触媒層に例えば430℃の温度で導入されるよ
うに冷却している。このように、銅製錬における硫酸工
場の排ガス処理プロセスではほとんど密閉系による熱交
換方式により熱バランスを保ちつつ操業されている。
That is, as shown in FIG. 2, for example, the exhaust gas of the smelting furnace 01 is discharged through the absorption tower 04 after passing through the catalyst layer of the converter 02 and the heat exchanger 03 in a plurality of stages, respectively. Here, the temperature of the gas introduced into the catalyst layer of the converter 02 is, for example,
Set to be 420 ° C. Further, since the reaction of converting SO 2 to SO 3 by the catalyst layer in the converter 02 is an exothermic reaction, the gas temperature exiting the catalyst layer of the converter 02 is, for example, 59%.
It rises to 0 ° C. Therefore, in the heat exchanger 03, when the exhaust gas from the smelting furnace 01 enters the first-stage catalyst layer of the converter 02, it is heated so as to keep it at a temperature of, for example, 420 ° C.
The gas of, for example, 590 ° C. from the first-stage catalyst layer of
The catalyst is cooled so as to be introduced into the second catalyst layer 2 at a temperature of, for example, 430 ° C. As described above, in the exhaust gas treatment process of the sulfuric acid plant in the copper smelting, the operation is performed while maintaining the heat balance by the heat exchange method using almost a closed system.

〈発明が解決しようとする課題〉 ところで、近年、銅製錬においては酸素富化等により
熔錬能力を向上させて生産性の高い操業を行うようにな
ってきており、今後さらに生産性の向上を目指している
が、このような生産性の向上に伴い熔錬炉から発生する
排ガス中のSO2濃度が高くなるという問題がある。
<Problems to be Solved by the Invention> In recent years, in copper smelting, smelting capacity has been improved by oxygen enrichment and the like, and high-productivity operations have been carried out. Although it is aimed at, there is a problem that the SO 2 concentration in the exhaust gas generated from the smelting furnace increases with the improvement of the productivity.

このようにSO2濃度が高い排ガスを処理する場合、生
産コスト、設備コストを低く保つために、排ガスをフリ
ーエアーで希釈しないで高濃度SO2のまま処理する必要
があり、高SO2濃度の排ガスを硫酸工場で処理する場合
には、転化器各触媒層の出口ガス温度を反応が進むまま
に高い温度に保たなければ高い転化率を維持・確保でき
なくなる。そして、このように各触媒層出口のガス温度
が高くなると、上述したような密閉系の熱交換方式では
熱余剰となってガス温度コントロール等において対応で
きなくなるという不都合が生じる。
Thus, when the SO 2 concentration to handle high exhaust gas, in order to keep production costs, equipment costs low, it is necessary to remain with high concentration SO 2 undiluted exhaust gas at free air, high SO 2 concentration In the case of treating the exhaust gas in a sulfuric acid plant, a high conversion cannot be maintained or secured unless the outlet gas temperature of each catalyst layer of the converter is maintained at a high temperature while the reaction proceeds. When the gas temperature at the outlet of each catalyst layer is increased in this way, the above-described closed system heat exchange method has a problem that excess heat is generated and cannot be handled in gas temperature control or the like.

本発明は、このような事情に鑑み、酸素富化等による
熔錬能力向上に起因する排ガスSO2濃度の変化に対応で
きる銅製錬における排ガス処理方法を提供することを目
的とする。
In view of such circumstances, an object of the present invention is to provide an exhaust gas treatment method in copper smelting that can cope with a change in exhaust gas SO 2 concentration caused by improvement in smelting capacity due to oxygen enrichment or the like.

