JP2862998B2 - Electronic cooling panel - Google Patents

Electronic cooling panel

Info

Publication number
JP2862998B2
JP2862998B2 JP2335911A JP33591190A JP2862998B2 JP 2862998 B2 JP2862998 B2 JP 2862998B2 JP 2335911 A JP2335911 A JP 2335911A JP 33591190 A JP33591190 A JP 33591190A JP 2862998 B2 JP2862998 B2 JP 2862998B2
Authority
JP
Japan
Prior art keywords
temperature
type
electronic cooling
cooling
thermoelectric semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2335911A
Other languages
Japanese (ja)
Other versions
JPH04199858A (en
Inventor
洋一郎 横谷
浜江 安藤
公一 釘宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2335911A priority Critical patent/JP2862998B2/en
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to EP91106177A priority patent/EP0455051B1/en
Priority to DE69130654T priority patent/DE69130654T2/en
Priority to EP97120243A priority patent/EP0834930B1/en
Priority to DE69132779T priority patent/DE69132779T2/en
Priority to US07/688,424 priority patent/US5168339A/en
Publication of JPH04199858A publication Critical patent/JPH04199858A/en
Priority to US08/330,565 priority patent/USRE35441E/en
Application granted granted Critical
Publication of JP2862998B2 publication Critical patent/JP2862998B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、電子冷却パネルに関し、特に放熱側の放熱
効率の小さい使用条件で冷却面の到達最低温度の低いも
のに関する。
Description: TECHNICAL FIELD The present invention relates to an electronic cooling panel, and more particularly to an electronic cooling panel having a low minimum temperature of a cooling surface under a use condition of a small heat radiation efficiency on a heat radiation side.

[従来の技術] 近年、地球環境問題からのフロン使用規制や、電子機
器等の局所冷却、除湿などの小型冷却装置などに対する
要求、ペルチェ効果を利用した電子冷却用電子部品に対
する要求は大きい。ここで、ペルチェ効果とは、二つの
金属の接合部を通って電流が流れたとき、その接合部に
おいて熱が発生し、あるいは吸収される現象を発現する
効果をいう。たとえば、ある方向に電流が流れて熱が発
生したとき、電流の方向を逆にすると今度は熱が吸収さ
れる現象である。
[Related Art] In recent years, there has been a great demand for restrictions on the use of chlorofluorocarbons due to global environmental problems, a demand for small cooling devices such as local cooling and dehumidification of electronic devices, and a demand for electronic components for electronic cooling utilizing the Peltier effect. Here, the Peltier effect refers to an effect that, when a current flows through a junction between two metals, heat is generated or absorbed at the junction. For example, when a current flows in a certain direction to generate heat, if the direction of the current is reversed, the heat is absorbed this time.

このうち、室温付近で用いる電子冷却用の電子部品と
しては、Bi−Te系の単結晶もしくは多結晶凝固体を熱電
半導体物質として使用し、p型、n型半導体物質を交互
に金属板などで直列に接合し、電気的に正の側からn型
からp型への接合面を一方の面に配し、冷却面とし、も
う一方の面にp型からn型への接合面を配し放熱面と
し、各物質の間は空隙とする構成をとるものが知られて
いる。
Among these, as electronic components for electronic cooling used near room temperature, a Bi-Te-based single crystal or polycrystalline solidified material is used as a thermoelectric semiconductor material, and p-type and n-type semiconductor materials are alternately formed by a metal plate or the like. Joined in series, the junction surface from n-type to p-type is arranged on one side from the electrically positive side, and used as a cooling surface, and the junction surface from p-type to n-type is arranged on the other surface. It is known that a heat radiation surface is used and a gap is provided between each substance.

