JP2863111B2 - Lightweight multilayer solid containing latent hydraulic particles - Google Patents

Lightweight multilayer solid containing latent hydraulic particles

Info

Publication number
JP2863111B2
JP2863111B2 JP10909495A JP10909495A JP2863111B2 JP 2863111 B2 JP2863111 B2 JP 2863111B2 JP 10909495 A JP10909495 A JP 10909495A JP 10909495 A JP10909495 A JP 10909495A JP 2863111 B2 JP2863111 B2 JP 2863111B2
Authority
JP
Japan
Prior art keywords
latent hydraulic
pores
hydraulic particles
tobermorite
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10909495A
Other languages
Japanese (ja)
Other versions
JPH08283078A (en
Inventor
捷二 清家
今井  修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON GAISHI KK
Original Assignee
NIPPON GAISHI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON GAISHI KK filed Critical NIPPON GAISHI KK
Priority to JP10909495A priority Critical patent/JP2863111B2/en
Publication of JPH08283078A publication Critical patent/JPH08283078A/en
Application granted granted Critical
Publication of JP2863111B2 publication Critical patent/JP2863111B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/043Alkaline-earth metal silicates, e.g. wollastonite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/1055Coating or impregnating with inorganic materials
    • C04B20/1074Silicates, e.g. glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0068Ingredients with a function or property not provided for elsewhere in C04B2103/00
    • C04B2103/0088Compounds chosen for their latent hydraulic characteristics, e.g. pozzuolanes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00612Uses not provided for elsewhere in C04B2111/00 as one or more layers of a layered structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、トバモライトを含有
し、潜在水硬性粒子を有する固化物に関し、特に建築用
パネル、吸音材等の建材用の軽量多層固化物を提供する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solidified product containing tobermorite and having latent hydraulic particles, and more particularly to a lightweight multi-layered solidified product for building materials such as building panels and sound absorbing materials.

【0002】[0002]

【従来の技術】潜在水硬性粒子としては、石炭灰、高炉
スラグ、けい酸白土、火山灰、けい藻土等がある。ここ
で、潜在水硬性とは、それ自身では水硬性を示さない
が、少量のCa(OH)2 、NaOHなどのアルカリ性
物質が存在すると水硬性を示す性質をいう。代表的な潜
在水硬性粒子である石炭灰、高炉スラグについて以下に
述べる。
2. Description of the Related Art Potential hydraulic particles include coal ash, blast furnace slag, silicate clay, volcanic ash, and diatomaceous earth. Here, the term “latent hydraulic property” refers to a property that does not exhibit hydraulic property by itself, but exhibits hydraulic property when a small amount of an alkaline substance such as Ca (OH) 2 or NaOH is present. Typical latent hydraulic particles such as coal ash and blast furnace slag are described below.

【0003】エネルギー源として石炭を利用している火
力発電所や各種の工場では、フライアッシュ等の石炭灰
が大量に産出されている。その量は、日本において約4
00万トンに達し、このうち、有効利用されるものは約
40%にすぎず、残りの約60%は埋め立て処分されて
いるのが現状である。しかしながら、石炭灰の埋め立て
処分場を確保することは必ずしも容易ではなく、漁業権
の保証やリサイクル法の制定により埋め立て処分場の確
保がますます困難になってきている。従って、今後さら
に増大するであろう石炭灰の有効利用が緊急の課題とな
っている。
[0003] In thermal power plants and various factories utilizing coal as an energy source, coal ash such as fly ash is produced in large quantities. The amount is about 4 in Japan.
At present, about 40% of the total amount reaches 100,000 tons, and only about 40% is effectively used, and the remaining about 60% is landfilled at present. However, it is not always easy to secure landfill sites for coal ash, and it is becoming increasingly difficult to secure landfill sites due to the guarantee of fishing rights and the establishment of the Recycling Law. Therefore, effective utilization of coal ash, which is expected to further increase in the future, is an urgent issue.

【0004】現在のところでは、石炭灰は特開昭63−
17247号公報および特開平4−305044号公報
に示されているように無機質系の建築材料の一原料とし
て提案され、または特開平3−16176号公報に示さ
れているように多孔質の濾過助剤の一原料として提案さ
れている。また、特殊な例としては刊行物「日本工業新
聞:人工海底山脈を石炭灰で構築(平成5年2月26日
発行)」に示されているように、人工魚礁の一原料とし
ても提案されている。
At present, coal ash is disclosed in
As disclosed in JP-A-17247 and JP-A-4-305044, it has been proposed as one raw material of inorganic building materials, or as disclosed in JP-A-3-16176. It has been proposed as a raw material of the agent. As a special example, as shown in the publication "Nippon Kogyo Shimbun: Constructing Artificial Seabed Mountains with Coal Ash (Issued February 26, 1993)", it has been proposed as a raw material for artificial reefs. ing.

【0005】また、高炉スラグは製鉄所の溶鉱炉で、鉄
鉱石に石灰石、コークスなど混合し銑鉄を製造する際に
得られる副産物である。スラグの量は、銑鉄に対し約6
5%であり、我が国の銑鉄年産を600万トンと考える
と、高炉スラグは約400万トン副生されていることに
なる。
[0005] Blast-furnace slag is a by-product obtained in the production of pig iron by mixing limestone, coke, and the like with iron ore in a blast furnace of an ironworks. The amount of slag is about 6
Considering Japan's annual production of pig iron to be 6 million tons, it means that about 4 million tons of blast furnace slag is by-produced.

【0006】建築材料は、PC板、ALC板、吸音板等
種々あるが、最近軽量化に対する要望より各種ALC板
が開発されており、そのニーズも年々増加している。従
って、これらの潜在水硬性粒子をALC板として利用す
る場合には、これらの潜在水硬性粒子の大量の利用が期
待できる。ALC(autoclaved light weight concret
e)は、オートクレーブ養生した軽量気泡コンクリート
であり、耐火、断熱、防音性に優れ、軽量で耐久性のあ
る建築用パネルとして住宅等で幅広く用いられている。
しかし、気孔率が大きいため、床材等の強度の必要なと
ころは鉄筋等の補強材を入れる必要があった。また、最
近、騒音に対する要望より各種吸音板が開発されてお
り、そのニーズも年々増加している。従って、吸音板と
して利用する場合にも、これらの潜在水硬性粒子の大量
の利用が期待できる。通常、吸音性の優れた吸音板の気
孔率は大きいため、その強度は低い(たとえば、圧縮強
度で10Kg/cm2 以下)。従って、鉄枠等の支持体
に入れ強度不足を補っているのが現状である。
There are various types of building materials, such as a PC board, an ALC board, and a sound absorbing board. Recently, various ALC boards have been developed due to a demand for weight reduction, and the needs thereof have been increasing year by year. Therefore, when these latent hydraulic particles are used as an ALC plate, a large amount of these latent hydraulic particles can be expected. ALC (autoclaved light weight concret
e) Autoclaved lightweight cellular concrete, which is excellent in fire resistance, heat insulation and soundproofing, is widely used as a lightweight and durable building panel in houses and the like.
However, since the porosity is large, it is necessary to insert a reinforcing material such as a reinforcing bar in a place requiring strength such as a floor material. Recently, various sound absorbing plates have been developed in response to demands for noise, and their needs have been increasing year by year. Therefore, even when used as a sound absorbing plate, a large amount of these latent hydraulic particles can be expected. Normally, the sound absorbing plate having excellent sound absorbing properties has a large porosity, and thus has a low strength (for example, a compressive strength of 10 kg / cm 2 or less). Therefore, at present, it is put in a support such as an iron frame to compensate for insufficient strength.