〈課題を解決するための手段〉 前記目的を達成する本発明にかかる銅製錬における排
ガス処理方法は、銅の熔錬炉の排ガス中のSO2ガスをSO3
ガスに転化する複数段の触媒層を有する転化器と各触媒
層に入るガス温度を調製するための複数の熱交換器を用
いた、銅製錬における排ガス処理方法において、 銅の煬錬炉から排出するSO2ガスを含んだ排ガスを所
定の触媒反応温度に熱交換する熱交換工程と、 該熱交換後の排ガスを触媒層を有する転化器に導き排
ガス中のSO2ガスをSO3ガスに転化する転化工程と、 該転化後の高温の排ガスを補助交換器に導くと共に該
補助熱交換器に外部から導入される空気と熱交換して所
定の熱交換耐熱温度となるように抑制する補助熱交換工
程と、 該補助熱交換工程で加温された空気を空気加熱器に導
き、該空気を加熱して煬錬炉に加熱空気を供給する空気
加熱工程と、 上記補助熱交換器からの排ガスを次の熱交換器工程に
導き、更に順次複数段の触媒層を有する転化器を経由し
て排ガス中のSO2ガスをSO3ガスに転化し、該転化された
SO3ガスを吸収塔で吸収する吸収工程とからなり、 最初の転化器で転化する排ガス中のSO2ガス濃度が高
い場合に、上記補助熱交換器に導く空気の供給量が多く
して補助熱交換効比率を向上させ、一方転化器で転化す
る排ガス中のSO2ガス濃度が低い場合に、上記補助熱交
換器に導く空気の供給量を少なくすることで空気の供給
量を制御し、最初の転化器での触媒反応後の次の熱交換
器に導く排ガス温度を許容耐熱温度以下に制御すること
を特徴とする。
<Means for Solving the Problems> The exhaust gas treatment method in copper smelting according to the present invention that achieves the above object comprises: converting SO 2 gas in exhaust gas of a copper smelting furnace to SO 3 gas.
In an exhaust gas treatment method in copper smelting using a converter with multiple stages of gas-converted catalyst layers and multiple heat exchangers for adjusting the gas temperature entering each catalyst layer, copper is discharged from a smelting furnace. A heat exchange step of exchanging the exhaust gas containing the SO 2 gas to be heated to a predetermined catalytic reaction temperature, and guiding the exhaust gas after the heat exchange to a converter having a catalyst layer to convert the SO 2 gas in the exhaust gas into an SO 3 gas And an auxiliary heat that guides the high-temperature exhaust gas after the conversion to an auxiliary exchanger and exchanges heat with air introduced from the outside into the auxiliary heat exchanger so as to have a predetermined heat exchange heat-resistant temperature. An exchanging step, an air heating step of guiding the air heated in the auxiliary heat exchanging step to an air heater, heating the air and supplying heating air to the smelting furnace, and an exhaust gas from the auxiliary heat exchanger To the next heat exchanger step, and Via a converter having a layer to convert the SO 2 gas in the exhaust gas to SO 3 gas was Said transformation
It consists of an absorption process in which SO 3 gas is absorbed by an absorption tower.When the concentration of SO 2 gas in the exhaust gas converted in the first converter is high, the supply amount of air guided to the auxiliary heat exchanger is increased to assist to improve heat exchange efficiency ratio, whereas if the SO 2 gas concentration in the exhaust gas to be converted in the converter is low, and controls the supply amount of the air by reducing the supply amount of the air guided to the auxiliary heat exchanger, It is characterized in that the temperature of the exhaust gas led to the next heat exchanger after the catalytic reaction in the first converter is controlled to be equal to or lower than the allowable heat-resistant temperature.

〈作用〉 熔錬炉からの排ガス中のSO2濃度が高くなると、転化
器の第1段触媒層での転化率を高く維持するためにはそ
の出口ガス温度を高くなるが、補助熱交換器により第1
段熱交換器に入るガス温度を硫酸工場の熱バランスがと
れる範囲内まで低下するように制御することにより、各
熱交換器における熱バランスを保つことができるように
する。
<Operation> As the concentration of SO 2 in the exhaust gas from the smelting furnace increases, the outlet gas temperature increases in order to maintain a high conversion rate in the first catalyst layer of the converter. By first
By controlling the temperature of the gas entering the stage heat exchanger to fall within a range where the heat balance of the sulfuric acid plant can be achieved, the heat balance in each heat exchanger can be maintained.

〈実施例〉 以下、本発明の好適な一実施例を図面を参照しながら
説明する。
<Embodiment> Hereinafter, a preferred embodiment of the present invention will be described with reference to the drawings.

