JP2861434B2 - Method for recovering In from Pb-In-Ag alloy - Google Patents

Method for recovering In from Pb-In-Ag alloy

Info

Publication number
JP2861434B2
JP2861434B2 JP4123691A JP4123691A JP2861434B2 JP 2861434 B2 JP2861434 B2 JP 2861434B2 JP 4123691 A JP4123691 A JP 4123691A JP 4123691 A JP4123691 A JP 4123691A JP 2861434 B2 JP2861434 B2 JP 2861434B2
Authority
JP
Japan
Prior art keywords
alloy
dross
weight
composition
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4123691A
Other languages
Japanese (ja)
Other versions
JPH04259342A (en
Inventor
晴俊 窪田
千秋 南
和彦 武井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP4123691A priority Critical patent/JP2861434B2/en
Publication of JPH04259342A publication Critical patent/JPH04259342A/en
Application granted granted Critical
Publication of JP2861434B2 publication Critical patent/JP2861434B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、PbとAgを主なる不
純物として含有するIn含有原料からInを分離濃縮す
る方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for separating and concentrating In from an In-containing raw material containing Pb and Ag as main impurities.

【0002】[0002]

【従来の技術】従来、電気メッキによる湿式Znメッキ
用の不溶性アノードとしてPbーSn合金が使用されて
きたが、Pb−In−Ag合金がPb−Sn合金よりも
高いメッキ効率を有することから、不溶性アノードとし
てPb−In−Ag合金に代替が進行しつつある。Pb
−In−Ag合金に用いられるInが高価であることか
ら、Pb−In−Ag合金スクラップの有効利用が必要
であるが、この合金スクラップは不純物を多く含有して
おり、これを溶解し直してInやAgの成分調整をした
だけでは、不溶性アノードとしてのスペックを満足しな
い。そのため、Pb−In−Ag合金スクラップから何
らかの手段によって、Inを回収することが重要になっ
てきている。
2. Description of the Related Art Conventionally, a Pb-Sn alloy has been used as an insoluble anode for wet Zn plating by electroplating. However, since a Pb-In-Ag alloy has a higher plating efficiency than a Pb-Sn alloy, Alternatives to Pb-In-Ag alloys are in progress as insoluble anodes. Pb
-Since the In used in the In-Ag alloy is expensive, it is necessary to effectively use the Pb-In-Ag alloy scrap. However, this alloy scrap contains many impurities, and is dissolved again. Simply adjusting the components of In and Ag does not satisfy the specifications as an insoluble anode. For this reason, it has become important to recover In from Pb-In-Ag alloy scrap by some means.