【0007】[0007]

【発明が解決しようとする課題】本発明はこのような従
来の問題点を解決して、軽量で、かつ補強材あるいは支
持体なしでも高強度な軽量多層固化物を提供することを
目的としている。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned conventional problems and to provide a lightweight multi-layer solid product which is lightweight and has high strength without a reinforcing material or a support. .

【0008】[0008]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明の発明者は、種々検討の結果、潜在水硬性
粒子の表面にマトリックス中のトバモライトより細かい
トバモライトを含有する被覆膜が形成された固化物は、
高い強度を示し、強度のばらつきも小さいことを見いだ
した。さらに、この高強度固化物と、この固化物に気孔
を導入した軽量固化物とを一体化した軽量多層固化物は
軽量で補強材なしでも高強度であり、そのばらつきも小
さいことを見いだした。その概要は、潜在水硬性粒子と
トバモライトから構成されている軽量多層固化物であっ
て、各層とも潜在水硬性粒子の表面に形成される第1の
トバモライトを含有する被覆膜と、潜在水硬性粒子間に
形成される第2のトバモライトとを含有し、各潜在水硬
性粒子が前記被覆膜を介して接合し、前記第1のトバモ
ライトが前記第2のトバモライトに比較し微細であり、
気孔の断面占有比率の異なる層を有することを特徴とす
るものである。そして、前記被覆膜の厚さが0.05μ
m以上であること、固化物の気孔の断面占有比率が20
%以下である層と、固化物の気孔の断面占有比率が30
〜95%である層からなること、さらに、潜在水硬性粒
子の断面占有比率が、気孔を除いた固化物の断面積の6
0〜10%であることを好ましい実施態様とするもので
ある。
Means for Solving the Problems In order to solve the above-mentioned problems, the inventors of the present invention have made various studies and found that a coating film containing tobermorite finer than tobermorite in a matrix on the surface of latent hydraulic particles was obtained. Is formed,
It showed high strength and small variation in strength. Furthermore, it has been found that a lightweight multilayer solidified product obtained by integrating the high-strength solidified product with a light-weight solidified product obtained by introducing pores into the solidified product is lightweight, has high strength without a reinforcing material, and has a small variation. The outline is a lightweight multi-layer solidified product composed of latent hydraulic particles and tobermorite, each layer containing a first tobermorite-containing coating film formed on the surface of the latent hydraulic particles, and a latent hydraulic material. A second tobermorite formed between the particles, wherein each latent hydraulic particle is bonded via the coating film, and the first tobermorite is finer than the second tobermorite,
It is characterized by having layers having different cross-sectional occupation ratios of pores. And, the thickness of the coating film is 0.05μ.
m or more, and the cross-sectional occupation ratio of pores of the solidified product is 20
% Or less and the cross-sectional occupation ratio of pores of the solidified material is 30%.
9595%, and the sectional occupation ratio of the latent hydraulic particles is 6% of the sectional area of the solidified matter excluding the pores.
A preferred embodiment is 0 to 10%.

【0009】前記固化物の研磨断面に認められる気孔に
は、直径0.1mm以上の球状の気孔(以下、第1の気
孔という。)と、直径0.1mm未満の気孔(BET法
で測定される微細気孔も含む。)(以下、第2の気孔と
いう。)とが有る。潜在水硬性粒子の断面占有比率を求
める際の気孔、気孔の断面占有比率を求める際の気孔、
及び連通気孔と独立気孔の判定は、前記第1の気孔を採
用した。また、気孔率の測定は、JIS R 2205
の測定方法(煮沸法)にしたがって、開気孔と閉気孔
とを含む全気孔率を測定した。この全気孔率は、第1の
気孔及び第2の気孔を対象とする。なお、連通気孔と
は、気孔同士が連通状態になっている気孔を意味し、独
立気孔とは、気孔同士が連通状態になっていない気孔を
意味する。また、気孔及び潜在水硬性粒子の断面占有比
率の測定は固化物の研磨断面にて行う。また、第1のト
バモライトは、繊維状又はシート状(シート状のものが
巻かれているものも含む)の形態をし、その長さは0.
5μm未満、厚さは数十オングストローム以下である。
一方、マトリックス中に主に形成される第2のトバモラ
イトは、花びら状、針状の形態をし、その長さは1μm
以上、厚さは500オングストローム以上である。
[0009] The pores observed in the polished cross section of the solidified product include spherical pores having a diameter of 0.1 mm or more (hereinafter referred to as first pores) and pores having a diameter of less than 0.1 mm (measured by the BET method). (Hereinafter, referred to as second pores). Pores when calculating the sectional occupancy of latent hydraulic particles, pores when calculating the sectional occupancy of pores,
In addition, the determination of the continuous air hole and the independent air hole employed the first air hole. The porosity is measured according to JIS R 2205.
The total porosity including the open pores and the closed pores was measured according to the measurement method (boiling method). The total porosity covers the first porosity and the second porosity. In addition, the communicating vent means a pore in which the pores are in a communicating state, and the independent pore means a pore in which the pores are not in a communicating state. The measurement of the cross-sectional occupancy ratio of the pores and the latent hydraulic particles is performed on the polished cross section of the solidified material. The first tobermorite has a fibrous or sheet-like shape (including a wound sheet-like shape), and has a length of 0.1 mm.
The thickness is less than 5 μm and the thickness is tens of angstroms or less.
On the other hand, the second tobermorite mainly formed in the matrix is in the form of petals or needles, and has a length of 1 μm.
As described above, the thickness is 500 Å or more.

【0010】[0010]

【作用】石炭灰、高炉スラグ、シラス等の平均粒径10
〜30μmの潜在水硬性粒子、水酸化カルシウム、及び
水とを混合し、その混合物を型枠に流し込み、その上
に、上記の潜在水硬性粒子、水酸化カルシウム、起泡剤
よりなる混合物を流し込む。これを相対湿度90%以上
で60〜70℃の温度で4日間以上養生し、その後、1
80℃で2日間以上オートクレーブ養生することにより
軽量で補強材や支持体なしでも高強度で強度ばらつきの
小さい軽量多層固化物が得られる。
[Function] Average particle size of coal ash, blast furnace slag, shirasu, etc. 10
潜在 30 μm of latent hydraulic particles, calcium hydroxide, and water are mixed, and the mixture is poured into a mold. On top of that, a mixture of the above-described latent hydraulic particles, calcium hydroxide, and a foaming agent is poured. . This is cured at a relative humidity of 90% or more at a temperature of 60 to 70 ° C. for 4 days or more.
By autoclaving at 80 ° C. for 2 days or more, a lightweight multi-layer solidified product having a high strength and a small variation in strength can be obtained without a reinforcing material or a support, even if the autoclave is cured.