第1図には本実施例にかかる排ガス処理方法を採用し
た銅製錬プロセスを示す。同図に示すように、熔錬炉1
の排ガスは従来技術の項で説明した例と同様に転化器2
の触媒層及び熱交換器3をそれぞれ複数段通過した後、
吸収塔4を経て排出されている。そして、転化器2の第
1段触媒層に導入される排ガスは、第1段の熱交換器3
により例えば420℃の温度に保たれている。一方、転化
器2の第1段触媒層から出て転化器2の第2段触媒層に
送られるガスは熱交換器3により例えば430℃の温度に
冷却されるようになっているが、本実施例では転化器2
の第1触媒層と第1段熱交換器3との間に補助熱交換器
5を設けて第1段熱交換器3に入るガスの温度を抑制す
るようにしている。すなわち、例えば熔錬効率の向上に
より排ガスのSO2濃度が例えば10%程度に上昇し、転化
器2のの第1段触媒層入口温度を430℃に上げ、出口温
度が例えば620℃程度に上昇した場合に、補助熱交換器
5により熱交換器3に入るガスの温度を硫酸工場の熱バ
ランスがとれる範囲で熱交換器の許容耐熱温度以下にす
るようにする。
FIG. 1 shows a copper smelting process employing the exhaust gas treatment method according to the present embodiment. As shown in FIG.
The exhaust gas of the converter 2 is the same as in the example described in the section of the prior art.
After passing through a plurality of stages of the catalyst layer and the heat exchanger 3, respectively,
It is discharged through the absorption tower 4. The exhaust gas introduced into the first-stage catalyst layer of the converter 2 is supplied to the first-stage heat exchanger 3.
, For example, at a temperature of 420 ° C. On the other hand, the gas leaving the first-stage catalyst layer of the converter 2 and sent to the second-stage catalyst layer of the converter 2 is cooled by the heat exchanger 3 to a temperature of, for example, 430 ° C. In the embodiment, the converter 2
The auxiliary heat exchanger 5 is provided between the first catalyst layer and the first-stage heat exchanger 3 so as to suppress the temperature of the gas entering the first-stage heat exchanger 3. That is, for example, the SO 2 concentration of the exhaust gas is increased to, for example, about 10% by the improvement of the smelting efficiency, the inlet temperature of the first-stage catalyst layer of the converter 2 is increased to 430 ° C., and the outlet temperature is increased to, for example, about 620 ° C. In this case, the temperature of the gas entering the heat exchanger 3 by the auxiliary heat exchanger 5 is set to be equal to or lower than the allowable heat-resistant temperature of the heat exchanger within a range where the heat balance of the sulfuric acid factory can be maintained.

ここで、補助熱交換器5において、転化器2の第1段
触媒層から出て熱交換器3に入るガスの温度を抑制する
ための空気は熔錬炉送風機6を介して硫酸工場以外の外
部から導入している。この外部空を補助熱交換器5へ導
入する流路7には補助熱交換器5を迂回するバイパス8
が設けられている。そして、補助熱交換器5の前後の流
路7に介装されたバルブ9b,9cの開度を全開にし、バイ
パス8に介装されたバルブ9aの開度を調整するだけで、
補助熱交換器5に導入される外部空気量を制御してお
り、これにより熱交換器3に導入されるガスの温度を硫
酸工場での熱バランスがとれる範囲内にあるようにして
いる。
Here, in the auxiliary heat exchanger 5, air for suppressing the temperature of the gas exiting the first-stage catalyst layer of the converter 2 and entering the heat exchanger 3 is supplied via a smelting furnace blower 6 to a portion other than the sulfuric acid plant. Introduced from outside. A bypass 8 that bypasses the auxiliary heat exchanger 5 is provided in a flow path 7 that introduces the external air into the auxiliary heat exchanger 5.
Is provided. Then, the valves 9b and 9c interposed in the flow path 7 before and after the auxiliary heat exchanger 5 are fully opened, and the opening of the valve 9a interposed in the bypass 8 is simply adjusted.
The amount of external air introduced into the auxiliary heat exchanger 5 is controlled, so that the temperature of the gas introduced into the heat exchanger 3 is within a range where the heat balance in the sulfuric acid plant can be maintained.

