JP2858851B2 - Method for measuring characteristics of multi-beam semiconductor laser - Google Patents

Method for measuring characteristics of multi-beam semiconductor laser

Info

Publication number
JP2858851B2
JP2858851B2 JP4476090A JP4476090A JP2858851B2 JP 2858851 B2 JP2858851 B2 JP 2858851B2 JP 4476090 A JP4476090 A JP 4476090A JP 4476090 A JP4476090 A JP 4476090A JP 2858851 B2 JP2858851 B2 JP 2858851B2
Authority
JP
Japan
Prior art keywords
laser
semiconductor laser
output
light receiving
beam semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4476090A
Other languages
Japanese (ja)
Other versions
JPH03246437A (en
Inventor
泰明 井上
慶一 吉年
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Denki Co Ltd
Original Assignee
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Denki Co Ltd filed Critical Sanyo Denki Co Ltd
Priority to JP4476090A priority Critical patent/JP2858851B2/en
Publication of JPH03246437A publication Critical patent/JPH03246437A/en
Application granted granted Critical
Publication of JP2858851B2 publication Critical patent/JP2858851B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing Of Individual Semiconductor Devices (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、マルチビーム半導体レーザの特性測定方法
に関する。
The present invention relates to a method for measuring characteristics of a multi-beam semiconductor laser.

(ロ)従来の技術 同一方向に複数本のレーザビームを出射する所謂マル
チビーム半導体レーザが本願出願人等によって開発さ
れ、例えば信学技法Vol.86、No.323第75頁〜第79頁(19
87)にその報告が為されている。
(B) Conventional technology A so-called multi-beam semiconductor laser that emits a plurality of laser beams in the same direction has been developed by the present applicant and others. For example, IEICE Technical Review Vol.86, No.323, pp.75-79 ( 19
87) has been reported.

斯るマルチビーム半導体レーザでは、各レーザビーム
を出射する複数個のレーザ素子を同時に通電したとき
に、各レーザ素子から発生する熱によって他のレーザ素
子の出力特性が変化する。即ち斯るマルチビーム半導体
レーザにおいては、各レーザ素子の個別素子特性の測定
のほかに、同時通電時の熱的相互作用による素子特性を
測定することが重要である。
In such a multi-beam semiconductor laser, when a plurality of laser elements emitting each laser beam are simultaneously energized, the output characteristics of other laser elements change due to heat generated from each laser element. That is, in such a multi-beam semiconductor laser, it is important to measure not only the individual device characteristics of each laser device but also the device characteristics due to the thermal interaction at the time of simultaneous energization.

従来のマルチビーム半導体レーザの熱的相互作用の測
定方法を第3図を参照して説明する。図において、(1
1)はモノリシックに形成された4個のレーザ素子を有
し、各素子から独立してレーザビームの出射が可能なマ
ルチビーム半導体レーザ、(12)はレーザビーム出射方
向に配された受光素子で、4個の受光部(12a)〜(12
d)を有している。(13)はマルチビーム半導体レーザ
(11)と受光素子(12)との間に配されたレンズで、各
レーザビームのビーム間隔を拡大し、夫々対応する受光
部(12a)〜(12d)に入射させる。ここで図面における
矢印は、4本のレーザビームのうち外側2本のレーザビ
ームの光軸を示す。
A method for measuring the thermal interaction of a conventional multi-beam semiconductor laser will be described with reference to FIG. In the figure, (1
1) is a multi-beam semiconductor laser having four laser elements formed monolithically and capable of emitting a laser beam independently from each element, and (12) is a light receiving element arranged in the laser beam emitting direction. , Four light receiving sections (12a) to (12
d). (13) is a lens disposed between the multi-beam semiconductor laser (11) and the light receiving element (12), which expands the beam interval of each laser beam to the corresponding light receiving sections (12a) to (12d). Make it incident. Here, the arrows in the drawings indicate the optical axes of the two outer laser beams among the four laser beams.