【0011】このメカニズムは定かではないが次のよう
に考えられる。平均粒径10〜30μmの潜在水硬性粒
子、水酸化カルシウム、及び水とを混合し、型枠に流し
込んだ状態では、原料成分の各微粒子が互いに分散した
状態を呈しており、この上に上記の潜在水硬性粒子、水
酸化カルシウム、起泡剤、及び水とを混合し、型枠に流
し込むと、この上層の状態は、起泡剤による巻き込み気
泡が起泡剤自身により安定化され、気泡同士が合体せず
に、気泡および原料成分が混合物中に均一に分散されて
いる。この混合物を相対湿度90%以上の湿潤状態で6
0〜70℃の温度で長時間養生すると、上、下層とも潜
在水硬性粒子中のSiO2 成分と水酸化カルシウムと水
とが反応して、C−S−Hゲルが生成する。また、上層
の巻き込み気泡は、この養生により気孔となる。従っ
て、湿潤養生後では、上層は巻き込み気孔が分散した多
孔質となり、下層は緻密となり、上、下層とも水を含ん
だ柔らかい構造体となる。上、下層ともこの構造体中の
潜在水硬性粒子の外周表面には被覆膜が形成され、この
被覆膜は、潜在水硬性粒子と水酸化カルシウムの反応に
より生成する非晶質のC−S−Hゲルで構成されている
と考えられる。その後、高温で長時間オートクレーブ養
生することにより、上、下層とも潜在水硬性粒子の外周
に繊維状又はシート状の第1のトバモライトを主とする
被覆膜が形成される。これは、被覆膜のC−S−Hゲル
が結晶質の第1のトバモライト(5CaO・6SiO2
・5H2 O)に変化するものと考えられる。なお、オー
トクレーブ養生の際、試料は水中に浸漬しない。
Although this mechanism is not clear, it is considered as follows. In a state where the latent hydraulic particles having an average particle diameter of 10 to 30 μm, calcium hydroxide, and water are mixed and poured into a mold, the fine particles of the raw material components are in a state of being dispersed with each other. When the latent hydraulic particles, calcium hydroxide, a foaming agent, and water are mixed and poured into a mold, the state of the upper layer is stabilized by the foaming agent itself, and the bubbles trapped by the foaming agent are stabilized. The bubbles and the raw material components are uniformly dispersed in the mixture without being united with each other. This mixture is dried at a relative humidity of 90% or more for 6 hours.
When cured at a temperature of 0 to 70 ° C. for a long time, the upper and lower layers react with the SiO 2 component in the latent hydraulic particles, calcium hydroxide, and water to form a CSH gel. Also, the entrained bubbles in the upper layer become pores due to this curing. Therefore, after wet curing, the upper layer becomes porous with entrained pores dispersed therein, the lower layer becomes dense, and both the upper and lower layers become a soft structure containing water. In both the upper and lower layers, a coating film is formed on the outer peripheral surface of the latent hydraulic particles in this structure, and this coating film is formed of amorphous C- formed by the reaction between the latent hydraulic particles and calcium hydroxide. It is considered to be composed of SH gel. Thereafter, by performing autoclave curing at a high temperature for a long time, a fibrous or sheet-like coating film mainly composed of the first tobermorite is formed on the outer periphery of the latent hydraulic particles in both the upper and lower layers. This is because the C—S—H gel of the coating film is a crystalline first tobermorite (5CaO · 6SiO 2).
・ 5H 2 O). The sample is not immersed in water during autoclave curing.

【0012】従来、セメントを用いたALC、吸音材で
は、オートクレーブ養生前の前養生は実施されている
が、骨材としてケイ砂を使用し、養生温度は30〜40
℃と低く、養生時間も3時間以下と短い。これは、単に
アルミニウム等の発泡剤を発泡し、セメントを固化する
ためであり、オートクレーブ養生後には、ケイ砂の外周
に第1のトバモライトを主とする被覆膜は、ほとんど形
成されない。
Conventionally, for ALC and sound absorbing materials using cement, pre-curing before autoclave curing has been carried out, but silica sand is used as an aggregate and the curing temperature is 30 to 40.
° C and the curing time is as short as 3 hours or less. This is simply to foam a foaming agent such as aluminum to solidify the cement. After the autoclave curing, a coating film mainly composed of the first tobermorite is hardly formed on the outer periphery of the silica sand.

【0013】また、オートクレーブ養生により潜在水硬
性粒子と水酸化カルシウムより直接トバモライトも生成
されるが、このトバモライトは主に花びら状、針状の第
2のトバモライト(結晶質)となりマトリックスを形成
すると考えられる。なお、上、下層の界面については湿
潤養生後には一体化され、オートクレーブ養生後には界
面での相互反応により、上、下層が強固に接合し、クラ
ック等の発生は認められない。圧着、接着等で接合した
界面より高強度となる。その結果、各潜在水硬性粒子が
前記被覆膜を介して互いに接合し、各潜在水硬性粒子が
互いに強固に固着し、マトリックスとも強固に固着した
状態となった高強度固化物層と、潜在水硬性粒子が上記
強度固化物層と同様な状態となりマトリックス中に多数
の気孔が分散した軽量固化物層とが強固に一体化された
構造となって、軽量で補強材無しでも高強度であり、そ
のばらつきも小さい固化物を得ることができる。
[0013] In addition, tobermorite is also directly produced from latent hydraulic particles and calcium hydroxide by autoclaving, and this tobermorite is considered to be mainly a petal-like or needle-like second tobermorite (crystalline) to form a matrix. Can be The interface between the upper and lower layers is integrated after wet curing, and after the curing in the autoclave, the upper and lower layers are firmly joined due to mutual reaction at the interface, and no cracks or the like are observed. Higher strength than interface bonded by crimping, bonding, etc. As a result, each of the latent hydraulic particles is bonded to each other via the coating film, each of the latent hydraulic particles is firmly fixed to each other, and the high-strength solidified material layer is firmly fixed to the matrix, Hydraulic particles are in the same state as the above-mentioned strength solidified layer and have a structure in which a lightweight solidified layer in which a large number of pores are dispersed in a matrix is strongly integrated, and is lightweight and has high strength even without a reinforcing material. Thus, a solidified product having a small variation can be obtained.

【0014】また、この固化物はセメントが少ないため
固化物にセメントクリンカーに含まれるエーライト(3
CaO・SiO2 )及びビーライト(2CaO・SiO
2 )等のケイ酸カルシウムが残存することはなく、ま
た、高温で長時間オートクレーブ養生するためC−S−
Hゲルの残存も少ない。このため水に対する寸法安定性
も優れている。なお、X線回折及び熱重量分析(TG)
よりトバモライトとC−S−Hゲルの量比を測定する
と、トバモライトは重量比で7割以上であることが確認
された。なお、本発明の固化物ではハイドロガーネッ
ト、ゾノトライトは認められない。
[0014] Further, since this solidified product has a low cement content, the solidified product contains alite (3) contained in cement clinker.
CaO.SiO 2 ) and belite (2CaO.SiO)
2 ) No calcium silicate remains, and C-S-
H gel remains little. Therefore, the dimensional stability against water is also excellent. X-ray diffraction and thermogravimetric analysis (TG)
When the amount ratio of tobermorite and C—S—H gel was measured, it was confirmed that the weight ratio of tobermorite was 70% or more. In the solidified product of the present invention, hydrogarnet and zonotolite are not recognized.