例えば、排ガス中のSO2濃度の上昇などに伴って転化
器2の第1段触媒層出口のガス温度が、例えば620℃程
度で、熱バランスがとれる範囲を越え、且つ熱交換器3
の許容耐熱温度を越える場合にはバルブ9aの開度を小さ
くして補助熱交換器5に送る空気量を調整することによ
り、硫酸工場の熱バランスがとれる範囲で、熱交換器3
に入るガス温度が少なくとも熱交換器3の許容耐熱温度
以下になるように、補助熱交換器5においてガスの熱を
回収する。
For example, the gas temperature at the outlet of the first-stage catalyst layer of the converter 2 is, for example, about 620 ° C. due to an increase in the concentration of SO 2 in the exhaust gas.
If the temperature exceeds the allowable heat-resistant temperature, the opening degree of the valve 9a is reduced and the amount of air sent to the auxiliary heat exchanger 5 is adjusted so that the heat exchange of the sulfuric acid plant can be maintained.
The heat of the gas is recovered in the auxiliary heat exchanger 5 so that the gas temperature entering the heat exchanger is at least equal to or lower than the allowable heat resistance temperature of the heat exchanger 3.

一方、転化器2の第1段触媒層出口のガス温度が熱バ
ランスがとれる範囲内で且つ熱交換器3の許容耐熱温度
以下である場合でも、熱バランスのとれる範囲内でバル
ブ9aの開度を調整して補助熱交換器5に送る空気量を調
整し、ガスの熱を最大限に回収するようにする。
On the other hand, even when the gas temperature at the outlet of the first-stage catalyst layer of the converter 2 is within the range where the heat balance can be obtained and is equal to or lower than the allowable heat-resistant temperature of the heat exchanger 3, the opening degree of the valve 9a can be maintained within the range where the heat balance can be obtained. Is adjusted to adjust the amount of air sent to the auxiliary heat exchanger 5, so that the heat of the gas is recovered to the maximum.

また、補助熱交換器5を通ることにより加熱された空
気は、その後空気加熱器10で温度調節された後、熔錬炉
1に直接吹き込まれて鉱石熔錬等に利用されるようにな
っている。このような回収熱の再利用により、重油等の
燃料を減少させ、銅製錬コストの低減を図ることができ
る。
The air heated by passing through the auxiliary heat exchanger 5 is temperature-controlled by the air heater 10 and then directly blown into the smelting furnace 1 to be used for ore smelting and the like. I have. By reusing such recovered heat, fuel such as heavy oil can be reduced, and copper smelting costs can be reduced.

なお、本実施例の補助熱交換器5には、例えば600℃
以上の高温ガスが導入されるため、ステンレス等の高温
に耐えうる材質のものを用いる必要があるが、その容量
は熱交換器3と比べて小型のものでよい。
The auxiliary heat exchanger 5 of this embodiment has a temperature of, for example, 600 ° C.
Since the above high-temperature gas is introduced, it is necessary to use a material that can withstand high temperatures, such as stainless steel, but its capacity may be smaller than that of the heat exchanger 3.

上述した方法により、SO2濃度等の負荷が変動する状
態において実操業した場合の諸データを第1表に示す。
Table 1 shows various data obtained when the actual operation was performed in a state where the load such as the SO 2 concentration fluctuated by the above-described method.

第1表に示すように、排ガス中のSO2濃度が10%の高
負荷時で転化器2の第1段触媒層出口ガス量が150,000N
m3/h、ガス温度が620℃の場合、補助熱交換器5に30℃
の空気を40,000Nm3/h送ったところ、補助熱交換器5の
出口ガス温度は540℃、出口空気温度は300℃になり、熱
交換器3の入口ガス温度が熱交換器3の許容耐熱温度以
下になると共に硫酸工場の熱バランスがとれ、又、転化
器2の第1段触媒層の転化率が従来よりも向上し、さら
に熱を熱風として回収したことにより、空気加熱器で、
重油換算で350l/hの省エネ効果を得た。
As shown in Table 1, when the SO 2 concentration in the exhaust gas was 10% and the load was high, the gas amount at the outlet of the first-stage catalyst layer of the converter 2 was 150,000N.
m 3 / h, when the gas temperature is 620 ° C, 30 ° C in the auxiliary heat exchanger 5
When the air of 40,000Nm 3 / h was sent, the outlet gas temperature of the auxiliary heat exchanger 5 became 540 ° C and the outlet air temperature became 300 ° C, and the inlet gas temperature of the heat exchanger 3 became the allowable heat resistance of the heat exchanger 3. As the temperature falls below the temperature, the heat balance of the sulfuric acid plant is secured, and the conversion rate of the first-stage catalyst layer of the converter 2 is improved as compared with the conventional case, and the heat is recovered as hot air.
The energy saving effect was 350l / h in heavy oil conversion.