【0003】従来、In含有原料からのInの回収方法
として、例えば次に示すような三つの方法が提案されて
いる。第一の方法として、In含有原料を硫酸水溶液で
溶解し、これによって得られたInを含む水溶液をNa
OH等の水酸化アルカリで中和し、Inを沈殿させて水
溶液から分離する。次いで、この沈殿を硫酸水溶液で再
溶解してInの水溶液とした後、これにZn末等の粉末
を還元剤として添加し、セメンテーションを行って粗I
nを得る方法がある。第二の方法は、In含有原料を硫
酸で溶解した後、水溶液に硫化物を添加して硫化処理を
行い、生成された硫化物をろ別する。Inは硫化物沈殿
にはなりにくいので水溶液に含まれており、分離した水
溶液に水酸化アルカリを添加して中和し、生成される沈
殿を分離する。そしてこの沈殿を塩酸水溶液で溶解し
て、再びこれに硫化物を添加して硫化処理を行う。得ら
れた硫化物をろ別した水溶液をpH調整した後、第一の
方法と同様にセメンテーション法により、粗Inを得る
ものである。第三の方法は、In含有原料をPb溶鉱炉
に入れてPb−In合金として取り出し、これを乾式溶
解すると、ドロスとAgを含むPbメタルとに分離す
る。そして、ドロス中にInを濃縮させて、ドロスを電
気炉で還元処理し、Inを含むPbをベッツ法で電解
し、Inを陽極スライム中に濃縮分離するものである。
Conventionally, as a method for recovering In from an In-containing raw material, for example, the following three methods have been proposed. As a first method, an In-containing raw material is dissolved in a sulfuric acid aqueous solution, and the resulting In-containing aqueous solution is
Neutralize with an alkali hydroxide such as OH to precipitate In and separate it from the aqueous solution. Next, this precipitate was redissolved with an aqueous sulfuric acid solution to obtain an aqueous solution of In. Then, a powder such as Zn powder was added as a reducing agent to this, and the crude I was subjected to cementation.
There is a way to get n. In the second method, after dissolving an In-containing raw material with sulfuric acid, a sulfide is added to an aqueous solution to perform a sulfidation treatment, and the generated sulfide is filtered off. In is contained in the aqueous solution because it is unlikely to form a sulfide precipitate. The separated aqueous solution is neutralized by adding an alkali hydroxide, and the formed precipitate is separated. Then, the precipitate is dissolved in an aqueous hydrochloric acid solution, and a sulfide is added thereto again to perform a sulfidation treatment. After adjusting the pH of the aqueous solution obtained by filtering the obtained sulfide, crude In is obtained by a cementation method in the same manner as in the first method. In the third method, an In-containing raw material is put into a Pb blast furnace and taken out as a Pb-In alloy, which is dry-melted to be separated into dross and Pb metal containing Ag. Then, In is concentrated in the dross, the dross is reduced in an electric furnace, Pb containing In is electrolyzed by the Betts method, and In is concentrated and separated in the anode slime.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、これら
の回収方法はいずれも操作が煩雑である上に、Pb−I
n−Ag合金スクラップのようにIn品位の低い原料の
処理には不適であるという欠点がある。
However, all of these recovery methods are complicated in operation, and in addition, Pb-I
There is a disadvantage that it is unsuitable for treating a raw material having a low In grade such as n-Ag alloy scrap.

【0005】本発明はこのような課題に鑑みて、比較的
In含有量の少ないPb−In−Ag合金スクラップ等
のIn含有原料から、容易に高純度のInを回収できる
ようにしたPb−In−Ag合金からのIn回収方法を
提供することを目的とする。
[0005] In view of the above problems, the present invention provides a Pb-In which can easily recover high-purity In from an In-containing material such as a Pb-In-Ag alloy scrap having a relatively low In content. An object of the present invention is to provide a method for recovering In from an Ag alloy.

【0006】[0006]

【課題を解決するための手段】本発明によるPb−In
−Ag合金からのIn回収方法は、Inが5〜30重量
%,Agが1〜5重量%で残部が実質的にPbから成る
合金と、Inが15重量%以上で残部が実質的にPb及
びNH4 Clから成る組成物とを、この合金中のInと
前記組成物との重量比が10:1〜4の割合になるよう
にして400〜500℃の温度で接触させ、これにより
生成されたドロスを金属分から分離することによって、
Inを回収するようにしたものである。
According to the present invention, a Pb-In according to the present invention is provided.
The method of recovering In from an Ag alloy is an alloy in which In is 5 to 30% by weight, Ag is 1 to 5% by weight, and the balance is substantially Pb, and In is 15% by weight or more and the balance is substantially Pb. And a composition comprising NH 4 Cl at a temperature of 400 to 500 ° C. such that the weight ratio of In to the composition in the alloy is 10: 1 to 4 and thereby forming By separating the dross from the metal,
In is collected.

【0007】ここで、Pb−In−Ag合金スクラップ
は、Inが5〜30重量%,Agが1〜5重量%で残部
が実質的にPbから成る組成を有している。又、本発明
において用いられる上述の組成物は、Pb−In−Ag
合金スクラップ原料又は本発明方法において接触後に得
られる金属分にNH4 Clを接触させ、この原料又は金
属分中のInをNH4 Cl中に移行せしめ、このNH4
Clを原料又は金属分から分離すること等によって得ら
れる。
Here, the Pb-In-Ag alloy scrap has a composition in which In is 5 to 30% by weight, Ag is 1 to 5% by weight, and the balance is substantially Pb. The composition used in the present invention is Pb-In-Ag
The metal content obtained after contacting the alloy scrap material or the method of the present invention is contacted with NH 4 Cl, allowed migrate In this material or metal component in in NH 4 Cl, the NH 4
It is obtained by separating Cl from a raw material or a metal component.