【0015】また、軽量固化物の気孔の断面占有比率
が、20%以下である層と、30〜95%である層とか
らなることが好ましい。20%以下の層がない固化物の
場合には充分な強度が得られなく、30〜95%である
層がない場合には軽量化が図られないためである。な
お、95%を越えた場合には軽量化されるものの形を保
つことが難しくなる。なお、気孔には、連通気孔と独立
気孔の2種類がある。ALCとして用いる場合、気孔の
断面占有比率の高い層は独立気孔とするのが好ましく、
吸音材及び透水板等の通気性、透水性が必要な場合、気
孔の断面占有比率の高い層は連通気孔とするのが好まし
い。ALC等の軽量パネルとして用いる場合には、気孔
の断面占有比率の高い層の気孔の断面占有比率は強度の
点から30〜70%であることがより好ましい。また、
吸音板として用いる場合には、気孔の断面占有比率の高
い層の気孔の断面占有比率は吸音特性の点から50〜9
0%であることがより好ましく、連通気孔の直径が研磨
断面で平均100〜2000μmであることが好まし
く、また、連通孔(気孔同士を連通させる空隙)の大き
さが平均30〜500μmであることが好ましい。独立
気孔を形成する場合、起泡剤として高級アルコール硫酸
ナトリウムを用い、混練機によって潜在水硬性粒子、水
酸化カルシウム、起泡剤、水を300rpmの回転で5
分間の高速混練をする。その後、型に流し込み、湿潤状
態で60〜70℃の温度で養生する。養生後、この特定
の起泡剤の作用により気孔は独立気孔になる。連通気孔
を形成する場合、起泡剤としてアルキルアリルエーテル
のアンモニウム塩を用い、混練機によって潜在水硬性粒
子、水酸化カルシウム、起泡剤、水を300rpmの回
転で5分間の高速混練をする。その後、型に流し込み、
湿潤状態で60〜70℃の温度で養生する。養生後の固
化物は、この特定の起泡剤の作用により気孔は連通状態
になる。この理由は定かではないが、この起泡剤では巻
き込み気泡量の多いこと及びアンモニウム塩であるため
水酸化カルシウム等のアルカリ下で50〜60℃の低温
で分解しやすく、この分解ガス(アンモニア)が発生す
ることが連通気孔生成に関係していると考えられる。
It is preferable that the light-weight solidified material comprises a layer having a pore occupation ratio of 20% or less and a layer having a pore occupancy of 30% to 95%. This is because when the solidified material has no layer of 20% or less, sufficient strength cannot be obtained, and when there is no layer of 30% to 95%, the weight cannot be reduced. If it exceeds 95%, it will be difficult to keep the shape of the weight-reduced one. Note that there are two types of pores: continuous vents and independent pores. When used as an ALC, it is preferable that a layer having a high pore occupation ratio in cross section be an independent pore,
When air permeability and water permeability such as a sound absorbing material and a water permeable plate are required, it is preferable that a layer having a high pore occupancy ratio be a continuous air hole. When used as a lightweight panel such as ALC, it is more preferable that the layer having a high pore occupancy ratio in cross section be 30 to 70% in terms of strength. Also,
When used as a sound absorbing plate, the cross-sectional occupancy of pores in a layer having a high occupied cross-sectional occupancy is 50 to 9 in view of sound absorption characteristics.
It is more preferably 0%, the diameter of the communicating hole is preferably 100 to 2000 μm on average in the polished cross section, and the size of the communicating hole (gap connecting the pores) is 30 to 500 μm on average. Is preferred. When forming closed pores, higher alcohol sodium sulfate is used as a foaming agent, and latent hydraulic particles, calcium hydroxide, a foaming agent, and water are rotated by a kneader at 300 rpm for 5 minutes.
Mix at high speed for a minute. Thereafter, the mixture is poured into a mold and cured at a temperature of 60 to 70 ° C. in a wet state. After curing, the pores become closed pores by the action of this particular foaming agent. In the case of forming the continuous air holes, an ammonium salt of an alkyl allyl ether is used as a foaming agent, and high-speed kneading of latent hydraulic particles, calcium hydroxide, a foaming agent, and water is performed at 300 rpm for 5 minutes by a kneader. Then pour into the mold,
Cure at a temperature of 60-70 ° C in a wet state. The pores of the solidified product after curing are brought into communication by the action of the specific foaming agent. Although the reason is not clear, this foaming agent has a large amount of entrained air bubbles and is an ammonium salt, so that it is easily decomposed at a low temperature of 50 to 60 ° C. under an alkali such as calcium hydroxide. Is considered to be related to the formation of continuous pores.

【0016】なお、混練時に起泡剤とともに、金属アル
ミニウム粉末等の発泡剤を添加することが独立気孔の形
成に際しても、連通気孔の形成に際しても好ましい。こ
れは、発泡剤添加により、湿潤養生でガス(金属アルミ
ニウム粉末の場合、水素)が発生し、このため固化物の
気孔径及び気孔率が増大し、より軽量化が達成されるた
めである。これらの起泡剤は、発泡剤により発生する気
泡も安定化し、気泡同士の合体を起こりにくくするとと
もに、アルキルアリルエーテルのアンモニウム塩を用い
た場合は湿潤養生で発泡剤により発生する気泡が形成す
る気孔も連通化し、一方、高級アルコール硫酸ナトリウ
ムを用いた場合は湿潤養生で発泡剤により発生する気泡
が形成する気孔を連通化しないため、発泡剤との併用が
好ましい。また、混合物の水分量は、気孔の断面占有比
率の高い層では固形分に対して50〜70重量%にする
必要がある。50重量%未満では発泡及び気泡巻き込み
がうまくいかず、70重量%を越えると潜在水硬性粒子
の沈降が起きるためである。また、気孔の断面占有比率
の低い層では高強度化のため固形分に対して35重量%
以下ににする必要がある。
In addition, it is preferable to add a foaming agent such as metallic aluminum powder together with the foaming agent at the time of kneading when forming the independent pores and when forming the continuous pores. This is because the addition of a foaming agent generates gas (hydrogen in the case of metallic aluminum powder) during wet curing, which increases the pore diameter and porosity of the solidified product, and achieves a lighter weight. These foaming agents also stabilize the bubbles generated by the foaming agent and make it difficult for the bubbles to coalesce. In addition, when an ammonium salt of an alkyl allyl ether is used, the bubbles generated by the foaming agent are formed by wet curing. The pores are also connected. On the other hand, when higher alcohol sodium sulfate is used, the pores formed by bubbles generated by the foaming agent during wet curing are not communicated with each other. In addition, the water content of the mixture needs to be 50 to 70% by weight with respect to the solid content in a layer having a high pore occupation ratio in cross section. If the amount is less than 50% by weight, foaming and entrainment of bubbles are not successful, and if it exceeds 70% by weight, sedimentation of latent hydraulic particles occurs. In the layer having a low pore occupation ratio, 35% by weight based on the solid content for enhancing strength.
You need to:

【0017】また、潜在水硬性粒子の断面占有比率が、
気孔を除いた固化物の60〜10%であることが好まし
い。より好ましくは50〜30%である。この範囲外で
は固化物の強度が低下するからである。その理由は、潜
在水硬性粒子の断面占有比率が60%を越える場合、ト
バモライトの生成が少なくなり、固化しにくくなるた
め、また、潜在水硬性粒子の断面占有比率が10%未満
である場合、潜在水硬性粒子の骨材としての役割を充分
はたさないためと考えられる。この断面占有比率を60
〜10%とするには、潜在水硬性粒子と水酸化カルシウ
ムの混合比を重量比で8:2〜4:6とし、湿潤養生時
間を4日間以上、オートクレーブ養生時間を2日間以上
とした。
The sectional occupation ratio of the latent hydraulic particles is
It is preferably 60 to 10% of the solidified matter excluding the pores. More preferably, it is 50 to 30%. If the content is outside this range, the strength of the solidified product decreases. The reason is that when the cross-sectional occupation ratio of the latent hydraulic particles exceeds 60%, the generation of tobermorite decreases and the solidification becomes difficult, and when the cross-sectional occupation ratio of the latent hydraulic particles is less than 10%, This is probably because the latent hydraulic particles do not sufficiently serve as aggregates. This section occupancy ratio is 60
In order to make it 10% to 10%, the mixing ratio of latent hydraulic particles and calcium hydroxide was set to 8: 2 to 4: 6 by weight, the wet curing time was set to 4 days or more, and the autoclave curing time was set to 2 days or more.

【0018】したがって、得られる潜在水硬性粒子を含
有する固化物は、多数の気孔を内在する層をもつにもか
かわらず、高強度で、強度のばらつきも小さいものとな
り、たとえば絶乾比重が1.0以下の軽量なものとな
る。また、連通気孔を有するものでは、吸音特性も良好
なため、吸音材としての適用が可能となり、また、水に
対する寸法安定性、透水性、耐磨耗性が良好であるた
め、透水歩道板等の透水板としての使用も可能である。
また、本発明の固化物は耐火性、耐久性も良好である。
このため、本発明の潜在水硬性粒子を含有する軽量多層
固化物は、広い分野で大量に利用することができるとと
もに、当該潜在水硬性粒子を含有する軽量多層固化物の
原料中の潜在水硬性粒子の混合比が高いことから、潜在
水硬性粒子の大量利用が可能となる。
Therefore, the obtained solidified product containing latent hydraulic particles has a high strength and a small variation in strength, despite having a layer having a large number of pores therein. 0.0 or less. In addition, those having continuous vent holes have good sound absorbing properties, so that they can be used as a sound absorbing material. In addition, since they have good dimensional stability to water, water permeability, and abrasion resistance, they have a water-permeable sidewalk board, etc. Can also be used as a water permeable plate.
Further, the solidified product of the present invention has good fire resistance and durability.
For this reason, the lightweight multi-layered solid containing the latent hydraulic particles of the present invention can be used in large quantities in a wide range of fields, and the latent hydraulicity in the raw material of the lightweight multi-layered solid containing the latent hydraulic particles is large. Since the mixing ratio of the particles is high, a large amount of latent hydraulic particles can be used.

【0019】なお、潜在水硬性粒子、水酸化カルシウ
ム、起泡剤及び水とを混合し、吸音材(セメント使
用)、ALC並の低温で短時間の養生ではオートクレー
ブ養生後、第2のトバモライトがマトリックス中に形成
され、各潜在水硬性粒子を接合する第1のトバモライト
を含有する被覆膜が必要量形成されないため、各潜在水
硬性粒子が接合されず固化物の強度が向上しないものと
考えられる。ここで、潜在水硬性粒子が小さい場合には
反応により消失してしまい強度向上効果をもたらさなく
なる。又、逆に巨大な場合には欠陥として作用し強度低
下をもたらすため、平均粒径10〜30μmが必要であ
る。なお、石炭灰では、第1のトバモライトが粒子外周
に生成するように中実度の高い、嵩密度で1g/cm3
以上の粒子を用いる。なお、潜在水硬性粒子のかわりに
ケイ砂、ケイ石を用いた場合には、湿潤養生を実施した
ときC−S−Hゲルを主体とした被覆膜はほとんど生成
されない。カルシウム供給源として水酸化カルシウムが
強度向上の点で良好な結果をもたらした。これは、水酸
化カルシウムはセメント等と比較してSiO2 成分等を
含まないため、直接刺激剤として作用し、そのため高強
度化がもたらされたものと考えられる。酸化カルシウム
のみを用いた場合には湿潤養生において膨潤したため、
固化物にクラックが発生した。なお、湿潤養生において
潜在水硬性粒子の沈降する場合には、ポルトランドセメ
ントを少量(水酸化カルシウム重量の2割以下)添加す
るとよい。なお、潜在水硬性粒子としては強度面で石炭
灰が好ましい。中でもフライアッシュがより好ましい。
The latent torsion particles, calcium hydroxide, a foaming agent and water are mixed, and the second tobermorite is cured by autoclaving in a sound absorbing material (using cement) and curing at a low temperature in the same short period as ALC. It is thought that the required amount of the first tobermorite-containing coating film formed in the matrix and joining each latent hydraulic particle is not formed, so that the latent hydraulic particles are not joined and the strength of the solidified product is not improved. Can be Here, when the latent hydraulic particles are small, they are lost by the reaction, and the effect of improving the strength is not brought about. On the other hand, when it is huge, it acts as a defect and lowers the strength. Therefore, an average particle size of 10 to 30 μm is required. In the coal ash, the bulk density is 1 g / cm 3 with high solidity so that the first tobermorite is generated around the particle.
The above particles are used. When silica sand or silica stone is used instead of the latent hydraulic particles, a coating film mainly composed of CSH gel is hardly formed when wet curing is performed. Calcium hydroxide as a calcium source gave good results in terms of strength enhancement. This is presumably because calcium hydroxide does not contain an SiO 2 component or the like as compared with cement or the like, and thus acts directly as a stimulant, and as a result, high strength has been brought about. When only calcium oxide was used, it swelled in wet curing,
Cracks occurred in the solidified material. In the case where the latent hydraulic particles settle during wet curing, a small amount of Portland cement (20% or less of the weight of calcium hydroxide) may be added. As the latent hydraulic particles, coal ash is preferable in terms of strength. Among them, fly ash is more preferred.

【0020】また、強度向上の点で前記第1のトバモラ
イトの被覆膜の厚さが、好ましくは0.05μm以上、
より好ましくは0.1μm以上である。湿潤養生時間を
60℃〜70℃で4日間以上とすることにより、0.0
5μm以上の第1のトバモライトの被覆膜を得ることが
できた。これは養生としては比較的高い温度で長時間湿
潤養生することによりC−S−Hゲルが潜在水硬性粒子
の外周表面に多く生成し、これがオートクレーブ養生に
よりトバモライトに変化したものと考えられる。80℃
以上では気孔が巨大になり固化物の強度が低下した。
In order to improve strength, the thickness of the first tobermorite coating film is preferably 0.05 μm or more,
It is more preferably at least 0.1 μm. By setting the wet curing time at 60 ° C to 70 ° C for 4 days or more, 0.0
A first tobermorite coating film of 5 μm or more could be obtained. This is presumably due to the fact that a large amount of CSH gel was formed on the outer peripheral surface of the latent hydraulic particles by humid curing at a relatively high temperature for a long time, and this was changed to tobermorite by the autoclave curing. 80 ℃
Above, the pores became huge and the strength of the solidified product decreased.