Bi−Te系材料は理論的には高温側と低温側の間で60℃
程度の温度差を取ることができるが、上記のような構成
で高温側の放熱量が小さいと、高温側の温度が上昇し、
低温側の最低到達温度が上がってしまう課題を有してい
る。通常の放熱板の外気との間の熱抵抗は、自然放冷で
は0.0002〜0.005W/cm2・deg程度、強制空冷では0.0004
〜0.002W/cm2・deg程度であり半導体素子の放熱側の温
度上昇は大きな問題であった。
Theoretically, Bi-Te materials have a temperature of 60 ° C between the high and low temperatures.
Although it is possible to take a temperature difference of the order, if the heat radiation amount on the high temperature side is small in the above configuration, the temperature on the high temperature side rises,
There is a problem that the lowest temperature on the low temperature side rises. The thermal resistance between the outside air conventional heat radiating plate, 0.0002~0.005W / cm 2 · deg about the natural cooling, a forced air cooling 0.0004
It is about 0.002 W / cm 2 · deg, and the temperature rise on the heat radiation side of the semiconductor element was a serious problem.

これに対し従来の電子冷却用電子部品は、p型、n型
素子を交互に面状にならべ電気的に直列に接合した素子
段階で、p型、n型素子の間に間隔をもうけ、2〜3倍
の断面積とし、さらにこれに10倍程度の断面積の金属放
熱板を接合し、この放熱板が断面積の5〜7倍の面積の
フィンを有している構成にすることにより、放熱面積を
半導体素子の断面積の100〜200倍程度に増加させ、これ
をファンにより強制空冷するか、もしくは放熱面を水冷
するなどの手段がとられていた。
On the other hand, in the conventional electronic cooling electronic component, at the element stage in which p-type and n-type elements are alternately arranged in a plane and electrically connected in series, a space is provided between the p-type and n-type elements. A cross-sectional area of up to 3 times, a metal radiator plate having a cross-sectional area of about 10 times is joined to this, and this radiator plate has a fin having an area of 5 to 7 times the cross-sectional area. Means have been taken such that the heat radiation area is increased to about 100 to 200 times the cross-sectional area of the semiconductor element, and this is forcibly air-cooled by a fan or water-cooled on the heat radiation surface.

[発明が解決しようとする課題] しかしながら、前記従来技術では、ファンを用いた強
制空冷や水冷手段が必要で、装置コストが高くなるとい
う課題があった。
[Problems to be Solved by the Invention] However, in the above-described conventional technology, there is a problem that forced air cooling or water cooling means using a fan is required, and the apparatus cost is increased.

本発明は、前記従来技術の課題を解決するため、ファ
ンを用いた強制空冷や水冷手段を必要とせず、放熱側の
放熱効率が小さい使用条件下でも冷却面が低い温度まで
冷却できる電子冷却パネルを提供することを目的とす
る。
The present invention solves the above-mentioned problems of the prior art, and does not require forced air cooling or water cooling means using a fan, and an electronic cooling panel capable of cooling a cooling surface to a low temperature even under use conditions in which the heat radiation efficiency on the heat radiation side is small. The purpose is to provide.

[課題を解決するための手段] 前記目的を達成するため、本発明の電子冷却パネルは
p型とn型の半導体素子を電気的に直列に接合し、直流
電流を流したときの接合界面における発熱吸熱反応を利
用した電子冷却パネルにおいて、半導体素子部が中空、
若しくは多孔体形状を有する担体粒子と、その表面に形
成され、電気的に導通状態にある熱電半導体層、および
担体内部以外の空隙からなることを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the electronic cooling panel of the present invention electrically connects a p-type and an n-type semiconductor element in series to each other at a junction interface when a direct current is applied. In an electronic cooling panel utilizing an exothermic endothermic reaction, the semiconductor element part is hollow,
Alternatively, it is characterized by comprising a carrier particle having a porous shape, a thermoelectric semiconductor layer formed on the surface thereof and in an electrically conductive state, and a void other than the inside of the carrier.