【0008】上述の組成物中に含有されるInが15重
量%未満では、接触後に得られるドロス中のInを、効
率良く回収できる濃度(好ましくは35重量%以上)に
増加させることが困難である。このドロス中のInは濃
度が高いほど望ましいが、実際には、ドロス中のInが
70重量%位になると、それ以上濃度を増加させること
は容易ではない。又、組成物の量は、上述の合金中のI
n1kgに対して100g未満では、合金中のInのド
ロスと金属分への分配率が一定となるため、Inを十分
ドロス中に移行させることが困難になる。一方、400
gを越えると、接触後に得られるドロス中のInが希薄
過ぎるため、その後のInの回収効率が低下する。
If the content of In contained in the above composition is less than 15% by weight, it is difficult to increase the concentration of In in dross obtained after the contact to a concentration at which it can be efficiently recovered (preferably at least 35% by weight). is there. The higher the concentration of In in the dross, the more desirable. However, in reality, when the In in the dross reaches about 70% by weight, it is not easy to further increase the concentration. Also, the amount of the composition depends on the I
If the amount is less than 100 g with respect to n1 kg, the distribution ratio of In in the alloy to dross and metal becomes constant, so that it is difficult to sufficiently transfer In into the dross. On the other hand, 400
When the amount exceeds g, the dross obtained after the contact is too lean, so that the subsequent recovery efficiency of the indium is reduced.

【0009】又、接触を400〜500℃の温度で行う
としたのは、400℃未満では溶融合金の流動性が十分
でないため、組成物との接触及び反応が十分に行われな
いためであり、一方、500℃を越えると、その後のド
ロスの金属分からの分離性が低下するからである。
The reason why the contact is carried out at a temperature of 400 to 500 ° C. is that if the temperature is lower than 400 ° C., the fluidity of the molten alloy is not sufficient, so that the contact and the reaction with the composition are not carried out sufficiently. On the other hand, when the temperature exceeds 500 ° C., the separability of dross from the metal content thereafter decreases.

【0010】[0010]

【作用】本発明において、Inが5〜30重量%,Ag
が1〜5重量%で残部が実質的にPbから成る合金と、
Inが15重量%以上で残部が実質的にPb及びNH4
Clから成る組成物とを、この合金中のInと組成物と
の重量比が10:1〜4の割合になるようにして400
〜500℃の温度で接触させ、合金中のInを組成物中
に移行させる。この移行は、 In+NH4 Cl→NH3 +InCln(Inには1価
と3価がある) なる反応によるものと推察される。尚、組成物を添加し
た後は、接触及び反応を促進するために攪拌することが
望ましい。このようにして得られたドロスを、塩酸溶解
後に濾過し、Zn粉末を加えてセメンテーションにより
スポンジ状の粗Inを得る。そして粗Inを溶解してア
ノードとし、電解精製するなど公知の一般的な方法で9
9.99%以上の高純度Inを回収することができる。
According to the present invention, 5 to 30% by weight of In, Ag
An alloy consisting of 1 to 5% by weight with the balance substantially consisting of Pb;
In with 15% by weight or more of In and the balance substantially consisting of Pb and NH 4
Cl is mixed with In in this alloy so that the weight ratio of In to the composition becomes 10: 1 to 4;
Contact is made at a temperature of ℃ 500 ° C. to transfer In in the alloy into the composition. This shift is presumed to be due to a reaction of In + NH 4 Cl → NH 3 + InCln (In has monovalent and trivalent). After addition of the composition, it is desirable to stir to promote contact and reaction. The dross thus obtained is filtered after dissolving with hydrochloric acid, and Zn powder is added thereto to obtain a sponge-like crude In by cementation. Then, the crude In is dissolved to form an anode, which is then subjected to a known general method such as electrolytic purification.
High-purity In of 9.99% or more can be recovered.