(14)はマルチビーム半導体レーザ(11)を固定する
良熱伝導性の治具、(15)及び(16)は上記治具(14)
を介してマルチビーム半導体レーザ(11)に熱的に接続
され、該マルチビーム半導体レーザ(11)の温度を制御
するペルチェ素子及びヒートシンクである。(17)は上
記マルチビーム半導体レーザ(11)を駆動する駆動部、
(18)は受光素子(12)の各受光部(12a)〜(12d)の
光出力を検出する検出部である。
(14) is a jig having good thermal conductivity for fixing the multi-beam semiconductor laser (11), and (15) and (16) are jigs (14) described above.
A Peltier element and a heat sink, which are thermally connected to the multi-beam semiconductor laser (11) through the interface and control the temperature of the multi-beam semiconductor laser (11). (17) a driving unit for driving the multi-beam semiconductor laser (11),
(18) is a detection unit that detects the light output of each of the light receiving units (12a) to (12d) of the light receiving element (12).

斯る測定系を用いた熱的相互作用の測定方法は以下の
手順で行われる。
The method of measuring thermal interaction using such a measurement system is performed in the following procedure.

i)先ず4個のレーザ素子i,k,l,mを夫々単独で動作さ
せ、光出力特性を測定する。即ちレーザ素子j,k,l,mに
夫々個別に電流Ij,Ik,Il,Imを通電し、各受光部(12a)
〜(12d)で夫々の光出力Pj,Pk,Pl,Pmを測定する。実際
には、Pj=Pk=Pl=Pm=Pと設定し、このような出力を
得る電流を測定する。また、この時のマルチビーム半導
体レーザ(11)の温度をT℃とする。
i) First, the four laser elements i, k, l, m are operated independently, and the light output characteristics are measured. That laser element j, k, l, husband m s individual current I j, I k, I l , energized and I m, the light receiving portions (12a)
In (12d), the respective optical outputs Pj , Pk , Pl , and Pm are measured. Actually, P j = P k = P l = P m = P is set, and the current for obtaining such an output is measured. The temperature of the multi-beam semiconductor laser (11) at this time is set to T ° C.

ii)ペルチェ素子(15)を用いてマルチビーム半導体レ
ーザ(11)の温度をΔT℃上昇させ、各素子にi)と同
じ電流Ij,Ik,Il,Imを通電し、各素子の単独動作時の光
出力Pj′,Pk′,Pl′,Pm′を測定する。
ii) the temperature of the multi-beam semiconductor laser using a Peltier element (15) (11) raised [Delta] T ° C., the same current I j and i) to each element, I k, I l, energized and I m, each element The optical outputs P j ′, P k ′, P l ′, and P m ′ of the single operation are measured.

iii)得られた測定値から次式に従って、各素子の温度
係数Kr(r=j,k,l,m)を求める。
iii) From the obtained measured values, the temperature coefficient K r (r = j, k, l, m) of each element is obtained according to the following equation.

Kr=(Pr−Pr′)/ΔT iv)マルチビーム半導体レーザ(11)の温度をT℃と
し、4個の素子から2個の素子r,s(r,s=j,k,l,m)を
選択してi)と同じ電流Ir,Isを同時に通電したときの
素子rの動作電圧Vr′と素子r,sの光出力Psr,Prsを夫々
測定する。
K r = (P r −P r ′) / ΔT iv) Assuming that the temperature of the multi-beam semiconductor laser (11) is T ° C., two elements r, s (r, s = j, k, l, by selecting the m) i) with the same current I r, the operating voltage V r 'and element r of elements r when energized the I s at the same time, s of the light output P sr, respectively measured P rs.

v)得られた測定値から次式に従って、素子sが素子r
に与える熱的相互作用Csrを求める。
v) From the obtained measured values, the element s is replaced with the element r
The thermal interaction C sr given to

Csr=(Pr−Psr)/KrWrs 但し、Wsr=IsVs′−Prsで、Wsrは素子rの発熱量を
示す。
C sr = (P r −P sr ) / K r W rs where W sr = I s V s ′ −P rs , and W sr indicates the heat value of the element r.

(ハ)発明が解決しようとする課題 しかし乍ら、斯る従来方法ではその測定系にレンズを
用いるため、受光素子上でのレーザビームの光軸、フォ
ーカス等の調整が必要である。この時、斯るマルチビー
ム半導体レーザでは、複数のレーザビームに対して同時
に調整をしなければならず、その作業は煩雑であり、特
に測定を自動化する上で好ましくない。
(C) Problems to be Solved by the Invention However, in the conventional method, since a lens is used for the measurement system, it is necessary to adjust the optical axis, focus, and the like of the laser beam on the light receiving element. At this time, in such a multi-beam semiconductor laser, it is necessary to simultaneously adjust a plurality of laser beams, and the operation is complicated, which is not preferable particularly in automating the measurement.

また、斯る従来方法ではビーム間隔を拡大するため、
20cm以上の光路長を必要とし、測定系が大型化する。
Also, in such a conventional method, in order to increase the beam interval,
Requires an optical path length of 20 cm or more, and the measurement system becomes large.

ところで、このようなマルチビーム半導体レーザの量
産を目的として各素子の熱特性を調べる場合、熱的相互
作用Csrと温度係数Krを別々に求めずに、これらをまと
めた光出力変動係数Bsr(Bsr=CsrKr)を求めれば十分
である。
By the way, when examining the thermal characteristics of each element for the purpose of mass production of such a multi-beam semiconductor laser, the thermal output C sr and the temperature coefficient K r are not separately obtained, but the optical output variation coefficient B by obtaining the sr (B sr = C sr K r) is sufficient.

また、一般の半導体レーザにおいては、1個のレーザ
素子から2方向にレーザビームを出射し、その一方のビ
ームをモニタする受光素子が内蔵されている(本発明で
はこの受光素子を内部受光素子と呼ぶ)。そして斯るマ
ルチビーム半導体レーザにおいても、例えば実開昭64−
354号公報に開示されているように、複数本のレーザビ
ームを個別にモニタする受光素子を備えたものが提案さ
れている。
Also, a general semiconductor laser has a built-in light receiving element that emits a laser beam from one laser element in two directions and monitors one of the beams (in the present invention, this light receiving element is referred to as an internal light receiving element). Call). In such a multi-beam semiconductor laser, for example,
As disclosed in Japanese Patent Publication No. 354, a device having a light receiving element for individually monitoring a plurality of laser beams has been proposed.

そこで、本発明は、斯るマルチビーム半導体レーザに
おける内部受光素子を利用して、煩雑な光軸調整等を必
要とせず、マルチビーム半導体レーザの熱的相互作用を
光出力変動係数を用いて容易に測定できる方法を提供す
るものである。
Therefore, the present invention makes use of the internal light receiving element in such a multi-beam semiconductor laser to eliminate the need for complicated optical axis adjustment and the like, and facilitate the thermal interaction of the multi-beam semiconductor laser using the optical output variation coefficient. It is intended to provide a method that can be used for measurement.

(ニ)課題を解決するための手段 本発明は、夫々2方向にレーザビームの出射が可能な
N(N≧2)個のレーザ素子を有し、1方向に出射され
る各レーザビームを個別に受光する内部受光素子を有す
ると共に、他方向に出射される各レーザビームを出力光
とするマルチビーム半導体レーザの特性測定方法であっ
て、上記課題を解決するため、 上記マルチビーム半導体レーザの上記他方のレーザビ
ーム出射方向に、全てのレーザビームを単一の受光部で
受光すべく外部受光素子を配置する工程と、 上記N個のレーザ素子の中から互いに異なる素子r,s
を選択し、各素子r,sに夫々個別に電流Ir,Isを通電し
て、上記内部受光素子で夫々内部光出力pr,psを測定
し、上記外部受光素子で夫々外部光出力Pr,Psを測定す
る工程と、 上記各素子r,sに夫々上記電流Ir,Isを同時に通電し
て、上記素子sの端子間電圧Vs′を測定すると共に、上
記内部受光素子で、素子rの内部光出力psrと素子sの
内部光出力prsを測定する工程と、 得られた測定値より、素子sが素子rに与える光出力
変動係数Bsrを、 Bsr=(pr−psr)Pr/PrWs (但し、Ws=IsVs′)で求める工程と、 を含むことを特徴とする。
(D) Means for Solving the Problems The present invention has N (N ≧ 2) laser elements each capable of emitting a laser beam in two directions, and individually separates the laser beams emitted in one direction. A method for measuring the characteristics of a multi-beam semiconductor laser having an internal light-receiving element for receiving light in the other direction, and using each laser beam emitted in the other direction as output light. Arranging an external light receiving element in the other laser beam emitting direction so as to receive all laser beams with a single light receiving section; and different elements r and s from the N laser elements.
Select, each element r, s respectively individually current I r, by energizing the I s, respectively internal light output p r in the internal light receiving element to measure the p s, respectively external light by the external light receiving element Measuring the outputs P r , P s , and simultaneously applying the currents I r , I s to the respective elements r, s, and measuring the terminal voltage V s ′ of the element s, A step of measuring the internal light output p sr of the element r and the internal light output p rs of the element s in the light receiving element; and obtaining the light output variation coefficient B sr given by the element s to the element r from the obtained measurement values. sr = (p r -p sr) P r / P r W s ( where, W s = I s V s ') , characterized in that it comprises a step of determining at the.

(ホ)作用 本発明方法によれば、マルチビーム半導体レーザに内
蔵された内部受光素子を利用すると共に、複数本の出力
用レーザビームを単一の受光部で受光する外部受光素子
を用いて、各レーザ素子の光出力変動係数を求めること
ができる。
(E) Function According to the method of the present invention, the internal light receiving element built in the multi-beam semiconductor laser is used, and the external light receiving element that receives a plurality of output laser beams by a single light receiving unit is used. The light output variation coefficient of each laser element can be obtained.

(ヘ)実施例 第2図に本発明方法に用いるマルチビーム半導体レー
ザを示す。
(F) Embodiment FIG. 2 shows a multi-beam semiconductor laser used in the method of the present invention.

図において、(1)は4個のレーザ素子j,k,l,mがモ
ノリシックに形成されたレーザチップで、各レーザ素子
は夫々図面矢印で示す如く、相い反する2方向にレーザ
ビームを出射する。(2)は一方のレーザビームの出射
する延長線上に配置された内部受光素子で、各レーザビ
ームを個別に受光する4個の受光部(2a)〜(2d)を有
している。(3)は光導波溝(3a)〜(3d)が設けられ
た光ガイドで、レーザチップ(1)と内部受光素子
(2)の間に設けられ、上記一方のレーザビームを分離
して対応する受光部に導く。(4)は一主面を有し、良
熱伝導性の材料からなるサブマウントで、上記レーザチ
ップ(1)、内部受光素子(2)、光ガイド(3)は、
夫々このサブマウント(4)の一主面上に配置される。
また、図ではレーザチップ(1)及び内部受光素子
(2)の配線は省略してある。而して、斯るマルチビー
ム半導体レーザでは、レーザチップ(1)から出射され
る2方向のレーザビームのうち内部受光素子(2)側と
は反対側に出射されるレーザビームが出力光になる。
In the figure, (1) is a laser chip in which four laser elements j, k, l, m are monolithically formed, and each laser element emits a laser beam in two opposite directions as shown by arrows in the drawing. I do. (2) is an internal light receiving element arranged on an extension of one of the laser beams, and has four light receiving sections (2a) to (2d) for individually receiving each laser beam. (3) is an optical guide provided with optical waveguide grooves (3a) to (3d), which is provided between the laser chip (1) and the internal light receiving element (2), and separates the above one laser beam to cope therewith. To the light receiving section to be performed. (4) is a submount having one main surface and made of a material having good thermal conductivity. The laser chip (1), the internal light receiving element (2), and the light guide (3) are
Each of the submounts (4) is arranged on one main surface.
In the figure, the wiring of the laser chip (1) and the internal light receiving element (2) is omitted. Thus, in such a multi-beam semiconductor laser, of the laser beams emitted from the laser chip (1) in two directions, the laser beam emitted to the side opposite to the internal light receiving element (2) side becomes the output light. .

次に、本発明方法に用いる測定系を第1図に示す。 Next, FIG. 1 shows a measuring system used in the method of the present invention.

図において、(5)は第2図に示したマルチビーム半
導体レーザ、(6)は上記出力光の出射方向に配された
外部受光素子で、上記マルチビーム半導体レーザ(5)
から出力される4本のレーザビームを全て受光する単一
の受光部(6a)を有している。
In the figure, (5) is the multi-beam semiconductor laser shown in FIG. 2, (6) is an external light receiving element arranged in the output light emitting direction, and the multi-beam semiconductor laser (5)
And a single light receiving section (6a) for receiving all four laser beams output from the optical disk.