前記構成においては、熱電半導体物質層が互いに焼結
されたものであり、電気的導通状態である形態の半導体
層が、単なる接触状態でなく連続されたものであること
が望ましい。
In the above configuration, it is preferable that the thermoelectric semiconductor material layers are sintered together, and the semiconductor layer in an electrically conductive state is continuous rather than just in a contact state.

[作用] 前記本発明の構成によれば、半導体素子の熱伝導度が
低下し、放熱側の温度上昇があっても冷却側への熱伝導
量が低下し、冷却側温度を低くすることができる。
[Operation] According to the configuration of the present invention, the heat conductivity of the semiconductor element is reduced, and even if the temperature of the heat radiation side increases, the amount of heat conduction to the cooling side decreases, and the cooling side temperature can be reduced. it can.

また、熱電半導体物質層が互いに焼結されたものであ
り、半導体層が連続されたものであるという本発明の好
ましい構成によれば、さらに優れた自然放冷ができる。
Further, according to the preferred configuration of the present invention in which the thermoelectric semiconductor material layers are sintered together and the semiconductor layers are continuous, more excellent natural cooling can be achieved.

[実施例] 以下、本発明の一実施例について図面を参照しながら
説明する。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

実施例1 熱電半導体物質としてBi−Te系について検討した。p
型物質としては、(Bi,Sb)2Te3を選択し、n型物質と
してはBi2(Te,Se)を選択した。
Example 1 A Bi-Te-based material was studied as a thermoelectric semiconductor material. p
(Bi, Sb) 2 Te 3 was selected as the type material, and Bi 2 (Te, Se) 3 was selected as the n-type material.

担体粒子としては、平均粒径8μm、膜厚0.5μmの
ガラスバルーン(中空ガラス微粒子)を用いた。このバ
ルーンは中空構造ではあるが内部と外部の気密性はなく
ガラス自体が多孔体である。
As the carrier particles, glass balloons (hollow glass particles) having an average particle size of 8 μm and a film thickness of 0.5 μm were used. Although this balloon has a hollow structure, there is no airtightness between the inside and the outside, and the glass itself is a porous body.

半導体物質は、各物質の多結晶凝固体を出発原料に用
い、粗砕後ボールミル中で有機溶媒を用い、0.2mmφの
ジルコニアボールを媒体として媒体撹拌ミルにて粉砕
し、平均粒径0.08μmの粉末とした。乾燥後粉末と粘性
溶媒とを混合してスラリーとし、ガラスバルーンを浸し
たのち乾燥した。このスラリーに浸し乾燥する処理の回
数は変化させ、熱電半導体層の厚さを変えた試料を作成
した。処理乾燥後の粒子は、成形しアルゴン中500℃で
2時間加熱処理した。得られた半導体素子の断面の拡大
図を第1図に示す。
Semiconductor material, using a polycrystalline solidified material of each material as a starting material, using an organic solvent in a ball mill after crushing, pulverized in a medium stirring mill using zirconia balls of 0.2 mmφ as a medium, an average particle size of 0.08 μm Powder. After drying, the powder and the viscous solvent were mixed to form a slurry, and a glass balloon was immersed and dried. The number of times of the treatment of dipping and drying in the slurry was changed to prepare a sample in which the thickness of the thermoelectric semiconductor layer was changed. The particles after the treatment and drying were molded and heat-treated in argon at 500 ° C. for 2 hours. FIG. 1 is an enlarged view of a cross section of the obtained semiconductor element.

第1図において、11はガラスバルーン、12は熱電半導
体である。そして、11のガラスバルーンの表面に、12の
熱電半導体層が形成されている。作成した半導体素子
は、p型、n型とも1cm立方に切断し、側面に絶縁性樹
脂を塗布したのち、スラリーに浸し、乾燥する処理回数
の等しい試料を、縦横10個ずつ計100個をpn交互に配列
し、樹脂を硬化して接合し、上下面で電気的に直列に各
素子をNi板で接合した。また参考試料としてp、n型と
も緻密な多結晶凝固体を用い、同様の形状に接合したも
のも作成した。
In FIG. 1, 11 is a glass balloon and 12 is a thermoelectric semiconductor. And 12 thermoelectric semiconductor layers are formed on the surface of 11 glass balloons. The prepared semiconductor element was cut into 1 cm cube for both p-type and n-type, coated with insulating resin on the side, immersed in slurry, and dried. The elements were alternately arranged, the resin was cured and joined, and the respective elements were electrically connected in series on the upper and lower surfaces with a Ni plate. Further, as a reference sample, a dense polycrystalline solidified body was used for both the p-type and the n-type, and those joined in the same shape were also prepared.