【0011】[0011]

【実施例】以下、本発明の実施例について詳細に説明す
る。7.5重量%のInと1.2重量%のAgを含み、
残部が実質的にPbから成るPb−In−Ag合金スク
ラップを原料合金とする。そして、この原料合金10kg
を黒鉛るつぼにて、電気炉で460℃の温度で溶解し、
塩化アンモニウムNH4 Clを2kg添加する。そして約
1.5時間経過後に、表面のドロスを杓ですくい取っ
た。このようにして得られたドロスをドロス1とし、そ
の物量と分析値を図1の表に示す。このドロス1は上述
の組成物に相当するものであり、18.8重量%Inを
含み、残部が実質的にPbとNH4 Clから成ってい
る。
Embodiments of the present invention will be described below in detail. 7.5% by weight of In and 1.2% by weight of Ag,
A Pb-In-Ag alloy scrap whose balance substantially consists of Pb is used as a raw material alloy. And 10kg of this raw material alloy
In a graphite crucible in an electric furnace at a temperature of 460 ° C.
2 kg of ammonium chloride NH 4 Cl are added. After about 1.5 hours, the dross on the surface was scooped. The dross thus obtained was designated as dross 1, and its physical quantity and analytical values are shown in the table of FIG. This dross 1 corresponds to the above-described composition, contains 18.8% by weight of In, and the balance substantially consists of Pb and NH 4 Cl.

【0012】次に上述のものと同一組成の原料合金10
kgを、黒鉛るつぼにて電気炉で460℃の温度で溶解
し、上述のドロス1を200g添加し、約1.5時間経
過後に表面のドロスを杓ですくい取った。このようにし
て得られたドロスをドロス2とする。又、ドロス2以外
に金属分(メタル)も得られた。ドロス2と金属分の物
量と分析値も図1の表に示されている。
Next, the raw material alloy 10 having the same composition as that described above is used.
kg was melted in a graphite crucible in an electric furnace at a temperature of 460 ° C., and 200 g of the above-mentioned dross 1 was added. After about 1.5 hours, dross on the surface was scooped. The dross thus obtained is referred to as dross 2. In addition, a metal component (metal) was obtained in addition to dross 2. The physical quantity and analytical values of the dross 2 and the metal content are also shown in the table of FIG.

【0013】表から明らかなように、最終的に得られた
ドロス2には、Inが50重量%以上濃縮されている。
このドロス2を上述のように塩酸溶解後に濾過し、Zn
粉末を加えてセメンテーションによりスポンジ状の粗I
nを得、そして粗Inを溶解してアノードとし、電解精
製するなど公知の一般的な方法で、容易に高純度なIn
を得ることができる。
As is clear from the table, In the dross 2 finally obtained, In is concentrated by 50% by weight or more.
This dross 2 was filtered after dissolving hydrochloric acid as described above,
The powder was added and sponge-like crude I was formed by cementation.
n and then dissolve the crude In to form an anode, and easily purify the high-purity In by a known general method such as electrolytic purification.
Can be obtained.

【0014】[0014]