又、排ガス中のSO2濃度が7%の低負荷時で、転化器
2の第1段触媒層出口ガス量が80,000Nm3/h、ガス温度
が560℃の場合、補助熱交換器5に、30℃の空気を10,00
0Nm3/h送ったところ、補助熱交換器5の出口ガス温度は
500℃になったが、硫酸工場の熱バランスがとれてお
り、転化器2の第1段触媒層の転化率を低下させること
なく、硫酸工場の熱を回収することができ、重油換算で
120l/hの省エネ効果を得ることができた。
In addition, when the SO 2 concentration in the exhaust gas is as low as 7% and the gas amount at the outlet of the first catalyst layer of the converter 2 is 80,000 Nm 3 / h and the gas temperature is 560 ° C., the auxiliary heat exchanger 5 , 30 ℃ air at 10,000
After sending 0Nm 3 / h, the outlet gas temperature of the auxiliary heat exchanger 5 becomes
Although the temperature reached 500 ° C, the heat of the sulfuric acid plant was well balanced and the heat of the sulfuric acid plant could be recovered without lowering the conversion rate of the first-stage catalyst layer of the converter 2, and it was converted to heavy oil.
120l / h energy saving effect was obtained.

なお、第1表には補助熱交換器5に空気を流入しない
で従来と同様の方式での操業結果を伴わせて示してあ
る。この場合には、転化器2及び熱交換器3等における
熱バランスがとれる最大効率で操業しているが、転化器
2の第1段触媒層での転化率が50%と低下してしまい、
高転化率を維持することはできない。すなわち、硫酸工
場の熱バランスをとると共に転化器2の第1段触媒出口
ガス温度を熱交換器3の許容耐熱温度以下とするため
に、転化器2の第1触媒層の出口ガス温度を590℃程度
までしか上昇できず、高SO2%の際には転化率2の第1
段触媒層の入口ガス温度を下げ、反応を減少させる必要
があり、結局、総合的な転化率が下がる結果となる。
Note that Table 1 also shows the operation results in the same manner as in the related art without air flowing into the auxiliary heat exchanger 5. In this case, the operation is performed at the maximum efficiency that can balance the heat in the converter 2 and the heat exchanger 3 and the like, but the conversion in the first-stage catalyst layer of the converter 2 is reduced to 50%,
High conversion cannot be maintained. That is, in order to balance the heat of the sulfuric acid plant and make the gas temperature at the outlet of the first stage catalyst of the converter 2 equal to or lower than the allowable heat resistance temperature of the heat exchanger 3, the gas temperature at the outlet of the first catalyst layer of the converter 2 is set to 590. ° C, and it can only rise to about 2 ° C.
It is necessary to lower the gas temperature at the inlet of the stage catalyst layer to reduce the reaction, which results in a lower overall conversion.

これに対し、上述した実施例では、小型の補助熱交換
器5を導入することにより、熱バランスをとりつつ転化
器2の第1段触媒層出口温度を620℃程度まで上昇させ
ることができるので、転化器2でのSO2転化反応を十分
に推進できると共に併せて省エネ効果も得られ、熔錬能
力の向上に十分対応できる。
On the other hand, in the above-described embodiment, by introducing the small-sized auxiliary heat exchanger 5, the temperature of the outlet of the first-stage catalyst layer of the converter 2 can be increased to about 620 ° C. while keeping the heat balance. In addition, the SO 2 conversion reaction in the converter 2 can be sufficiently promoted, and at the same time, an energy saving effect can be obtained.