作成した試料の低温側の面には、絶縁グリスを薄く塗
布したのち、厚さ0.3mmの銅版を接合し、この面に熱電
対を接着して温度を測定した。高温側は次の3条件の放
熱条件設定し、放熱板を低温側同様絶縁グリスを薄く塗
布したのち、配置し、熱電対を接着してこの温度を測定
した。放熱の条件は下記の通りである。
After thinly applying insulating grease to the low-temperature side surface of the prepared sample, a copper plate having a thickness of 0.3 mm was joined, and a thermocouple was bonded to this surface to measure the temperature. On the high-temperature side, the following three heat radiation conditions were set, and the heat-radiating plate was thinly coated with insulating grease as in the low-temperature side, then placed, and a thermocouple was bonded to measure the temperature. The conditions for heat dissipation are as follows.

10cm平方(面積100cm2)で厚さ0.5mmの銅板を放熱
面を酸化させたもの(半導体素子断面積と等倍の放熱板
表面積、自然放冷) 10cm平方(面積100cm2)で厚さ0.5mmの銅板に厚さ
0.3mm奥行き7mmの銅板製フィンを7mmピッチで立て放熱
面を酸化させたもの(半導体素子断面積の3倍の放熱板
表面積、自然放冷) 20cm平方(面積400cm2)厚さ0.5mmの銅板に厚さ0.3
mm奥行き10mmの銅板製フィンを5mmピッチで立て放熱面
を酸化させたもの(半導体素子断面積の20倍の放熱板表
面積、自然放冷) 各放熱板を用い直流電源の電流量を調整して低温側の
銅板の温度が最低になる条件をもとめた。いずれの測定
も外気温300Kで実施した。
A 10cm square (area 100cm 2 ) copper plate with a thickness of 0.5mm with a radiating surface oxidized (radiation plate surface area equal to the cross-sectional area of the semiconductor element, natural cooling) 10cm square (area 100cm 2 ) and a thickness of 0.5 mm on copper plate thickness
A fin made of 0.3 mm deep 7 mm copper plate fins at 7 mm pitch and oxidizing the heat radiation surface (heat sink surface area three times the cross-sectional area of the semiconductor element, natural cooling) 20 cm square (area 400 cm 2 ) 0.5 mm thick copper plate 0.3 thickness
A copper plate fin with a depth of 10 mm and a fin made up at a pitch of 5 mm and oxidizing the heat radiation surface (heat radiation surface area of 20 times the cross-sectional area of the semiconductor element, natural cooling). The conditions for minimizing the temperature of the copper plate on the low temperature side were determined. All measurements were performed at an outside temperature of 300K.

第1表に上記3つの放熱条件における熱電半導体物質
の体積分率a(%)、気孔の体積分率b(%)、素子見
かけ抵抗率c(Ωcm)、(a,b,cはいずれもp型とn型
素子の平均値)、低温側最低到達温度d(K)、低温側
最低温度到達時の放熱フィン温度e(K)、低温側最低
温度到達時の電流量f(A)を示す。
Table 1 shows that the volume fraction a (%) of the thermoelectric semiconductor material, the volume fraction b (%) of the pores, the apparent resistivity c (Ωcm) of the thermoelectric semiconductor material under the above three heat radiation conditions, and (a, b, c are all values) The average value of the p-type and n-type elements), the lowest temperature at low temperature d (K), the radiation fin temperature e (K) when the lowest temperature reaches the low temperature, and the current amount f (A) at the time when the lowest temperature reaches the low temperature. Show.

第1表より明らかなように、本実施例のように半導体
素子部が中空形状を有する担体粒子とその表面に構成さ
れた熱電半導体物質層よりなるものは、緻密な熱電半導
体を用いたものに比べ、低温側の最低到達温度を低くと
れる。
As is evident from Table 1, the semiconductor element portion composed of the carrier particles having a hollow shape and the thermoelectric semiconductor material layer formed on the surface thereof as in the present embodiment is the one using a dense thermoelectric semiconductor. In comparison, the lowest temperature on the low temperature side can be lowered.

実施例2 熱電半導体物質としては、p型については実施例同様
の(Bi,Sb)2Te3を、n型物質としてはスポンジチタン
中で焼成して強還元したSrTiO3-Xを検討した。担体粒子
としては、平均粒径1mmのアルミナ質発泡バルーン(気
孔率95%平均気孔径4μm)の多孔体顆粒粉体を用い
た。半導体物質は各物質の多結晶凝固体,焼結体を出発
原料に用いた。このものを粗砕後ボールミル中で有機溶
媒を用い、0.2mmφのジルコニアボールを媒体として媒
体撹拌ミルにて粉砕し、平均粒径0.08μmの粉末とし
た。乾燥後粉末と粘性溶媒とを混合して高濃度のスラリ
ーとし、アルミナ質バルーンを浸したのち乾燥した。こ
の際バルーン表面におもに熱電半導体が付着するような
スラリー濃度を選択した。このスラリーに浸し乾燥する
処理の回数を変化させ、熱電半導体層の厚さを変えた試
料を作成した。処理乾燥後の粒子は、成形し、アルゴン
中500℃で2時間加熱処理した。第2図に作成した半導
体素子の断面の拡大図を示す。第2図において、13はア
ルミナ質バルーン、14は熱電半導体層である。そして、
13のアルミナ質バルーンの表面に14の熱電半導体層が形
成されている。
Example 2 As a thermoelectric semiconductor substance, (Bi, Sb) 2 Te 3 similar to the example was examined for the p-type, and SrTiO 3 -X, which was calcined in titanium sponge and strongly reduced, was examined as the n-type substance. As the carrier particles, a porous granular powder of an alumina foamed balloon having an average particle diameter of 1 mm (porosity of 95%, average pore diameter of 4 μm) was used. As a semiconductor material, a polycrystalline solidified or sintered body of each material was used as a starting material. This was crushed and then pulverized in a ball mill using an organic solvent and a medium stirring mill using zirconia balls having a diameter of 0.2 mm as a medium to obtain a powder having an average particle diameter of 0.08 μm. After drying, the powder and the viscous solvent were mixed to form a high-concentration slurry, and the alumina-based balloon was immersed and dried. At this time, the slurry concentration was selected so that the thermoelectric semiconductor mainly adhered to the balloon surface. The number of times of immersion in the slurry and drying was changed to prepare a sample in which the thickness of the thermoelectric semiconductor layer was changed. The particles after the treatment and drying were molded and heat-treated at 500 ° C. for 2 hours in argon. FIG. 2 shows an enlarged view of a cross section of the prepared semiconductor device. In FIG. 2, 13 is an alumina balloon, and 14 is a thermoelectric semiconductor layer. And
Fourteen thermoelectric semiconductor layers are formed on the surface of thirteen alumina balloons.

作成した半導体素子は、実施例1と同様に接合し、同
様の冷却面放熱面を形成して同様の測定を行った。
The prepared semiconductor device was joined in the same manner as in Example 1, and the same cooling surface and heat radiation surface were formed, and the same measurement was performed.

第2表に各放熱条件における熱電半導体物質の体積分
率a、気孔の体積分率b、素子見かけ抵抗率c(Ωcm)
(a,b,cはいずれもp型とn型素子の平均値)、低温側
最低到達温度d(℃)、低温側最低温度到達時の放熱フ
ィン温度e(℃)、低温側最低温度到達時の電流値f
(A)を示す。
Table 2 shows the volume fraction a of the thermoelectric semiconductor material, the volume fraction b of the pores, and the apparent resistivity c (Ωcm) of the thermoelectric semiconductor material under each heat radiation condition.
(All of a, b, and c are average values of p-type and n-type elements), low-temperature minimum temperature d (° C), radiation fin temperature e (° C) when low-temperature minimum temperature is reached, low-temperature minimum temperature attainment Current value f
(A) is shown.

第2表より明らかなように、本実施例のように半導体
素子部が多孔体である担体粒子とその表面に構成された
熱電半導体物質層よりなるものは緻密な熱電半導体を用
いたものに比べ、低温側の最低到達温度が低くとれる、
とくに実施例に示した3条件のように半導体素子断面積
当りの放熱面表面積が小さく、かつ自然放冷のように一
般の電子冷却素子より放熱効率の小さい条件下でその効
果が発揮される。
As is evident from Table 2, as in the present example, the semiconductor element portion composed of the carrier particles having a porous body and the thermoelectric semiconductor material layer formed on the surface thereof is compared with the one using the dense thermoelectric semiconductor. , The lowest temperature on the low temperature side can be low,
In particular, the effect is exhibited under the condition that the heat dissipation surface area per semiconductor device cross-sectional area is small as in the three conditions shown in the embodiment and the heat dissipation efficiency is smaller than that of a general electronic cooling element such as natural cooling.

[発明の効果] 以上説明した通り、本発明の電子冷却パネルによれ
ば、電子冷却を実施した場合、放熱効率の小さい条件下
で低温側の最低到達温度をさげることができる。また大
面積化が容易で安価に製造できるなどの利点を有してお
り工業的に有用である。
[Effects of the Invention] As described above, according to the electronic cooling panel of the present invention, when electronic cooling is performed, the lowest attainable temperature on the low temperature side can be reduced under the condition of low heat radiation efficiency. Further, it has an advantage that it can be easily formed into a large area and can be manufactured at low cost, and is industrially useful.

【図面の簡単な説明】[Brief description of the drawings]

第1図及び第2図は本発明の一実施例である電子冷却パ
ネルの半導体素子部の拡大図断面模式図である。 11……ガラスバルーン、12……熱電半導体物質、 13……アルミナ質バルーン、14……熱電半導体層。
1 and 2 are enlarged schematic sectional views of a semiconductor element portion of an electronic cooling panel according to an embodiment of the present invention. 11: glass balloon, 12: thermoelectric semiconductor material, 13: alumina balloon, 14: thermoelectric semiconductor layer.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭50−86286(JP,A) 特開 昭59−152256(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01L 35/32 H01L 35/16──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-50-86286 (JP, A) JP-A-59-152256 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01L 35/32 H01L 35/16

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】p型とn型の半導体素子を電気的に直列に
接合し、直流電流を流したときの接合界面における発熱
吸熱反応を利用した電子冷却パネルにおいて、半導体素
子部が中空、若しくは多孔体形状を有する担体粒子と、
その表面に形成され、電気的に導通状態にある熱電半導
体層、および担体内部以外の空隙を含むことを特徴とす
る電子冷却パネル。
1. An electronic cooling panel in which a p-type and an n-type semiconductor elements are electrically connected in series and an exothermic endothermic reaction occurs at a bonding interface when a DC current is applied, wherein the semiconductor element portion is hollow or Carrier particles having a porous shape,
An electronic cooling panel comprising a thermoelectric semiconductor layer formed on a surface thereof and in an electrically conductive state, and a void other than inside the carrier.
【請求項2】熱電半導体物質層が互いに焼結されてな
り、半導体層が連続されてなる請求項1に記載の電子冷
却パネル。
2. The electronic cooling panel according to claim 1, wherein the thermoelectric semiconductor material layers are sintered together, and the semiconductor layers are continuous.
JP2335911A 1990-04-20 1990-11-29 Electronic cooling panel Expired - Fee Related JP2862998B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2335911A JP2862998B2 (en) 1990-11-29 1990-11-29 Electronic cooling panel
DE69130654T DE69130654T2 (en) 1990-04-20 1991-04-18 Vacuum-insulated thermoelectric semiconductor consisting of a porous structure and thermoelectric component
EP97120243A EP0834930B1 (en) 1990-04-20 1991-04-18 Thermoelectric semiconductor deaerated into a vacuum and thermoelectric panel using p-type and n-type thermoelectric semiconductors
DE69132779T DE69132779T2 (en) 1990-04-20 1991-04-18 Vacuum insulated thermoelectric semiconductors and thermoelectric devices using P and N type thermoelectric semiconductors
EP91106177A EP0455051B1 (en) 1990-04-20 1991-04-18 Thermoelectric semiconductor having a porous structure deaerated into a vacuum and thermoelectric panel
US07/688,424 US5168339A (en) 1990-04-20 1991-04-22 Thermoelectric semiconductor having a porous structure deaerated in a vacuum and thermoelectric panel using p-type and n-type thermoelectric semiconductors
US08/330,565 USRE35441E (en) 1990-04-20 1994-10-28 Thermoelectric semiconductor having a porous structure deaerated in a vacuum and thermoelectric panel using p-type and n-type thermoelectric semiconductors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2335911A JP2862998B2 (en) 1990-11-29 1990-11-29 Electronic cooling panel

Publications (2)

Publication Number Publication Date
JPH04199858A JPH04199858A (en) 1992-07-21
JP2862998B2 true JP2862998B2 (en) 1999-03-03

Family

ID=18293747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2335911A Expired - Fee Related JP2862998B2 (en) 1990-04-20 1990-11-29 Electronic cooling panel

Country Status (1)

Country Link
JP (1) JP2862998B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1144920A2 (en) * 1999-06-01 2001-10-17 VTV Verfahrenstechnik Verwaltung GmbH Method and device for forming thermobranches containing a foam structure

Also Published As

Publication number Publication date
JPH04199858A (en) 1992-07-21

Similar Documents

Publication Publication Date Title
EP0455051B1 (en) Thermoelectric semiconductor having a porous structure deaerated into a vacuum and thermoelectric panel
JP2003174203A (en) Thermoelectric conversion device
JP2007538406A (en) Thermoelectric nanowire element
JP2958451B1 (en) Thermoelectric conversion material and method for producing the same
US20190002711A1 (en) Thermoelectric (te) ink for three-dimensional (3d) printed te materials, te module including 3d printed te material, and method of manufacturing te module
JP6987077B2 (en) Thermoelectric leg and thermoelectric element including it
JP2936174B2 (en) Electronic components
KR20240046141A (en) Thermo electric element
JP2862998B2 (en) Electronic cooling panel
JP7091341B2 (en) Thermoelectric sintered body and thermoelectric element
JP2003174204A (en) Thermoelectric conversion device
JP2836950B2 (en) Thermoelectric semiconductor element
KR20230065207A (en) Thermo electric element
JP2545647B2 (en) Thermoelectric semiconductor element
JP2777508B2 (en) Electronic cooling element
US20190126804A1 (en) Cup holder
KR20210017784A (en) Thermo electric apparatus
JP2022535751A (en) thermoelectric element
KR102271221B1 (en) Thermo electric element
JP2005116736A (en) Thermoelectric conversion element, its manufacturing method and cooling device employing same
JPS623985B2 (en)
JPH0997988A (en) Thermally conductive compound
JPH03148879A (en) Thermoelement
KR102575215B1 (en) Thermoelectric module
KR102220946B1 (en) Thermo electric element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees