JP2858583B2 - Joining method of zirconium oxide ceramic and metal - Google Patents

Joining method of zirconium oxide ceramic and metal

Info

Publication number
JP2858583B2
JP2858583B2 JP6818590A JP6818590A JP2858583B2 JP 2858583 B2 JP2858583 B2 JP 2858583B2 JP 6818590 A JP6818590 A JP 6818590A JP 6818590 A JP6818590 A JP 6818590A JP 2858583 B2 JP2858583 B2 JP 2858583B2
Authority
JP
Japan
Prior art keywords
metal
zirconium oxide
thickness
ceramic
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6818590A
Other languages
Japanese (ja)
Other versions
JPH03271173A (en
Inventor
敏夫 成田
俊彦 柏井
正治 中森
章二 平井
惇夫 長
忠清 宮下
和明 根本
裕之 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP6818590A priority Critical patent/JP2858583B2/en
Publication of JPH03271173A publication Critical patent/JPH03271173A/en
Application granted granted Critical
Publication of JP2858583B2 publication Critical patent/JP2858583B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は酸化ジルコニウム系セラミックと金属の接合
方法に関し、例えば水蒸気電気分解プラントに使用され
る水蒸気電解セル、あるいは高温センサー、固体電解質
型燃料電池等を製作する際等に適用される上記の接合方
法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a method for joining a zirconium oxide-based ceramic and a metal, for example, a steam electrolysis cell used in a steam electrolysis plant, a high temperature sensor, a solid oxide fuel cell. The present invention relates to the above-mentioned joining method applied when manufacturing a device or the like.

〔従来の技術〕[Conventional technology]

従来、セラミックと金属の接合方法としては、はめ合
いや焼きばめ等の機械的方法、有機・無機系接着剤を用
いる方法、メタライズ法(セラミックの表面にロウ材と
の濡れ性の良い金属の薄い層を設けた後、ロウ付けする
方法)、活性金属法(ロウ材に予め活性金属を加えてお
く方法)、フリット法(PbOを多量に含むガラスをロウ
材として用いる方法)、固相接合法(母材同士を固相の
ままで高温で圧接する方法)等種々のものが知られてい
る(“機械の研究"Vol.39,No.39,P29〜34の井関孝善著
「セラミックの接合技術」参照)。
Conventionally, ceramic and metal have been joined by mechanical methods such as fitting and shrink fitting, methods using organic / inorganic adhesives, and metallizing methods (metals with good wettability with the brazing material on the ceramic surface). A method of brazing after providing a thin layer), an active metal method (a method of adding an active metal to a brazing material in advance), a frit method (a method of using a glass containing a large amount of PbO as a brazing material), and solid-phase welding Various methods are known, such as the legal method (a method in which base materials are pressed against each other in a solid phase at a high temperature) ("Takayoshi Iseki,""CeramicResearch", Vol. 39, No. 39, pp. 29-34, "Mechanical Research"). Joining technology ").

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

酸化ジルコニウム系セラミックを金属部品に取り付け
て、水蒸気電解セル、高温型センサー、固体電解質型燃
料電池等として使用する場合、金属部品との接合部は気
密性や耐熱性とともに信頼性のある製品とするためには
大きい接合強度を必要とする。
When a zirconium oxide ceramic is attached to a metal part and used as a steam electrolysis cell, high-temperature sensor, solid oxide fuel cell, etc., the joint with the metal part is a reliable product with airtightness and heat resistance. For this purpose, a large bonding strength is required.

しかし、従来の接合方法では第1表に示すように、そ
れぞれ一長一短があり、気密性、耐熱性、接合強度の全
てを満たすものはない。
However, as shown in Table 1, each of the conventional joining methods has advantages and disadvantages, and none of them satisfy airtightness, heat resistance, and joining strength.

なお、第1表において、機械的接合、接着材接合、ロ
ウ付の相手材は低合金銅、ステンレス鋼、Ni又はNi基合
金等、固相接合の相手材は貴金属法ではAu、Pt、ソフト
メタル法ではAl、Cu、Ni、超硬サンド法ではAl/コバー
ル/Wである。
In Table 1, the mating materials for mechanical joining, adhesive joining, and brazing are low alloy copper, stainless steel, Ni or Ni-based alloys, etc. The mating materials for solid-phase joining are Au, Pt, soft Al, Cu, Ni in the metal method, and Al / Kovar / W in the cemented carbide method.

また、第1表のロウ付の場合、酸化ジルコニウム系セ
ラミックは濡れ性が悪いため、特別の注意が必要であ
る。
Also, in the case of brazing in Table 1, special care is required because zirconium oxide-based ceramics have poor wettability.

以上の点より、本発明は、気密性、耐熱性、接合強度
の全てを満たす酸化ジルコニウム系セラミックと金属の
接合方法を提案することを目的としてなされたものであ
る。
In view of the above, an object of the present invention is to propose a joining method of a zirconium oxide-based ceramic and a metal that satisfies all of hermeticity, heat resistance, and joining strength.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は上記目的を解決するために、 (1)酸化ジルコニウム系セラミックと金属を接合する
に際し、金属と接合する側の該セラミック面にAl2O3
はCr2O3薄膜をコーティングし、該薄膜側より厚さ1〜
5μmのTi、厚さ50〜150μmの銀ロウ、厚さ0.2〜2.0m
mのニッケル、厚さ20〜30μmの銀ロウを積層し、この
上に接合しようとする金属を積層して、真空炉又は不活
性ガス雰囲気中で前記銀ロウの融点以上の温度に加熱し
て酸化ジルコニウム系セラミックと金属の接合する方
法。
In order to solve the above-mentioned object, the present invention provides: (1) When bonding a zirconium oxide-based ceramic to a metal, the ceramic surface on the side to be bonded to the metal is coated with an Al 2 O 3 or Cr 2 O 3 thin film; Thickness from thin film side 1
5 μm Ti, 50-150 μm thick silver braze, 0.2-2.0 m thick
m of nickel, a silver braze having a thickness of 20 to 30 μm, and a metal to be joined are laminated thereon, and heated to a temperature equal to or higher than the melting point of the silver braze in a vacuum furnace or an inert gas atmosphere. A method of joining a zirconium oxide-based ceramic and a metal.

(2)上記方法のAl2O3又はCr2O3薄膜のコーティングに
代え、セラミック接合面へAl又はCrをコーティングし、
該コーティングを酸化してAl2O3又はCr2O3薄膜を形成さ
せる酸化ジルコニウム系セラミックと金属を接合する方
法。
(2) Instead of coating the Al 2 O 3 or Cr 2 O 3 thin film in the above method, coat the ceramic joint surface with Al or Cr,
A method for bonding a zirconium oxide-based ceramic and a metal, which oxidizes the coating to form an Al 2 O 3 or Cr 2 O 3 thin film.

(3)酸化ジルコニウム系セラミックと金属を接合する
に際し、接合部近傍の酸化ジルコニウム系セラミックの
組成をAl2O3との混合物とし、接合面でAl2O3100%とす
るとともに、該接合面側より厚さ1〜5μmのTi、厚さ
50〜150μmの銀ロウ、厚さ0.2〜2.0mmのニッケル、厚
さ20〜30μmの銀ロウを積層し、この上に接合しようと
する金属を積層して、真空炉又は不活性ガス雰囲気中で
前記銀ロウの融点以上の温度に加熱して酸化ジルコニウ
ム系セラミックと金属を接合する方法 である。
(3) When joining the zirconium oxide-based ceramic and the metal, the composition of the zirconium oxide-based ceramic near the joint is made of a mixture with Al 2 O 3, and the joint surface is made 100% of Al 2 O 3 and the joint surface is made. Ti with thickness of 1-5μm from side, thickness
A 50-150 μm silver braze, a 0.2-2.0 mm thick nickel, and a 20-30 μm thick silver braze are laminated, and the metal to be joined is laminated thereon, in a vacuum furnace or in an inert gas atmosphere. And heating the zirconium oxide-based ceramic to a metal by heating to a temperature equal to or higher than the melting point of the silver braze.

〔作用〕[Action]

酸化ジルコニウム系セラミック固体電解質による水蒸
気の電気分解は電解質の両面にとりつけた電極(例えば
白金ペーストコーティング)に電圧をかけて電流を流す
ことによって、一極側にある水分(H2O)が水素(H)
と酸素(O)に分解することにあるが、本発明により接
合部を銀ろう付することによりその耐熱性は700℃以上
となる。
In the electrolysis of water vapor by a zirconium oxide-based ceramic solid electrolyte, a voltage is applied to electrodes (for example, platinum paste coating) attached to both sides of the electrolyte to cause a current to flow, so that water (H 2 O) on one electrode side is converted to hydrogen ( H)
And oxygen (O), and the heat resistance of the joint is 700 ° C. or more by brazing the joint portion with silver according to the present invention.

また、接合強度は酸化ジルコニウム系セラミックにAl
2O3,Cr2O3薄膜をコーティングせず、または酸化ジルコ
ニウム系セラミックの接合部の組成をAl2O3との傾斜組
成とせず、直接接合したもの(約7kg/mm2)に比較し
て、2倍以上の15kg/mm2に達し、接合部より離れた酸化
ジルコニウム系セラミック部分で破壊した。
In addition, the bonding strength of zirconium oxide ceramic
Compared to those directly joined (about 7 kg / mm 2 ) without coating the 2 O 3 and Cr 2 O 3 thin films, or setting the composition of the zirconium oxide-based ceramic joint to the gradient composition with Al 2 O 3 As a result, the weight reached 15 kg / mm 2, which was more than doubled, and was broken at a zirconium oxide-based ceramic portion remote from the joint.

さらに、酸化ジルコニウム系セラミックにAl2O3,Cr2
O3薄膜をコーティングせず、または酸化ジルコニウム系
セラミックの接合部の組成をAl2O3との傾斜組成とせ
ず、直接接合したものは第4図に示した如く、高温雰囲
気中で接合強度の低下が著しいのに比較し、本発明方法
によって接合したものは強度低下がほとんどないことを
確認している。
In addition, Al 2 O 3 , Cr 2
As shown in FIG. 4, the direct bonding without coating the O 3 thin film or the composition of the bonding portion of the zirconium oxide ceramic with the gradient composition with Al 2 O 3 has a high bonding strength in a high temperature atmosphere as shown in FIG. Compared with the remarkable decrease, it was confirmed that the one joined by the method of the present invention hardly reduced the strength.

第5図は接合強度(破断強度)に与えるTi、ろう材
(セラミックとNiインサート間)及びNiインサートの厚
さの影響をまとめたものであるが、Tiは1〜5μm、ろ
う材は50〜150μm、Niインサートは0.5〜2.0mmが強度
上好ましい範囲であり、これらの範囲外のものは著しく
強度が低下することが判る。
Fig. 5 summarizes the effect of Ti, brazing material (between ceramic and Ni insert) and the thickness of Ni insert on the joining strength (breaking strength), where Ti is 1-5 µm and brazing material is 50- It is understood that the preferred range for the strength of a 150 μm Ni insert is 0.5 to 2.0 mm, and those outside these ranges significantly reduce the strength.

なお、上記第4図、第5図で言及した接合強度は4点
曲げ破断試験(JIS法)によって得られる破断強度を示
す。
Note that the bonding strength referred to in FIGS. 4 and 5 indicates a breaking strength obtained by a four-point bending test (JIS method).

また、Al2O3,Cr2O3(又はAl,Cr)薄膜の形成方法
は、コーティング膜が無気孔とすると共に不純物の混入
を避ける必要上から、スパッタリング又はイオンプレー
ティングで行うべきで、CVD法などのコーティング法は
不適当である。また、一般的に、これらの薄膜の厚さは
0.1〜5μmの範囲がよく、特に1μm程度が好まし
い。
In addition, the method of forming the Al 2 O 3 , Cr 2 O 3 (or Al, Cr) thin film should be performed by sputtering or ion plating, since the coating film must be non-porous and must not mix impurities. Coating methods such as CVD are unsuitable. In general, the thickness of these thin films is
The range is preferably 0.1 to 5 μm, and particularly preferably about 1 μm.

酸化ジルコニウム系セラミックと接合する金属として
は、コバール及びコバールと同程度の熱膨張係数を有す
るFe−Cr合金(例えばSHOMAC RIVER 26)や酸化ジルコ
ニウム系セラミックより小さい熱膨張係数を有するCrや
Wなども使用できる。
Examples of the metal to be bonded to the zirconium oxide-based ceramic include Kovar and an Fe-Cr alloy having a similar thermal expansion coefficient to Kovar (for example, SHOMAC RIVER 26), and Cr and W having a smaller thermal expansion coefficient than the zirconium oxide-based ceramic. Can be used.

第1図〜第3図を参照しながら本発明による実施例を
詳述する。
An embodiment according to the present invention will be described in detail with reference to FIGS.

〔実施例1〕 第1図により、Al2O3をスパッタリングコーティング
したイットリア安定化ジルコニア(以下、YSZという)
とコバール合金(Fe−Ni−Co合金)の接合について説明
する。
Example 1 As shown in FIG. 1, yttria-stabilized zirconia coated with Al 2 O 3 by sputtering (hereinafter referred to as YSZ).
And joining of a Kovar alloy (Fe-Ni-Co alloy) will be described.

YSZ1の接合面へスパッタリングにて0.5μmの厚さでA
l2O3 3aを蒸着した後、YSZ1の接合面側より3μm厚さ
のTi 4a、100μm厚さの銀ロウ(BAg−8)5a、1.0mm厚
さのNi 6a、30μm厚さの銀ロウ(BAg−8)5b及びコバ
ール合金2を設置し、真空炉中で850〜860℃に加熱し、
室温近傍まで冷却した後、炉中より取出す。
A with a thickness of 0.5 μm by sputtering on the bonding surface of YSZ1
After l 2 O 3 3a is deposited, 3 μm thick Ti 4a, 100 μm thick silver brazing (BAg-8) 5a, 1.0 mm thick Ni 6a, 30 μm thick silver brazing from the bonding surface side of YSZ1 (BAg-8) 5b and Kovar alloy 2 were installed and heated to 850-860 ° C in a vacuum furnace.
After cooling to near room temperature, take out from the furnace.

上記、実施例1のAl2O3の代りにCr2O3をスパッタリン
グしてもよい。
Cr 2 O 3 may be sputtered instead of Al 2 O 3 in the first embodiment.

〔実施例2〕 第2図により、Alをイオンプレーティングした後、酸
化して接合面にAl2O3薄膜を形成させたYSZとコバール合
金の接合について説明する。
Example 2 With reference to FIG. 2 , a description will be given of the bonding of YSZ and Kovar alloy in which Al is ion-plated and then oxidized to form an Al 2 O 3 thin film on the bonding surface.

YSZ1の接合面へイオンプレーティングにAl 3bを1μ
m厚さコーティングした後、900℃大気中で1時間の熱
処理を行った。次にYSZ1の接合面より1.5μm厚さのTi
4b、100μm厚さの銀ロウ(BAg−8)5a、0.5mm厚さのN
i 6b、30μm厚さの銀ロウ(BAg−8)5b及びコバール
合金2を設置し、真空炉中で850〜860℃に加熱し、室温
近傍まで冷却した後、炉中より取出す。
1μ of Al 3b for ion plating on the bonding surface of YSZ1
After coating with a thickness of m, a heat treatment was performed in the air at 900 ° C. for 1 hour. Next, Ti with a thickness of 1.5 μm from the joint surface of YSZ1
4b, 100 µm thick silver brazing (BAg-8) 5a, 0.5 mm thick N
i6b, silver brazing (BAg-8) 5b having a thickness of 30 μm, and Kovar alloy 2 are installed, heated to 850 to 860 ° C. in a vacuum furnace, cooled to near room temperature, and then taken out of the furnace.

上記、実施例2のAlの代りにCrをイオンプレーティン
グしてもよい。
As described above, Cr may be ion-plated instead of Al in the second embodiment.

〔実施例3〕 第3図により、接合部近傍のYSZの組成をAl2O3との混
合物とし、接合部方向に向うにしたがって徐々にAl2O3
の割合を増加させ、接合面でAl2O3が100%になったもの
と、コバール合金の接合について説明する。
Example 3 a by Figure 3, the composition of the YSZ near the junction and a mixture of Al 2 O 3, gradually Al 2 O 3 in accordance toward the joint direction
The case where the ratio of Al 2 O 3 is increased to 100% at the joint surface and the joint of the Kovar alloy are described.

先ず、YSZとAl2O3を原料とし、各々単独組成のもの及
びYSZ/Al2O3の混合比が7/3、5/5、3/7のものを準備し、
10φ×50lmmのラバープレス形へYSZ/Al2O3比10/0、7/
3、5/5、3/7、0/10のものを10mmづつ注入し、仮焼成の
後約1800℃で焼成を行って傾斜組成YSZ/Al2O3を製造し
た。
First, YSZ and Al 2 O 3 are used as raw materials, and those having a single composition and a mixture ratio of YSZ / Al 2 O 3 of 7/3, 5/5, 3/7 are prepared.
YSZ / Al 2 O 3 ratio 10/0, 7 / to 10φ × 50lmm rubber press type
3, 5/5, 3/7, and 0/10 were injected in 10 mm increments, and calcined at about 1800 ° C. after calcination to produce a gradient composition YSZ / Al 2 O 3 .

次に、傾斜組成YSZ/Al2O3 1のAl2O3側を接合面として
接合面側より5μm厚さのTi3、100μm厚さの銀ロウ
(BAg−8)4a、1.0mm厚さのNi 5、30μm厚さの銀ロウ
(BAg−8)4b及び接合するコバール合金2を設置し、
真空炉中で850〜860℃まで加熱した後冷却後、炉中より
取出す。
Next, with the Al 2 O 3 side of the gradient composition YSZ / Al 2 O 3 1 as the bonding surface, Ti3 having a thickness of 5 μm from the bonding surface side, silver brazing (BAg-8) 4a having a thickness of 100 μm, and a 1.0 mm thickness Ni 5, silver solder (BAg-8) 4b having a thickness of 30 μm and Kovar alloy 2 to be joined are installed.
After heating to 850 to 860 ° C in a vacuum furnace, it is cooled and then taken out of the furnace.

なお、以上の実施例においては、本発明の特殊な実施
例のみをあげたが、接合金属はコバール合金(Fe−Ni−
Cr合金)に代え、Fe−25Cr合金(SHOMAC RIVER 26)や
クロム、W等でも可能であり、また、ろう付は真空炉に
代えて、アルゴンガス等による不活性ガス雰囲気炉を利
用してもよい。
In the above embodiment, only the special embodiment of the present invention has been described, but the joining metal is a Kovar alloy (Fe-Ni-
(Cr alloy), it is also possible to use Fe-25Cr alloy (SHOMAC RIVER 26), chromium, W, etc. Also, brazing can be performed using an inert gas atmosphere furnace such as argon gas instead of a vacuum furnace. Good.

〔発明の効果〕〔The invention's effect〕

本発明により、酸化ジルコニウム系セラミックと金属
を接合すると、接合部の曲げ強度は例えばYSZとコバー
ル合金の直接接合(約7kg/mm2)に比べ2倍以上の15kg/
mm2に達し、接合部より離れたYSZ部分で破壊した。(YS
Zの曲げ強度は10〜15kg/mm2程度である。) また、第4図に示したように高温雰囲気中の使用に際
しても接合強度の低下はほとんど認められず、すぐれた
耐熱、耐久性を有していた。
According to the present invention, when a zirconium oxide-based ceramic is joined to a metal, the bending strength of the joint is, for example, 15 kg / mm, which is more than double that of direct joining of YSZ and a Kovar alloy (about 7 kg / mm 2 ).
mm 2 , and fractured at the YSZ portion away from the joint. (YS
Z flexural strength is about 10-15 kg / mm 2. Further, as shown in FIG. 4, even when used in a high-temperature atmosphere, a decrease in bonding strength was hardly observed, and excellent heat resistance and durability were exhibited.

さらに接合部の気密性をHeリークテストにより測定し
た結果、リークレートは加熱の有無にかかわらず、10-9
ACC/sec以下で十分な気密性を有していた。
As a result of further the airtightness of the joint portion was measured by He leakage test, the leakage rate or without heating, 10-9
It had sufficient airtightness at ACC / sec or less.

【図面の簡単な説明】[Brief description of the drawings]

第1図〜第3図は本発明の第1〜第3実施例の説明図、
第4図は本発明方法によって得られた酸化ジルコニウム
系セラミック(YSZ)と金属(コバール)の高温大気中
での接合強度と従来法によるYSZとコバールの直接ろう
付による同接合強度と対比を示す図表、第5図は本発明
において使用するTi、ろう材、Niインサート材厚さの接
合強度に及ぼす影響を示す図表である。
1 to 3 are explanatory views of first to third embodiments of the present invention,
FIG. 4 shows a comparison between the bonding strength of a zirconium oxide-based ceramic (YSZ) and a metal (Kovar) in a high-temperature atmosphere obtained by the method of the present invention, and the same bonding strength by direct brazing of YSZ and Kovar by a conventional method. FIG. 5 is a chart showing the effect of the thickness of the Ti, brazing material and Ni insert material used in the present invention on the bonding strength.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中森 正治 兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式会社高砂研究所内 (72)発明者 平井 章二 兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式会社高砂研究所内 (72)発明者 長 惇夫 兵庫県神戸市兵庫区和田崎町1丁目1番 1号 三菱重工業株式会社神戸造船所内 (72)発明者 宮下 忠清 兵庫県神戸市兵庫区和田崎町1丁目1番 1号 三菱重工業株式会社神戸造船所内 (72)発明者 根本 和明 兵庫県神戸市兵庫区和田崎町1丁目1番 1号 三菱重工業株式会社神戸造船所内 (72)発明者 佐藤 裕之 兵庫県神戸市兵庫区和田崎町1丁目1番 1号 三菱重工業株式会社神戸造船所内 (56)参考文献 特開 平2−188476(JP,A) (58)調査した分野(Int.Cl.6,DB名) C04B 37/02────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Shoji Nakamori 2-1-1 Shinama, Arai-machi, Takasago City, Hyogo Prefecture Inside the Takasago Research Laboratory, Mitsubishi Heavy Industries, Ltd. (72) Inventor Shoji Hirai 2-1-1 Shinama, Arai-machi, Takasago City, Hyogo Prefecture No. 1 In the Takasago Research Laboratory, Mitsubishi Heavy Industries, Ltd. (72) Atsushi Nagato, 1-1 1-1 Wadazakicho, Hyogo-ku, Kobe, Hyogo Prefecture Inside the Kobe Shipyard, Mitsubishi Heavy Industries, Ltd. 1-1-1, Wadazakicho, Hyogo-ku, Mitsubishi Heavy Industries, Ltd.Kobe Shipyard (72) Inventor Kazuaki Nemoto 1-1-1, Wadasakicho, Hyogo-ku, Kobe, Hyogo, Japan Inventor Hiroyuki Sato 1-1-1, Wadazaki-cho, Hyogo-ku, Kobe-shi, Hyogo Prefecture Inside Mitsubishi Heavy Industries, Ltd.Kobe Shipyard (56) Reference Document JP-A-2-188476 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C04B 37/02

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】酸化ジルコニウム系セラミックと金属を接
合するに際し、金属と接合する側の該セラミック面にAl
2O3又はCr2O3薄膜をコーティングし、該薄膜側より厚さ
1〜5μmのTi、厚さ50〜150μmの銀ロウ、厚さ0.2〜
2.0mmのニッケル、厚さ20〜30μmの銀ロウを積層し、
この上に接合しようとする金属を積層して、真空炉又は
不活性ガス雰囲気中で前記銀ロウの融点以上の温度に加
熱することを特徴とする酸化ジルコニウム系セラミック
と金属の接合方法。
When bonding a zirconium oxide-based ceramic to a metal, the ceramic surface on the side to be bonded to the metal has Al
2 O 3 or Cr 2 O 3 thin film is coated, and from the thin film side, Ti having a thickness of 1 to 5 μm, silver brazing having a thickness of 50 to 150 μm, and a thickness of 0.2 to
2.0mm nickel, 20 ~ 30μm thick silver braze laminated,
A method for bonding a zirconium oxide-based ceramic and a metal, comprising laminating a metal to be bonded thereon and heating the metal in a vacuum furnace or an inert gas atmosphere to a temperature equal to or higher than the melting point of the silver solder.
【請求項2】請求項(1)のAl2O3又はCr2O3薄膜のコー
ティングに代え、セラミック接合面へAl又はCrをコーテ
ィングし、該コーティングを酸化してAl2O3又はCr2O3
膜を形成させることを特徴とする酸化ジルコニウム系セ
ラミックと金属の接合方法。
2. The ceramic bonding surface is coated with Al or Cr instead of the coating of the Al 2 O 3 or Cr 2 O 3 thin film according to claim 1, and the coating is oxidized to Al 2 O 3 or Cr 2 A method for bonding a zirconium oxide-based ceramic and a metal, comprising forming an O 3 thin film.
【請求項3】酸化ジルコニウム系セラミックと金属を接
合するに際し、接合部近傍の酸化ジルコニウム系セラミ
ックの組成をAl2O3との混合物とし、接合部方向に向う
にしたがって徐々にAl2O3の割合を増加させ、接合面でA
l2O3100%とするとともに、該接合面側より厚さ1〜5
μmのTi、厚さ50〜150μmの銀ロウ、厚さ0.2〜2.0mm
のニッケル、厚さ20〜30μmの銀ロウを積層し、この上
に接合しようとする金属を積層して、真空炉又は不活性
ガス雰囲気中で前記銀ロウの融点以上の温度に加熱する
ことを特徴とする酸化ジルコニウム系セラミックと金属
の接合方法。
Upon wherein joining zirconium oxide-based ceramics and metal, the composition of the zirconium oxide-based ceramics in the vicinity of the joint as a mixture of Al 2 O 3, of gradual Al 2 O 3 in accordance toward the joint direction Increase the ratio, A
l 2 O 3 100% and a thickness of 1 to 5
μm Ti, 50-150 μm thick silver braze, 0.2-2.0 mm thick
Of nickel, a silver braze having a thickness of 20 to 30 μm, and a metal to be joined thereon are laminated, and heated in a vacuum furnace or an inert gas atmosphere to a temperature equal to or higher than the melting point of the silver braze. Characteristic method of joining zirconium oxide ceramic and metal.
JP6818590A 1990-03-20 1990-03-20 Joining method of zirconium oxide ceramic and metal Expired - Fee Related JP2858583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6818590A JP2858583B2 (en) 1990-03-20 1990-03-20 Joining method of zirconium oxide ceramic and metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6818590A JP2858583B2 (en) 1990-03-20 1990-03-20 Joining method of zirconium oxide ceramic and metal

Publications (2)

Publication Number Publication Date
JPH03271173A JPH03271173A (en) 1991-12-03
JP2858583B2 true JP2858583B2 (en) 1999-02-17

Family

ID=13366473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6818590A Expired - Fee Related JP2858583B2 (en) 1990-03-20 1990-03-20 Joining method of zirconium oxide ceramic and metal

Country Status (1)

Country Link
JP (1) JP2858583B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016141572A (en) * 2015-01-29 2016-08-08 京セラ株式会社 Junction between ceramic and metal, and method for joining ceramic to metal
JP6687887B2 (en) * 2016-02-18 2020-04-28 セイコーエプソン株式会社 Ceramic parts and three-dimensional manufacturing method of ceramic parts

Also Published As

Publication number Publication date
JPH03271173A (en) 1991-12-03

Similar Documents

Publication Publication Date Title
EP1485332B1 (en) Method of joining ceramic and metal parts
US4624897A (en) Clad brazing filler for bonding ceramic to metal, glass, or other ceramic and composites using such filler
RU2403136C2 (en) Soldered system with matched thermal expansion factors (tef)
JPH0510309B2 (en)
JPH08185870A (en) Separator for solid electrolyte fuel cell
JPH0367985B2 (en)
JP2011522353A (en) Sealing mechanism for high temperature fuel cell stacks
JP2006327888A (en) Brazed structure of ceramic and metal
JP2858583B2 (en) Joining method of zirconium oxide ceramic and metal
JPH07284989A (en) Brazing filler metal for high-temperature brazing
JP2002534769A (en) Conductive ceramic
JP2851881B2 (en) Jointed body of alumina ceramics and iron-nickel alloy and joining method thereof
US5080981A (en) Nickel-containing alloys as an adhesive layer bonding metal substrates to ceramics
JP3005637B2 (en) Metal-ceramic joint
EP0162700B1 (en) Nitride ceramic-metal complex material and method of producing the same
US3598435A (en) Ceramic-metal bonding composition and composite article of manufacture
JPH0776140B2 (en) Method for joining zirconium oxide ceramic and metal
JP3533272B2 (en) Solid oxide fuel cell separator
JP2818210B2 (en) Jointed body of alumina ceramics and iron-nickel alloy and joining method thereof
JPH05121060A (en) Separator material for high temperature type fuel cell
JP2848867B2 (en) Jointed body of alumina ceramics and iron-nickel alloy and joining method thereof
Weil et al. Development of an oxidation resistant ceramic‐to‐metal braze for use in YSZ‐based electrochemical devices
JP3438028B2 (en) Nb3Si5Al2-Al2O3 two-layer coated Nb-based alloy and method for producing the same
JP2623250B2 (en) Joint of alumina ceramic and iron-nickel alloy
JPS62112051A (en) Oxygen sensor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20071204

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20081204

LAPS Cancellation because of no payment of annual fees