〈発明の効果〉 以上説明したように、本発明によれば、銅製錬の熔錬
能力の向上に伴い排ガス中のSO2濃度が上昇した場合に
も、簡単な補助熱交換器を追加するだけで硫酸工場の熱
バランスを保ち、熱交換器設備の保護を図りながら転化
器の第1段触媒層での転化率を高く維持すると共に省エ
ネ効果も得ることができるという効果を奏する。したが
って本発明によれば、銅製錬の熔錬能力の向上に伴なう
SO2濃度の変動に極めて省エネルギー,低コストで対応
することができ、硫酸工場の生産能力のアップもでき
る。
As has been described <Effects of the Invention> According to the present invention, only the SO 2 concentration in the exhaust gas with the improvement of the smelting capacity of the copper smelting even when raised, to add simple auxiliary heat exchanger Thus, it is possible to maintain the heat balance of the sulfuric acid plant and protect the heat exchanger equipment while maintaining a high conversion rate in the first-stage catalyst layer of the converter and achieving an energy saving effect. Therefore, according to the present invention, the smelting capacity of copper smelting is improved.
It can respond to fluctuations in SO 2 concentration with extremely low energy consumption and low cost, and can increase the production capacity of sulfuric acid plants.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例の熔錬プロセスを示す説明
図、第2図は従来技術にかかる熔錬プロセスを示す説明
図である。 図面中、 1は熔錬炉、2は転化器、3は熱交換器、5は補助熱交
換器、6は熔錬炉送風機、9a,9b,9cはバルブである。
FIG. 1 is an explanatory diagram showing a smelting process according to one embodiment of the present invention, and FIG. 2 is an explanatory diagram showing a smelting process according to the prior art. In the drawing, 1 is a smelting furnace, 2 is a converter, 3 is a heat exchanger, 5 is an auxiliary heat exchanger, 6 is a smelting furnace blower, and 9a, 9b and 9c are valves.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) B01D 53/86 B01J 8/02 C22B 15/00──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int. Cl. 6 , DB name) B01D 53/86 B01J 8/02 C22B 15/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】銅の熔錬炉の排ガス中のSO2ガスをSO3ガス
に転化する複数段の触媒層を有する転化器と各触媒層に
入るガス温度を調製するための複数の熱交換器を用い
た、銅製錬における排ガス処理方法において、 銅の熔錬炉から排出するSO2ガスを含んだ排ガスを所定
の触媒反応温度に熱交換する熱交換工程と、 該熱交換後の排ガスを触媒層を有する転化器に導き排ガ
ス中のSO2ガスをSO3ガスに転化する転化工程と、 該転化後の高温の排ガスを補助交換器に導くと共に該補
助熱交換器に外部から導入される空気と熱交換して所定
の熱交換耐熱温度となるように抑制する補助熱交換工程
と、 該補助熱交換工程で加温された空気を空気加熱器に導
き、該空気を加熱して熔錬炉に加熱空気を供給する空気
加熱工程と、 上記補助熱交換器からの排ガスを次の熱交換器工程に導
き、更に順次複数段の触媒層を有する転化器を経由して
排ガス中のSO2ガスをSO3ガスに転化し、該転化されたSO
3ガスを吸収塔で吸収する吸収工程とからなり、 最初の転化器で転化する排ガス中のSO2ガス濃度が高い
場合に、上記補助熱交換器に導く空気の供給量を多くし
て補助熱交換効比率を向上させ、一方転化器で転化する
排ガス中のSO2ガス濃度が低い場合に、上記補助熱交換
器に導く空気の供給量を少なくすることで空気の供給量
を制御し、最初の転化器での触媒反応後の次の熱交換器
に導く排ガス温度を許容耐熱温度以下に制御することを
特徴とする銅製錬における排ガス処理方法。
1. A converter having a plurality of catalyst layers for converting SO 2 gas in a flue gas of a copper smelting furnace into SO 3 gas, and a plurality of heat exchanges for adjusting a gas temperature entering each catalyst layer. An exhaust gas treatment method in copper smelting using a vessel, wherein a heat exchange step of exchanging heat of an exhaust gas containing SO 2 gas discharged from a copper smelting furnace to a predetermined catalytic reaction temperature, is introduced from the outside into the auxiliary heat exchanger to guide the SO 2 gas in the flue gas led to the converter having a catalyst layer and a converting step of converting the SO 3 gas, the hot exhaust gas after the shift conversion in the auxiliary exchanger An auxiliary heat exchange step of exchanging heat with air to reduce the temperature to a predetermined heat exchange heat-resistant temperature; guiding the air heated in the auxiliary heat exchange step to an air heater to heat and melt the air; An air heating step of supplying heated air to the furnace, and exhaust gas from the auxiliary heat exchanger To the next heat exchanger step, and further convert SO 2 gas in the exhaust gas to SO 3 gas through a converter having a plurality of stages of catalyst layers sequentially, and the converted SO
It consists of an absorption process in which the gas is absorbed by the absorption tower.If the concentration of SO 2 gas in the exhaust gas converted in the first converter is high, the amount of air supplied to the auxiliary heat exchanger is increased to increase the auxiliary heat. improve the exchange efficiency ratio, whereas if the SO 2 gas concentration in the exhaust gas to be converted in the converter is low, and controls the supply amount of the air by reducing the supply amount of the air guided to the auxiliary heat exchanger, the first An exhaust gas treatment method in copper smelting, characterized in that the temperature of exhaust gas led to the next heat exchanger after the catalytic reaction in the converter is controlled to an allowable temperature limit or lower.
JP1056231A 1989-03-10 1989-03-10 Exhaust gas treatment method in copper kneading Expired - Lifetime JP2864419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1056231A JP2864419B2 (en) 1989-03-10 1989-03-10 Exhaust gas treatment method in copper kneading

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1056231A JP2864419B2 (en) 1989-03-10 1989-03-10 Exhaust gas treatment method in copper kneading

Publications (2)

Publication Number Publication Date
JPH02237621A JPH02237621A (en) 1990-09-20
JP2864419B2 true JP2864419B2 (en) 1999-03-03

Family

ID=13021329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1056231A Expired - Lifetime JP2864419B2 (en) 1989-03-10 1989-03-10 Exhaust gas treatment method in copper kneading

Country Status (1)

Country Link
JP (1) JP2864419B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104232923B (en) * 2014-07-28 2015-09-16 包头华鼎铜业发展有限公司 SO is reduced in a kind of Copper making process 3the method produced

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5787936U (en) * 1980-11-19 1982-05-31
GB8410517D0 (en) * 1984-04-25 1984-05-31 Ici Plc Ammonia synthesis
JPS61250470A (en) * 1985-04-26 1986-11-07 株式会社東芝 Air conditioner
JPH0422209Y2 (en) * 1985-08-01 1992-05-20

Also Published As

Publication number Publication date
JPH02237621A (en) 1990-09-20

Similar Documents

Publication Publication Date Title
US7820134B2 (en) Process and plant for producing sulfuric acid
CN112403258B (en) System and method for removing carbon monoxide and denitration of flue gas
CN101927982B (en) Isothermal direct oxidization recovery technology of sulfur
MXPA05004226A (en) Process and plant for the manufacture of sulphuric acid from gases rich in sulphur dioxide.
CN201361530Y (en) Flue gas recirculation loop of high-concentration sulfur dioxide reforming device
CN103072956A (en) Flue gas processing method and system
CN102336396B (en) Continuous heat transfer sulfur dioxide conversion process
CN102530882B (en) Method and device for reclaiming dehydrated sulfur
CN107055488A (en) High-concentration sulfur dioxide flue gas binary can adjust pre-inversion Sulphuric acid device
JP2864419B2 (en) Exhaust gas treatment method in copper kneading
CN114835089B (en) Method for preparing sulfuric acid from flue gas containing high-concentration sulfur dioxide
CN1238246C (en) Adjustable sulfuric acid conversion heat-exchange process
CN107840314B (en) Smelting flue gas acid making system
CN211753798U (en) CO oxidation and denitration system
JPS5911524B2 (en) A method for producing sulfuric acid that includes a conversion process that eliminates the need to adjust the inlet gas temperature of the converter group in response to load changes.
CN206384840U (en) High-concentration sulfur dioxide flue gas binary can adjust pre-inversion Sulphuric acid device
CN112403221A (en) Flue gas denitration and decarburization treatment system and method
CN217627631U (en) SO (SO) 2 -SO 3 Conversion system
CN114423519A (en) Process and reactor for the catalytic oxidation of ammonia
CN206232401U (en) A kind of system of Crouse&#39;s direct current method Recovered sulphur
JPH0312315A (en) Method for refining inert gas
CN220940632U (en) Cold hydrogenation cooling system
EP0214734A2 (en) Method and apparatus for making sulphuric acid
CN108046221B (en) Method for preparing acid by smelting flue gas
CN112403222B (en) CO oxidation and denitration system and method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081218

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081218

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091218

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091218

Year of fee payment: 11