【発明の効果】上述のように、本発明に係るPb−In
−Ag合金からのIn回収方法によれば、比較的In含
有量の少ないPb−In−Ag合金スクラップ等のIn
含有原料合金から、容易にInを分離して濃縮すること
ができ、高価なInの回収を効率的に行うことができ
る。
As described above, the Pb-In according to the present invention is used.
According to the method for recovering In from Ag-Ag alloy, Pb-In-Ag alloy scrap having relatively low In content such as In
In can be easily separated and concentrated from the contained raw material alloy, and expensive In can be efficiently recovered.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例によるドロス1とドロス2及び
金属分(メタル)の重量及びPb,In,Agの分析値
を示す表である。
FIG. 1 is a table showing the dross 1 and dross 2 and the weight of metal (metal) and the analysis values of Pb, In, and Ag according to an embodiment of the present invention.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C22B 58/00──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int. Cl. 6 , DB name) C22B 58/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Inが5〜30重量%,Agが1〜5重
量%で残部が実質的にPbから成る合金と、Inが15
重量%以上で残部が実質的にPbとNH4 Clから成る
組成物とを、前記合金中のInと前記組成物との重量比
が10:1〜4の割合になるようにして400〜500
℃の温度で接触させ、生成されたドロスを分離すること
によって、Inを回収するようにしたPb−In−Ag
合金からのIn回収方法。
1. An alloy comprising 5 to 30% by weight of In, 1 to 5% by weight of Ag and the balance substantially consisting of Pb.
% By weight or more of the composition substantially consisting of Pb and NH 4 Cl, with the weight ratio of In to the composition being 10: 1 to 4 in the alloy and being 400 to 500.
Pb-In-Ag in which the contact is made at a temperature of 0 ° C. and the dross formed is separated to recover In.
Method for recovering In from alloy.
JP4123691A 1991-02-13 1991-02-13 Method for recovering In from Pb-In-Ag alloy Expired - Lifetime JP2861434B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4123691A JP2861434B2 (en) 1991-02-13 1991-02-13 Method for recovering In from Pb-In-Ag alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4123691A JP2861434B2 (en) 1991-02-13 1991-02-13 Method for recovering In from Pb-In-Ag alloy

Publications (2)

Publication Number Publication Date
JPH04259342A JPH04259342A (en) 1992-09-14
JP2861434B2 true JP2861434B2 (en) 1999-02-24

Family

ID=12602788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4123691A Expired - Lifetime JP2861434B2 (en) 1991-02-13 1991-02-13 Method for recovering In from Pb-In-Ag alloy

Country Status (1)

Country Link
JP (1) JP2861434B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2907352B1 (en) * 2006-10-20 2009-02-20 Terra Nova PROCESS FOR PROCESSING WASTE CONTAINING PRECIOUS METALS AND DEVICE FOR CARRYING OUT SAID METHOD

Also Published As

Publication number Publication date
JPH04259342A (en) 1992-09-14

Similar Documents

Publication Publication Date Title
US4135923A (en) Extraction of metals
CN108624759B (en) Method for comprehensively recovering valuable metals from white smoke
JP2013139595A (en) Method for recovering valuables from impurity lump containing copper derived from lead smelting
JP4876221B2 (en) Metal recovery method
JP5755572B2 (en) Method for producing bismuth anode for electrolytic purification
JP2738192B2 (en) Recovery method of crude indium for electrolysis
US4662938A (en) Recovery of silver and gold
US4874429A (en) Hydrometallurgical process for the recovery of silver from copper electrolysis anode sludge
JP2642230B2 (en) Manufacturing method of high purity tin
JP2861434B2 (en) Method for recovering In from Pb-In-Ag alloy
JP3548097B2 (en) Separation and recovery method of bismuth and copper etc. from treatment object containing cuprous oxide and bismuth
JP2001279344A (en) Method for recovering tin
JP3199184B2 (en) Method for recovering In from Pb-Sn-In alloy
JPH10280059A (en) Separation of gold and silver from noble metal alloy
JP3407600B2 (en) Silver extraction and recovery method
JPS6221851B2 (en)
JPS6158530B2 (en)
JP2958504B2 (en) Method for recovering In from In-Sb alloy
JP2019189891A (en) Method for separating selenium and tellurium from mixture containing selenium and tellurium
JP2953095B2 (en) Treatment method of copper removal dross
JP6457039B2 (en) Silver recovery method
JP7130497B2 (en) Tin recovery method
US2023424A (en) Metallurgy
JP4565179B2 (en) Method for recovering Sn from Sn-containing raw material
JP3906350B2 (en) Recovery method of thallium from sponge cadmium

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071211

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081211

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091211

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091211

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101211

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111211

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111211

Year of fee payment: 13