(7)は上記マルチビーム半導体レーザ(5)を固定
する良熱伝導性の治具、(8)は上記治具(7)を介し
てマルチビーム半導体レーザ(5)に熱的に接続された
ヒートシンクである。(9)は上記マルチビーム半導体
レーザ(5)の各レーザ素子を個別に駆動可能な駆動
部、(10a)は上記マルチビーム半導体レーザ(4)に
内蔵された内部受光素子(2)の各受光部の光出力を検
出する第1検出部、(10b)は上記外部受光素子(5)
の光出力を検出する第2検出部である。
(7) is a jig having good thermal conductivity for fixing the multi-beam semiconductor laser (5), and (8) is thermally connected to the multi-beam semiconductor laser (5) via the jig (7). It is a heat sink. (9) is a drive unit capable of individually driving each laser element of the multi-beam semiconductor laser (5), and (10a) is each light-receiving element of the internal light-receiving element (2) built in the multi-beam semiconductor laser (4). A first detection unit for detecting the optical output of the unit, (10b) is the external light receiving element (5)
Is a second detection unit that detects the light output of the second detection unit.

次に、斯る測定系を用いた本発明方法の一実施例を説
明する。
Next, an embodiment of the method of the present invention using such a measurement system will be described.

i)先ず4個のレーザ素子j,k,l,mを夫々単独で動作さ
せ、光出力特性を測定する。即ちレーザ素子j,k,l,mに
夫々個別に電流Ij,Ik,Il,Imを通電し、第1検出部
(9)から得られる内部光出力pj,pk,pl,pmを夫々測定
し、同時に第2検出部(10)から外部光出力Pj,Pk,Pl,P
mを夫々測定する。実際には、後の計算を簡単にするた
め、外部光出力を一定、即ちPj=Pk=Pl=Pm=Pと設定
し、この出力時の内部受光素子(2)の内部光出力と、
レーザ素子を流れる電流とを測定する。
i) First, the four laser elements j, k, l, and m are operated independently, and the light output characteristics are measured. That laser element j, k, l, m, respectively individually current I j, I k, I l , energized and I m, internal light output p j obtained from the first detector (9), p k, p l, a p m were respectively measured, at the same time the second detector (10) from the external light output P j, P k, P l , P
Measure m respectively. Actually, in order to simplify later calculations, the external light output is set to be constant, that is, P j = P k = P l = P m = P, and the internal light of the internal light receiving element (2) at this output is set. Output,
The current flowing through the laser element is measured.

ii)マルチビーム半導体レーザ(4)の4個の素子から
2個の素子r,s(r,s=j,k,l,m)を選択し、各素子r,sに
夫々i)と同じ電流Ir,Isを同時に通電して、素子sの
電圧Vs′と,内部受光素子(2)による各素子r,sの内
部光出力psr,prsとを測定する。
ii) Two elements r, s (r, s = j, k, l, m) are selected from the four elements of the multi-beam semiconductor laser (4), and each element r, s is the same as i). and flowing current I r, the I s at the same time, measures a voltage V s' of element s, each element r by the internal light receiving element (2), the internal optical output p sr of s, and p rs.

iii)ここで、2個の素子を同時に通電した時に素子r
を生じる温度変化は、素子sの発熱量Wrsによって引き
起こされるので、素子sが素子rに与える熱的相互作用
をCsrとし、ΔT=CsrWrsと定義すると、以下の式が成
り立つ。
iii) Here, when the two elements are energized simultaneously, the element r
Is caused by the calorific value W rs of the element s. If the thermal interaction that the element s gives to the element r is C sr and ΔT = C sr W rs is defined, the following equation is established.

(Pr−Psr)/Kr=CsrWrs ここで、素子rの単独通電時と同時通電時との外部出
力の差Pr−Psrは単独通電時の外部光出力Prと各通電時
の内部光出力pr,psrを用いて、Pr−Psr=(pr−psr)Pr
/prと表すことができ、従って、上述の式は以下の様に
表せる。
In (P r -P sr) / K r = C sr W rs where difference P r -P sr external output of the time during the simultaneous energization alone energization element r is the external light output P r at solely energized internal optical output p r at each energization, with p sr, P r -P sr = (p r -p sr) P r
/ p can be expressed as r, therefore, the above equation can be expressed as follows.

(pr−psr)Pr/prKr=CsrWrs また、同時通電時の素子sの発熱量Wrsは、単独通電
時の外部光出力Psと各通電時の内部光出力ps,prsを用い
て、以下の様に表せる。
(P r −p sr ) P r / p r K r = C sr W rs The heating value W rs of the element s at the time of simultaneous energization is the external light output P s at the time of single energization and the internal light at each energization. Using the outputs p s and p rs , it can be expressed as follows.

Wrs=IsVs′−prsPs/ps 次に、素子sが素子rに及ぼす熱的相互作用から生じ
る素子rの光出力変動係数をBsr=CsrKrと定義すると、
光出力変動係数Bsrは、 Bsr=CsrKr=(pr−psr)Pr/prWrs から求めることができる。
W rs = I s V s ′ −p rs P s / p s Next, if the optical output variation coefficient of the element r resulting from the thermal interaction of the element s with the element r is defined as B sr = C sr K r ,
The optical output variation coefficient B sr can be obtained from B sr = C sr K r = (p r −p sr ) P r / p r W rs .

例えば、素子j,k,l,mがのこの順で並設されたマルチ
ビーム半導体レーザ(1)の隣接する素子間の光出力変
動係数は夫々 Bjk=(pk−pjk)Pk/pkWkj Bkj=(pj−pkj)Pj/pjWjk Bkl=(pl−pkl)Pl/plWlk Blk=(pk−plk)Pk/pkWkl Blm=(pm−plm)Pm/pmWml Bml=(pk−pml)Pl/plWlm から求められる。また2素子以上離れた熱的相互作用に
ついても同様に求めることができ、さらに本発明方法は
マルチビーム半導体レーザの素子数に関係なく適用でき
る。
For example, the optical output variation coefficient between adjacent elements of a multi-beam semiconductor laser (1) in which elements j, k, l, and m are arranged in this order is B jk = (p k −p jk ) P k / p k W kj B kj = (p j -p kj) P j / p j W jk B kl = (p l -p kl) P l / p l W lk B lk = (p k -p lk) P obtained from k / p k W kl B lm = (p m -p lm) P m / p m W ml B ml = (p k -p ml) Pl / p l W lm. In addition, thermal interactions separated by two or more elements can be similarly obtained, and the method of the present invention can be applied regardless of the number of elements of the multi-beam semiconductor laser.

(ト)発明の効果 本発明方法によれば、マルチビーム半導体レーザから
出射される複数本のレーザビームを、受光素子の単一の
受光部で受光して、2素子間の光出力変動係数を求める
ことができる。従って、レンズを用いてレーザビーム間
隔を拡大する必要がないので、光軸調整等の煩雑な調整
作業を行うこともなくなり、測定を容易に行うことがで
きる。
(G) Effects of the Invention According to the method of the present invention, a plurality of laser beams emitted from a multi-beam semiconductor laser are received by a single light receiving portion of a light receiving element, and the light output variation coefficient between the two elements is reduced. You can ask. Therefore, since it is not necessary to increase the laser beam interval using a lens, complicated adjustment work such as optical axis adjustment is not performed, and measurement can be performed easily.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明方法に用いる測定系を示す模式図、第2
図は本発明方法に用いるマルチビーム半導体レーザの要
部断面図、第3図は従来方法に用いられる測定系を示す
模式図である。
FIG. 1 is a schematic diagram showing a measurement system used in the method of the present invention, and FIG.
FIG. 3 is a sectional view of a main part of a multi-beam semiconductor laser used in the method of the present invention, and FIG. 3 is a schematic view showing a measuring system used in a conventional method.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G01M 11/00──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 6 , DB name) G01M 11/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】夫々2方向にレーザビームの出射が可能な
N(N≧2)個のレーザ素子を有し、1方向に出射され
る各レーザビームを個別に受光する内部受光素子を有す
ると共に、他方向に出射される各レーザビームを出力光
とするマルチビーム半導体レーザの特性測定方法におい
て、 上記マルチビーム半導体レーザの上記他方のレーザビー
ム出射方向に、全てのレーザビームを単一の受光部で受
光すべく外部受光素子を配置する工程と、 上記N個のレーザ素子の中から互いに異なる素子r,sを
選択し、各素子r,sに夫々個別に電流Ir,Isを通電して、
上記内部受光素子で夫々内部光出力pr,psを測定し、上
記外部受光素子で夫々外部光出力Pr,Psを測定する工程
と、 上記各素子r,sに夫々上記電流Ir,Isを同時に通電して、
上記素子sの端子間電圧Vs′を測定すると共に、上記内
部受光素子で、素子rの内部光出力psrと素子sの内部
光出力prsを測定する工程と、 得られた測定値より、素子sが素子rに与える光出力変
動係数Bsrを、 Bsr=(pr−psr)Pr/PrWrs (但し、Wrs=IsVs′−prsPs/ps)で求める工程と、 を含むことを特徴とするマルチビーム半導体レーザの特
定測定方法。
An internal light receiving element for individually receiving each laser beam emitted in one direction, comprising N (N ≧ 2) laser elements capable of emitting a laser beam in two directions. A method for measuring the characteristics of a multi-beam semiconductor laser in which each laser beam emitted in the other direction is output light, wherein a single light-receiving part receives all laser beams in the other laser beam emission direction of the multi-beam semiconductor laser. placing the external light-receiving element in order to received, select different elements r, s from among the N number of laser elements, each individually current I r, the I s energizing each element r, s hand,
Each internal light output p r in the internal light receiving element to measure the p s, the external light-receiving element at each external optical output P r, measuring a P s, the respective elements r, s respectively above current I r , Is at the same time,
Measuring the terminal voltage V s ′ of the element s and measuring the internal light output p sr of the element r and the internal light output p rs of the element s with the internal light receiving element; the optical output variation coefficient B sr the element s has on the element r, B sr = (p r -p sr) P r / P r W rs ( where, W rs = I s V s ' -p rs P s / and ( c ) determining a multi-beam semiconductor laser.
JP4476090A 1990-02-26 1990-02-26 Method for measuring characteristics of multi-beam semiconductor laser Expired - Fee Related JP2858851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4476090A JP2858851B2 (en) 1990-02-26 1990-02-26 Method for measuring characteristics of multi-beam semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4476090A JP2858851B2 (en) 1990-02-26 1990-02-26 Method for measuring characteristics of multi-beam semiconductor laser