【0021】軽量多層固化物の気孔形態が2層の場合に
ついて上述したが、3層以上の多層も可能である。軽量
多層固化物の形態としては、気孔の断面占有比率が、主
に次の4つの型に分けられる。 2面間の気孔の断面
占有比率が、低→高 と変化する型、 2面間の気孔
の断面占有比率が、低→高→低 と変化する型、2面
間の気孔の断面占有比率が、高→低→高 と変化する
型、 上記の混合型。いずれの場合でも各泥漿
の流し込み時間は2時間以内にしたほうが強度の面で好
ましい。また、強度及び吸水率の面から考えると外面
(型枠の底面あるいは上面)部分を流し込む泥漿は、起
泡剤、発泡剤を添加しないほうが望ましい。気孔の断面
占有比率の分布は、連続的に変化したほうが強度の面で
好ましいため、各泥漿の起泡剤、発泡剤の量は連続的に
変化するように調整したほうがよい。また、石炭灰とカ
ルシウム化合物の配合比も変える場合には連続的に変化
したほうが強度の面で好ましい。上記は寸法安定性及
び強度がやや他より劣るため、屋外での使用は好ましく
ない。
As described above, the light-weight multi-layer solidified product has two pores, but three or more multi-layers are also possible. As a form of the lightweight multilayer solidified product, the cross-sectional occupation ratio of pores is mainly classified into the following four types. The type in which the cross-sectional occupancy ratio of the pores between the two surfaces changes from low to high, the type in which the cross-sectional occupancy ratio of the pores between the two surfaces changes from low to high to low, A type that changes from high to low to high, and a mixed type as described above. In any case, it is preferable from the viewpoint of strength that the time for pouring each slurry be within 2 hours. Further, from the viewpoint of strength and water absorption, it is preferable that the foam flowing into the outer surface (the bottom surface or the upper surface of the mold) is not added with a foaming agent or a foaming agent. Since it is preferable in terms of strength that the distribution of the cross-sectional occupancy ratio of the pores changes continuously, it is better to adjust the amounts of the foaming agent and the foaming agent in each slurry so as to change continuously. When the mixing ratio of the coal ash and the calcium compound is also changed, it is preferable that the mixing ratio be changed continuously in terms of strength. Since the above is slightly inferior in dimensional stability and strength, use outdoors is not preferable.

【0022】[0022]

【実施例】次に、本発明を潜在水硬性粒子として主に石
炭灰を用いた実施例に基づき説明する。用いられる石炭
灰としては、一般に発生する微粉炭石炭灰のみならず、
常圧ないし加圧流動床燃焼発電システムより発生する石
炭灰を使用してもよい。
Next, the present invention will be described based on an example in which coal ash is mainly used as latent hydraulic particles. As coal ash used, not only pulverized coal ash generally generated,
Coal ash generated from a normal pressure or pressurized fluidized bed combustion power generation system may be used.

【0023】石炭灰、水酸化カルシウム、金属アルミニ
ウム粉末、起泡剤及び水とを混練機で混合する際には、
バインダー、減水剤、保水剤、防水剤、流動化剤、収縮
低減剤等の混和剤を添加してもよく、また固化物の強度
の向上、比重の調整、コストの低減などのために、パー
ライト、ALCの屑、ガラス繊維(好ましくは耐アルカ
リ性ガラス繊維)、合成繊維(ビニロン、ナイロン)、
パルプ等を添加することもできる。なお、起泡剤はプレ
フォーム法で用いてもよい。
When mixing coal ash, calcium hydroxide, metal aluminum powder, a foaming agent and water with a kneader,
Additives such as binders, water reducing agents, water retention agents, waterproofing agents, fluidizing agents, shrinkage reducing agents, etc. may be added, and pearlite may be used to improve the strength of the solidified material, adjust the specific gravity, reduce costs, etc. , ALC waste, glass fiber (preferably alkali-resistant glass fiber), synthetic fiber (vinylon, nylon),
Pulp and the like can also be added. The foaming agent may be used in a preform method.

【0024】このように調製された原料を使用して、流
し込み成形方法により所定の形状に成形する。この際、
振動を加えた状態で行うと好ましい。また、型枠に鉄筋
等の補強材をいれた状態で成形することも可能である。
Using the raw material thus prepared, it is formed into a predetermined shape by a casting method. On this occasion,
It is preferable to perform the operation in a state where vibration is applied. Further, it is also possible to form a mold with a reinforcing material such as a reinforcing bar inserted therein.

【0025】(実施例1〜9)嵩密度が1g/cm3
上で平均粒径10〜30μmの石炭灰(フライアッシ
ュ)(実施例1〜8)及び高炉スラグ(実施例9)を使
用するとともに、平均粒径10μmの水酸化カルシウム
を使用し、これらを重量比で8:2〜4:6で混合する
とともに、20〜60重量%の水と、起泡剤を添加して
混練機で混合し、各種の石炭灰質原料を調製し、流し込
み成形した。ここで、混練機はスパイラルミキサを用
い、300rpmの回転数で5分間混練した。また、金
属アルミニウム粉末は平均粒径50μm以下のものを用
い、石炭灰質原料の固形分に対して0.0〜0.3重量
%添加した。起泡剤はアルキルアリルエーテルのアンモ
ニウム塩(商品名:第一工業製薬製ハイテノール)、高
級アルコール硫酸ナトリウム(商品名:花王製エマー
ル)を用い、石炭灰質原料の固形分に対して0.0〜
0.1重量%添加した。なお、水酸化カルシウムの重量
の20%のポルトランドセメントを添加した。この異な
る種類の混合物を型枠(底面90×150mm)に流し
込んで2層とし、60〜70℃、4〜7日間湿潤状態
(相対湿度95%)で養生を行い、円板状の固化物素地
(90×90×150mm、各層の厚さ45mm)を得
た。このようにして得た固化物素地を180℃の温度条
件で2〜7日間オ─トクレ─ブ養生を行った。なお、前
記嵩密度の測定はJIS Z 2504の測定方法に準
拠した。
(Examples 1 to 9) Coal ash (fly ash) having a bulk density of 1 g / cm 3 or more and an average particle size of 10 to 30 μm (Examples 1 to 8) and blast furnace slag (Example 9) are used. At the same time, calcium hydroxide having an average particle size of 10 μm is used, these are mixed in a weight ratio of 8: 2 to 4: 6, and 20 to 60% by weight of water and a foaming agent are added to the mixture to form a kneader. After mixing, various coal ash raw materials were prepared and cast. Here, the kneading machine used a spiral mixer, and kneaded at 300 rpm for 5 minutes. The metal aluminum powder used had an average particle size of 50 μm or less, and was added in an amount of 0.0 to 0.3% by weight based on the solid content of the coal ash raw material. The foaming agent used was an ammonium salt of an alkyl allyl ether (trade name: Hytenol manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), and a higher alcohol sodium sulfate (trade name: Emal manufactured by Kao). ~
0.1% by weight was added. In addition, Portland cement of 20% of the weight of calcium hydroxide was added. The different types of mixtures are poured into a mold (bottom 90 × 150 mm) to form two layers, which are cured at 60 to 70 ° C. for 4 to 7 days in a wet state (relative humidity 95%) to obtain a disc-shaped solidified base. (90 × 90 × 150 mm, thickness of each layer 45 mm). The solidified body thus obtained was subjected to autoclave curing at a temperature of 180 ° C. for 2 to 7 days. The measurement of the bulk density was based on the measurement method of JIS Z2504.

【0026】こうして得られた固化物についてその外
観、各層の気孔状態、潜在水硬性粒子の状態及び被覆膜
の状態を観察するとともに,固化物の圧縮強度及び吸音
率を測定して,これらの結果を表1に示す。また、得ら
れた固化物について二層の界面状態を観察するため、研
磨した試料を反射型顕微鏡で観察した。この結果を図3
に示す。界面はマイクロクラック等の欠陥はなく強固に
固着していることが認められる。なお、この写真は独立
気孔を形成しているものである。なお、連通気孔を形成
しているものについては、連通気孔の直径は平均100
〜2000μmであり、連通孔の大きさは平均30〜5
00μmである。なお、研磨面の観察では、直径0.1
mm以上の気孔のうち60%以上、また直径1mm以上
の気孔では80%以上連通気孔がである。また、独立気
孔を形成しているものについても同様であり、直径0.
1mm以上の気孔のうち60%以上、また直径1mm以
上の気孔では80%以上が独立気孔である。また、得ら
れた固化物のX線回折分析を行った。そのチャートを図
4に示す。トバモライトの他石炭灰粒子に含まれるα−
石英とムライトのピークが認められる。さらに石炭灰粒
子の表面に形成されている被覆層の走査型電子顕微鏡写
真、透過型電子顕微鏡写真撮影を行った。それらを図1
〜2に示す。図2では微細トバモライトの被覆膜は微細
なため明確には認められないが、図1のように拡大する
と明確に認められる。なお、比較例1のものは、このよ
うな微細トバモライトの被覆膜は認められない。なお、
固化物の外観の観察では固化物における亀裂などの損傷
の有無,形態保持性の強弱を判定し,良好なものを○
印,不良なものを×印で表示している。また,圧縮強度
の測定については,JIS A 1108 に従った。
即ち、試料の上下面に直径50mmの金属板をのせ、各
層に平行に圧力をかける方法で、オートグラフを用いこ
れに圧力をかけ、10個の試料の平均を圧縮強度とし、
その標準偏差をばらつきとした。吸音率はJIS A
1405 に従い、厚さ5mm、空気層なし、周波数5
00Hzで垂直入射吸音率を測定した。以上潜在水硬性
粒子として、石炭灰粒子、高炉スラグを用いた実施例に
ついて説明したが、本発明は、これに限るものではな
く、けい酸白土、火山灰、けい藻土等の潜在水硬性粒子
を用いても構わない。
With respect to the solidified product thus obtained, the appearance, the pore state of each layer, the state of latent hydraulic particles and the state of the coating film were observed, and the compressive strength and sound absorption of the solidified product were measured. Table 1 shows the results. The polished sample was observed with a reflection microscope in order to observe the two-layer interface state of the obtained solidified product. This result is shown in FIG.
Shown in It is recognized that the interface is firmly fixed without defects such as microcracks. This photograph shows the formation of independent pores. In addition, the diameter of the continuous ventilation hole is 100 average for those having the continuous ventilation hole.
2,000 μm, and the average size of the communication holes is 30-5
00 μm. In addition, in observation of the polished surface, a diameter of 0.1
60% or more of the pores having a diameter of 1 mm or more, and 80% or more of the pores having a diameter of 1 mm or more have continuous air holes. The same applies to the case where independent pores are formed.
60% or more of the pores having a diameter of 1 mm or more, and 80% or more of the pores having a diameter of 1 mm or more are independent pores. Further, X-ray diffraction analysis of the obtained solidified product was performed. The chart is shown in FIG. Α- contained in coal ash particles in addition to tobermorite
Quartz and mullite peaks are observed. Further, a scanning electron micrograph and a transmission electron micrograph of the coating layer formed on the surface of the coal ash particles were taken. Figure 1
~ 2. In FIG. 2, the coating film of fine tobermorite is so fine that it is not clearly recognized, but is clearly recognized when it is enlarged as in FIG. In the case of Comparative Example 1, such a coating film of fine tobermorite was not observed. In addition,
By observing the appearance of the solidified product, the presence or absence of damage such as cracks in the solidified product and the strength of the shape retention were judged.
Marks and defective ones are indicated by crosses. The measurement of the compressive strength was in accordance with JIS A 1108.
That is, a metal plate having a diameter of 50 mm is placed on the upper and lower surfaces of the sample, and pressure is applied to the layers in parallel using an autograph.
The standard deviation was defined as the variation. Sound absorption coefficient is JIS A
According to 1405, thickness 5mm, no air layer, frequency 5
The normal incidence sound absorption coefficient was measured at 00 Hz. As described above, the examples using the coal ash particles and the blast furnace slag as the latent hydraulic particles have been described, but the present invention is not limited thereto, and the latent hydraulic particles such as silicate clay, volcanic ash, and diatomaceous earth are used. You may use it.

【0027】(比較例1〜2)比較例1は石炭灰を用い
て実施例と同様に流し込み成形(2層形成)まで実施
し、40℃3時間湿潤状態で養生し、その後180℃の
温度条件で2日間オートクレーブ養生を行った。また、
比較例2は実施例と同様に実施したものの、1層のみ流
し込みしたものである。なお、1層で90mmの厚さと
した。これらの結果を表1に示す。
(Comparative Examples 1 and 2) In Comparative Example 1, using coal ash, the same procedure as in the example was carried out until casting (forming two layers), curing in a wet state at 40 ° C. for 3 hours, and then at 180 ° C. Autoclave curing was performed under the conditions for 2 days. Also,
Comparative Example 2 was carried out in the same manner as in the example, except that only one layer was poured. One layer had a thickness of 90 mm. Table 1 shows the results.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【発明の効果】以上説明からも明らかなように、本発明
による軽量多層固化物は、潜在水硬性粒子の混合比率が
高く、気孔の断面占有比率の異なる層を有し、軽量で高
強度である。また、連通気孔を形成したものは吸音特性
及び透水性も良好である。従って、建材用パネル・ブロ
ック、吸音板、透水板等の建材等広い分野に適用できる
ため、従来から苦慮していた産業廃棄物である石炭灰、
高炉スラグ等潜在水硬性粒子を有効に大量利用が実現で
き、本発明の効果は極めて多大である。
As is clear from the above description, the light-weight multilayer solidified product according to the present invention has a high mixing ratio of latent hydraulic particles and layers having different cross-sectional occupation ratios of pores. is there. In addition, those having continuous air holes have good sound absorbing properties and water permeability. Therefore, it can be applied to a wide range of fields such as building materials such as building material panels and blocks, sound-absorbing boards, and water-permeable boards.
A large amount of latent hydraulic particles such as blast furnace slag can be effectively used, and the effect of the present invention is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 石炭灰粒子の表面に、微細トバモライトが形
成されている様子を示す透過型電子顕微鏡写真(×24
0000)
FIG. 1 is a transmission electron micrograph (× 24) showing a state in which fine tobermorite is formed on the surface of coal ash particles.
0000)

【図2】 本発明による固化物の破面の走査型電子顕微
鏡写真(×800)
FIG. 2 is a scanning electron micrograph (× 800) of a fracture surface of a solidified product according to the present invention.

【図3】 本発明による固化物の研磨断面の反射顕微鏡
写真(×15)
FIG. 3 is a reflection micrograph (× 15) of a polished cross section of a solidified product according to the present invention.

【図4】 本発明による固化物のX線回折チャートFIG. 4 is an X-ray diffraction chart of a solidified product according to the present invention.

フロントページの続き (51)Int.Cl.6 識別記号 FI C04B 40/02 C04B 40/02 //(C04B 28/18 18:08 18:14 20:10) 111:40 (56)参考文献 特開 昭56−73658(JP,A) 特開 昭49−20220(JP,A) 特開 平5−310454(JP,A) 特開 平8−208345(JP,A) 特開 平8−208350(JP,A) 特開 平7−315951(JP,A) 特開 平8−325073(JP,A) (58)調査した分野(Int.Cl.6,DB名) C04B 38/00 301 C04B 38/02 C04B 38/10Continuation of the front page (51) Int.Cl. 6 Identification code FI C04B 40/02 C04B 40/02 // (C04B 28/18 18:08 18:14 20:10) 111: 40 (56) References JP JP-A-56-73658 (JP, A) JP-A-49-20220 (JP, A) JP-A-5-310454 (JP, A) JP-A 8-208345 (JP, A) JP-A 8-208350 (JP, A) , A) JP-A-7-315951 (JP, A) JP-A-8-325073 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C04B 38/00 301 C04B 38/02 C04B 38/10

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 潜在水硬性粒子とトバモライトから構成
されている軽量多層固化物であって、潜在水硬性粒子の
表面に形成される第1のトバモライトを含有する被覆膜
と、潜在水硬性粒子間に形成される第2のトバモライト
とを含有し、各潜在水硬性粒子が前記被覆膜を介して接
合し、前記第1のトバモライトが前記第2のトバモライ
トに比較し微細であり、気孔の断面占有比率が異なる層
を有することを特徴とする潜在水硬性粒子を含有する軽
量多層固化物。
1. A light-weight multilayer solidified product composed of latent hydraulic particles and tobermorite, wherein a coating film containing a first tobermorite formed on the surface of the latent hydraulic particles, and latent hydraulic particles A second tobermorite formed therebetween, wherein each latent hydraulic particle is bonded via the coating film, and the first tobermorite is finer than the second tobermorite, A lightweight multi-layer solidified product containing latent hydraulic particles, characterized by having layers having different sectional occupation ratios.
【請求項2】 前記被覆膜の厚さが0.05μm以上で
ある特許請求の範囲第1項に記載の潜在水硬性粒子を含
有する軽量多層固化物。
2. The lightweight multilayer solid containing latent hydraulic particles according to claim 1, wherein the thickness of the coating film is 0.05 μm or more.
【請求項3】 固化物の気孔の断面占有比率が20%以
下である層と、固化物の気孔の断面占有比率が30〜9
5%である層とからなる特許請求の範囲第1項に記載の
潜在水硬性粒子を含有する軽量多層固化物。
3. A layer in which the cross-sectional occupation ratio of pores of the solidified material is 20% or less, and a layer in which the cross-sectional occupation ratio of pores of the solidified material is 30 to 9
The lightweight multilayer solidified product containing latent hydraulic particles according to claim 1, comprising a layer that is 5%.
【請求項4】 潜在水硬性粒子の断面占有比率が、気孔
を除いた固化物の断面積の60〜10%である特許請求
の範囲第1項に記載の潜在水硬性粒子を含有する軽量多
層固化物。
4. The lightweight multilayer containing latent hydraulic particles according to claim 1, wherein the cross-sectional occupation ratio of the latent hydraulic particles is 60 to 10% of the cross-sectional area of the solidified matter excluding pores. Solidified.
JP10909495A 1995-04-10 1995-04-10 Lightweight multilayer solid containing latent hydraulic particles Expired - Fee Related JP2863111B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10909495A JP2863111B2 (en) 1995-04-10 1995-04-10 Lightweight multilayer solid containing latent hydraulic particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10909495A JP2863111B2 (en) 1995-04-10 1995-04-10 Lightweight multilayer solid containing latent hydraulic particles

Publications (2)

Publication Number Publication Date
JPH08283078A JPH08283078A (en) 1996-10-29
JP2863111B2 true JP2863111B2 (en) 1999-03-03

Family

ID=14501440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10909495A Expired - Fee Related JP2863111B2 (en) 1995-04-10 1995-04-10 Lightweight multilayer solid containing latent hydraulic particles

Country Status (1)

Country Link
JP (1) JP2863111B2 (en)

Also Published As

Publication number Publication date
JPH08283078A (en) 1996-10-29

Similar Documents

Publication Publication Date Title
Xu et al. Influence of cenospheres on properties of magnesium oxychloride cement-based composites
WO2015130677A1 (en) Improved fire core compositions and methods
EP0678488A2 (en) Process for preparing solidified material containing coal ash
CN101417475B (en) No-burned brick manufacture method
CN112830811B (en) Light high-strength geopolymer material and preparation method thereof
CN111003991A (en) Light high-strength silicate ceramsite concrete
CN113816696A (en) Recycled fine aggregate internal curing-based ultrahigh-performance concrete and preparation method thereof
JP4641117B2 (en) Manufacturing method of inorganic cement composite board
JP2022530493A (en) Autoclaved cement composition
JP2863111B2 (en) Lightweight multilayer solid containing latent hydraulic particles
JP2863110B2 (en) Continuously vented lightweight solidified material containing latent hydraulic particles
CN115340329A (en) Recycled fine aggregate-magnesium oxide base expanding agent ultrahigh-performance concrete and preparation method thereof
JP2863112B2 (en) Light-weight solid containing latent hydraulic particles
CN111960735A (en) Lightweight sandy concrete taking waste ultrafine sand as main raw material and preparation method thereof
JP2891909B2 (en) Lightweight multilayer sound absorbing material
WO1996026166A1 (en) Composite gypsum board
JP3026923B2 (en) Solidified product containing latent hydraulic particles
JP2843520B2 (en) Method for producing coal ash solidified material
JP2891904B2 (en) Multi-layer lightweight sound absorbing material
CN117447143B (en) Anti-whiskering ground stone and preparation method thereof
JP3801673B2 (en) Porous sound absorbing material
CN218757075U (en) A superfine light aggregate plate-type sound absorption and insulation structure for administering traffic noise
JP4097870B2 (en) Wood cement board
JP3352061B2 (en) Wood cement board and method for producing the same
JP2863106B2 (en) Manufacturing method of lightweight multilayer solidified material

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19981117

LAPS Cancellation because of no payment of annual fees