Publications (2)

Publication Number Publication Date
JPH03246437A JPH03246437A (en) 1991-11-01
JP2858851B2 true JP2858851B2 (en) 1999-02-17

Family

ID=12700385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4476090A Expired - Fee Related JP2858851B2 (en) 1990-02-26 1990-02-26 Method for measuring characteristics of multi-beam semiconductor laser

Country Status (1)

Country Link
JP (1) JP2858851B2 (en)

Also Published As

Publication number Publication date
JPH03246437A (en) 1991-11-01

Similar Documents

Publication Publication Date Title
JP3878231B2 (en) Optoelectronic device and manufacturing method thereof
JP3979703B2 (en) Wavelength monitoring controller for wavelength division multiplexing optical transmission system
JP2000056185A (en) Laser diode module
US20030058907A1 (en) Laser module
US6792178B1 (en) Fiber optic header with integrated power monitor
JP2003078088A (en) Mounting device for thermoelectric module and method for controlling temperature thereof
JPH02271586A (en) Semiconductor laser device
JP2858851B2 (en) Method for measuring characteristics of multi-beam semiconductor laser
US5399858A (en) Photo-semiconductor module having thermo-element
JP2002009391A (en) Wavelength stabilization monitor and method for adjusting working wavelength thereof
JPH0719929B2 (en) Semiconductor laser device
JP2007266260A (en) Optical semiconductor device having phase control function
US7496120B2 (en) Compact laser output monitoring using reflection and diffraction
JP2858842B2 (en) Method for measuring characteristics of multi-beam semiconductor laser
US5490160A (en) Method and apparatus for back facet monitoring of multiple semiconductor laser diodes
JPH05251821A (en) Single and plural stripe type integrated laser
JP2858841B2 (en) Method for measuring characteristics of multi-beam semiconductor laser
JP2004295097A (en) Optical module and manufacturing method therefor
JPH077212A (en) Apparatus for controlling wavelength of light emitted from laser diode
TWI243260B (en) Transmission device with plastic optical fiber
JP2003101133A (en) Light emitting module
JP2002026445A (en) Light source device
JPH05183239A (en) Semiconductor laser
JP2674014B2 (en) Light receiving element, light receiving element for light intensity monitor, and light intensity monitor
JPH0590672A (en) Ld exciting solid laser

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees