JP2857870B2 - Fiber content adjusted three-dimensional woven fabric, heat-resistant fiber reinforced composite material for metal joining using the woven fabric, and joining method thereof - Google Patents

Fiber content adjusted three-dimensional woven fabric, heat-resistant fiber reinforced composite material for metal joining using the woven fabric, and joining method thereof

Info

Publication number
JP2857870B2
JP2857870B2 JP9029510A JP2951097A JP2857870B2 JP 2857870 B2 JP2857870 B2 JP 2857870B2 JP 9029510 A JP9029510 A JP 9029510A JP 2951097 A JP2951097 A JP 2951097A JP 2857870 B2 JP2857870 B2 JP 2857870B2
Authority
JP
Japan
Prior art keywords
fiber
metal
composite material
heat
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP9029510A
Other languages
Japanese (ja)
Other versions
JPH10212638A (en
Inventor
毅 末光
正樹 上門
章三 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP9029510A priority Critical patent/JP2857870B2/en
Publication of JPH10212638A publication Critical patent/JPH10212638A/en
Application granted granted Critical
Publication of JP2857870B2 publication Critical patent/JP2857870B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Woven Fabrics (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、三次元織物による
繊維強化を施した耐熱複合材料と金属との接合に関し、
詳しくは、金属との接合性が良好な三次元繊維強化耐熱
複合材料に用いられる三次元織物及び該織物の構造を有
する耐熱複合材料、並びに該複合材料と金属との接合方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the joining of a heat-resistant composite material reinforced with fiber by a three-dimensional fabric and a metal.
More specifically, the present invention relates to a three-dimensional woven fabric used for a three-dimensional fiber-reinforced heat-resistant composite material having good bondability with a metal, a heat-resistant composite material having the structure of the woven fabric, and a method of bonding the composite material to a metal.

【0002】[0002]

【従来の技術】耐熱複合材料とは、炭素繊維強化複合材
料(以下、適宜「C/C材」と略す)やセラミックス系
複合材料(以下、適宜「FRC」と略す)のことであ
り、C/C材やFRCは、高温での強度や耐熱性の面で
非常に優れた材料であり、航空宇宙分野及び原子炉分野
等における高温部材に適用され始めており、適用分野の
拡大が期待されている。前記耐熱複合材料の繊維強化方
法としては、不織布、一方向強化、二次元織物積層及び
三次元織物等による方法が知られている。この場合、用
途により強化方法が選定されるが、三次元織物による強
化方法が、より等方的になることから、高性能部材への
適用が期待されている。
2. Description of the Related Art A heat-resistant composite material is a carbon fiber reinforced composite material (hereinafter abbreviated as "C / C material") or a ceramic composite material (hereinafter abbreviated as "FRC" as appropriate). / C material and FRC are very excellent materials in terms of high-temperature strength and heat resistance, and have begun to be applied to high-temperature members in the aerospace field, the nuclear reactor field, and the like. I have. As a fiber reinforcing method of the heat-resistant composite material, a method using a nonwoven fabric, one-way reinforcing, two-dimensional woven fabric lamination, three-dimensional woven fabric, or the like is known. In this case, a reinforcing method is selected depending on the application, but since the reinforcing method using a three-dimensional fabric becomes more isotropic, application to a high-performance member is expected.

【0003】上記のC/C材やFRCのような耐熱複合
材料を金属と接合させる場合、一方向強化C/C材につ
いては、繊維強化方向に垂直な面では熱膨張率が10×
10-6/K程度であり、接合する金属の熱膨張率(例え
ば、Ni基超耐熱合金:約14×10-6/K、銅合金:約
15×10-6/K)と比較して熱膨張差が小さいので、良
好な接合を行うことができる。なお、一方向強化C/C
材については、原子力関係で良い接合性が報告されてい
る。また、図3に示すように、三次元織物による繊維強
化を施したC/C材10をロウ材12を用いて金属14
と接合させる場合、三次元織物強化C/C材では、繊維
強化により熱膨張率が1×10-6/K程度であり、接合す
る金属の熱膨張率(図3の場合は、ハステロイ(Has
telloy)X:16.6×10-6/K(1250
K)、13.9×10-6/K(370K))と比較すると、
10倍以上の熱膨張差がある。
When a heat-resistant composite material such as the above-mentioned C / C material or FRC is bonded to a metal, the one-way reinforced C / C material has a coefficient of thermal expansion of 10 × in a plane perpendicular to the fiber reinforced direction.
Is about 10 -6 / K, the thermal expansion of the metal to be joined (e.g., Ni-base superalloys: about 14 × 10 -6 / K, copper alloys to about 15 × 10 -6 / K) as compared to Since the difference in thermal expansion is small, good joining can be performed. In addition, unidirectional reinforcement C / C
As for the materials, good bondability has been reported in nuclear power. As shown in FIG. 3, a C / C material 10 reinforced with a three-dimensional woven fabric is made of a metal 14 using a brazing material 12.
When the three-dimensional fabric reinforced C / C material is bonded, the coefficient of thermal expansion is about 1 × 10 −6 / K due to fiber reinforcement, and the coefficient of thermal expansion of the metal to be bonded (in the case of FIG.
telloy) X: 16.6 × 10 −6 / K (1250)
K), 13.9 × 10 -6 / K (370K))
There is a thermal expansion difference of 10 times or more.

【0004】従来から、特開平3−182337号公報
に示されるように、炭素繊維強化セラミックスと金属基
材との間に数層の中間層を設け、金属基材から炭素繊維
強化セラミックスにかけて傾斜組成を有するようにし
て、熱膨張係数の差に起因する応力を緩和するととも
に、反応抑制による応力緩和構造の熱的安定性を確保す
ることが知られている。また、特公平6−31165号
公報に示されるように、金属とセラミックスとの接合部
に一方向繊維強化軟質金属を繊維配向方向が接合面に対
して直角となるように配置して、金属とセラミックスと
の熱膨張係数の差異による熱応力を緩和することが知ら
れている。
Conventionally, as shown in Japanese Patent Application Laid-Open No. 3-182337, several intermediate layers are provided between a carbon fiber reinforced ceramic and a metal substrate, and a gradient composition is formed from the metal substrate to the carbon fiber reinforced ceramic. It is known that the stress relaxation caused by the difference in the thermal expansion coefficient is reduced and the thermal stability of the stress relaxation structure is suppressed by suppressing the reaction. Further, as disclosed in Japanese Patent Publication No. 6-31165, a unidirectional fiber reinforced soft metal is disposed at a joint between a metal and a ceramic so that the fiber orientation direction is perpendicular to the joint surface, and the metal and the ceramic are joined together. It is known that thermal stress due to the difference in thermal expansion coefficient from ceramics is reduced.

【0005】[0005]

【発明が解決しようとする課題】上述のように、三次元
織物等の構造を有する耐熱複合材料は、熱膨張率が金属
に比べて非常に低いため、金属とロウ付け接合した場合
に、熱膨張差により接合面(界面)での剥離等が生じる
ことになり接合性が悪かった。また、図3に示すよう
に、三次元織物強化C/C材の熱膨張率と、接合する金
属(ハステロイX)の熱膨張率とを比較すると、三次元
織物強化C/C材の熱膨張率の方が10倍以上も小さい
ので、熱膨張差に起因する接合面での亀裂や剥離が発生
したりすることになる。また、C/C材の空隙率が少な
いことに起因してロウ材の浸透性が悪くなり、良好な接
合性が得られないという問題もある。
As described above, a heat-resistant composite material having a structure such as a three-dimensional fabric has a very low coefficient of thermal expansion as compared with a metal. Due to the difference in expansion, peeling at the bonding surface (interface) or the like was caused, and the bonding property was poor. Further, as shown in FIG. 3, the thermal expansion coefficient of the three-dimensional woven fabric reinforced C / C material is compared with the thermal expansion coefficient of the metal to be joined (Hastelloy X). Since the ratio is 10 times or more smaller, cracks or peeling at the joint surface due to the difference in thermal expansion may occur. Further, there is also a problem that the permeability of the brazing material is deteriorated due to the low porosity of the C / C material, and good bonding properties cannot be obtained.

【0006】特開平3−182337号公報に記載され
たような複合材料接合体は、製造の際にイオンプレーテ
ィング装置等を用いたり、傾斜組成を有するように中間
層を配置する等のことから、製造や操作等が極めて煩雑
であり、より簡便な方法が望まれる。特公平6−311
65号公報に記載されたような接合体は、軟質金属を母
材とした一方向繊維強化金属からなる熱膨張率の応力緩
和層を設けるものであるが、接合方法が極めて煩雑であ
る。
[0006] The composite material joined body described in Japanese Patent Application Laid-Open No. 3-182337 has a problem in that an ion plating apparatus or the like is used at the time of manufacture, or an intermediate layer is arranged so as to have a gradient composition. The production and operation are extremely complicated, and a simpler method is desired. Tokuhei 6-311
The bonded article described in Japanese Patent Application Laid-Open No. 65-265 is provided with a stress relaxation layer having a thermal expansion coefficient made of a unidirectional fiber reinforced metal whose base material is a soft metal, but the bonding method is extremely complicated.

【0007】本発明は上記の諸点に鑑みなされたもの
で、本発明の目的は、三次元繊維強化耐熱複合材料にお
いて金属接合面近傍の面方向の熱膨張率や空隙率を調整
することにより、金属との接合性が良好な三次元繊維強
化耐熱複合材料に用いられる三次元織物及び該織物の構
造を有する耐熱複合材料、並びに該複合材料と金属との
接合方法を提供することにある。
The present invention has been made in view of the above points, and an object of the present invention is to adjust the coefficient of thermal expansion and the porosity in the surface direction near the metal bonding surface in a three-dimensional fiber-reinforced heat-resistant composite material. It is an object of the present invention to provide a three-dimensional woven fabric used for a three-dimensional fiber-reinforced heat-resistant composite material having good bondability with a metal, a heat-resistant composite material having the structure of the woven fabric, and a method of joining the composite material with a metal.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の繊維含有率調整三次元織物は、三次元繊
維強化耐熱複合材料として金属と接合させる面及びその
近傍における接合面方向の繊維含有率が下げられ、三次
元繊維強化耐熱複合材料の接合面方向における熱膨張率
が増加・調整されるように構成されている。上記の本発
明の三次元織物において、接合面方向の繊維の接合面に
対する厚さ方向における間隔を拡大させること、及び接
合面方向の繊維における繊維束あたりの繊維本数を減少
させること、の少なくともいずれかを行うことにより、
接合面方向の繊維含有率を下げることができる。また、
上記の本発明の三次元織物において、接合面に対する厚
さ方向の繊維における繊維束あたりの繊維本数を増加さ
せること、及び繊維束数を増加させること、の少なくと
もいずれかを行うことにより、接合面方向の繊維含有率
を下げることもできる。そして、上記のように構成され
た繊維含有率調整三次元織物を用いて、金属との接合性
の良好な金属接合用耐熱繊維強化複合材料を製造するこ
とができる。
In order to achieve the above-mentioned object, a three-dimensional fiber-content-adjusted woven fabric of the present invention comprises a three-dimensional fiber-reinforced heat-resistant composite material which is bonded to a metal and a bonding surface in the vicinity thereof. Of the three-dimensional fiber reinforced heat-resistant composite material, and the coefficient of thermal expansion in the direction of the joint surface is increased and adjusted. In the three-dimensional woven fabric of the present invention, at least one of expanding the interval in the thickness direction of the fiber with respect to the bonding surface in the bonding surface direction and reducing the number of fibers per fiber bundle in the fiber in the bonding surface direction. By doing
The fiber content in the joining surface direction can be reduced. Also,
In the above-described three-dimensional fabric of the present invention, by increasing the number of fibers per fiber bundle in the fibers in the thickness direction with respect to the bonding surface, and increasing the number of fiber bundles, by performing at least one of the bonding surface The fiber content in the direction can also be reduced. Then, a heat-resistant fiber-reinforced composite material for metal bonding with good bondability to metal can be manufactured using the three-dimensional fiber content-adjusted woven fabric configured as described above.

【0009】また、本発明の金属接合用耐熱繊維強化複
合材料は、三次元繊維強化耐熱複合材料として金属と接
合させる面に、接合面と垂直な方向にスリットが設けら
れ、接合面方向の繊維が切断されて、三次元繊維強化耐
熱複合材料の接合面方向における熱膨張率が増加・調整
されるとともに、接合面及びその近傍における空隙が増
加するように構成されている。また、上記の繊維含有率
調整三次元織物の構造を有する耐熱複合材料の金属と接
合させる面に、接合面と垂直な方向にスリットを設け
て、接合面方向の繊維を切断し、金属接合用耐熱繊維強
化複合材料の接合面方向における熱膨張率を増加・調整
するとともに、接合面及びその近傍における空隙が増加
するように構成することもできる。
Further, the heat-resistant fiber-reinforced composite material for metal bonding of the present invention has a slit provided in a direction perpendicular to the bonding surface on a surface to be bonded to a metal as a three-dimensional fiber-reinforced heat-resistant composite material, and the fiber in the bonding surface direction is provided. Are cut to increase and adjust the coefficient of thermal expansion of the three-dimensional fiber-reinforced heat-resistant composite material in the direction of the joint surface, and increase the voids in the joint surface and the vicinity thereof. In addition, a slit is provided in a direction perpendicular to the bonding surface on a surface to be bonded to the metal of the heat-resistant composite material having the above-mentioned fiber content adjustment three-dimensional woven fabric structure, and the fiber in the bonding surface direction is cut to form a metal joint. The thermal expansion coefficient of the heat-resistant fiber reinforced composite material in the joining surface direction can be increased and adjusted, and the gap at the joining surface and the vicinity thereof can be increased.

【0010】また、本発明の金属接合用耐熱繊維強化複
合材料の接合方法は、三次元繊維強化耐熱複合材料とし
て金属と接合させる面及びその近傍における接合面方向
の繊維含有率を下げて、三次元繊維強化耐熱複合材料の
接合面方向における熱膨張率を増加させ、接合する金属
の熱膨張率に合うように調整した繊維含有率調整三次元
織物を製作し、該織物を用いて製造した金属接合用耐熱
繊維強化複合材料を金属とロウ付けすることを特徴とし
ている。また、本発明の金属接合用耐熱繊維強化複合材
料の接合方法は、三次元繊維強化耐熱複合材料として金
属と接合させる面に、接合面と垂直な方向にスリットを
設けて、接合面方向の繊維を切断することにより、三次
元繊維強化耐熱複合材料の接合面方向における熱膨張率
を増加させ、接合する金属の熱膨張率に合うように調整
するとともに接合面及びその近傍における空隙を増加さ
せた繊維含有率調整三次元織物を製作し、該織物を用い
て製造した金属接合用耐熱繊維強化複合材料を金属とロ
ウ付けすることを特徴としている。
Further, the method for bonding a heat-resistant fiber-reinforced composite material for metal bonding according to the present invention reduces the fiber content of the surface to be bonded to the metal as a three-dimensional fiber-reinforced heat-resistant composite material and the bonding surface direction in the vicinity thereof, thereby reducing Increase the coefficient of thermal expansion in the joining surface direction of the original fiber reinforced heat-resistant composite material, produce a fiber content adjusted three-dimensional fabric adjusted to match the coefficient of thermal expansion of the metal to be joined, and manufacture the metal manufactured using the fabric. It is characterized in that the heat-resistant fiber-reinforced composite material for joining is brazed to a metal. In addition, the method for bonding a heat-resistant fiber-reinforced composite material for metal bonding according to the present invention includes the steps of: providing a slit in a direction perpendicular to the bonding surface on a surface to be bonded to a metal as a three-dimensional fiber-reinforced heat-resistant composite material; By cutting the three-dimensional fiber reinforced heat-resistant composite material, the coefficient of thermal expansion in the direction of the joint surface was increased, and adjusted to match the coefficient of thermal expansion of the metal to be joined, and the voids in the joint surface and its vicinity were increased. The method is characterized in that a three-dimensional fabric for adjusting the fiber content is manufactured, and a heat-resistant fiber-reinforced composite material for metal bonding manufactured using the fabric is brazed to a metal.

【0011】[0011]

【発明の実施の形態】以下、図面に示すような直交三方
向強化三次元織物の構造を有する耐熱複合材料を用い
て、本発明の実施の形態を説明するが、本発明は直交三
方向強化三次元織物の場合に限定されるものではなく、
他の三方向強化三次元織物や四方向強化三次元織物等の
あらゆる三次元織物の場合に適用できるものである。例
えば、本発明の三次元織物の構造は円筒座標系の場合で
も適用可能である。図1は本発明の実施の第1形態によ
る金属接合用耐熱繊維強化複合材料の接合方法を実施し
た場合を示している。本実施の形態は、三次元繊維強化
耐熱複合材料として金属と接合させる面及びその近傍に
おける接合面方向の繊維含有率を下げて、三次元繊維強
化耐熱複合材料の接合面方向における熱膨張率を増加さ
せる場合である。図1において、16は炭素繊維強化複
合材料(C/C材)であり、金属接合面方向に縦方向
(X方向)及び横方向(Y方向)の強化繊維が直交して
設けられ、このX,Y方向糸18が接合面に対する厚さ
方向(Z方向)の強化繊維(Z方向糸20)と直交する
ように構成された直交三方向強化三次元織物の構造を有
している。22はC/C材と接合される金属であり、2
4は接合に用いられるロウ材である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an embodiment of the present invention will be described using a heat resistant composite material having a structure of a three-dimensional reinforced three-dimensional fabric as shown in the drawings. It is not limited to three-dimensional fabrics,
The present invention can be applied to all three-dimensional fabrics such as other three-dimensional reinforced three-dimensional fabrics and four-directional reinforced three-dimensional fabrics. For example, the structure of the three-dimensional fabric of the present invention can be applied to a case of a cylindrical coordinate system. FIG. 1 shows a case where a method for joining a heat-resistant fiber-reinforced composite material for metal joining according to a first embodiment of the present invention is performed. This embodiment reduces the fiber content in the bonding surface direction in the surface to be bonded to the metal as the three-dimensional fiber-reinforced heat-resistant composite material and in the vicinity thereof, and reduces the thermal expansion coefficient in the bonding surface direction of the three-dimensional fiber-reinforced heat-resistant composite material. It is a case to increase. In FIG. 1, reference numeral 16 denotes a carbon fiber reinforced composite material (C / C material) in which reinforcing fibers in a longitudinal direction (X direction) and a lateral direction (Y direction) are provided orthogonal to a metal bonding surface direction. , Y-directional yarn 18 has a structure of an orthogonal three-directional reinforced three-dimensional woven fabric in which the reinforcing fibers (Z-directional yarn 20) in the thickness direction (Z direction) with respect to the joining surface are orthogonal to each other. 22 is a metal to be joined to the C / C material,
4 is a brazing material used for joining.

【0012】図1に示すように、三次元繊維強化耐熱複
合材料において、C/C材16が金属22と接合する面
及びその近傍における面方向(X方向又はY方向)の
X,Y方向糸18を何層分か除去等することにより強化
繊維の厚さ方向の面間隔を拡大させたり、X,Y方向糸
18の繊維束の繊維数を減少させたりして、あるいは、
厚さ方向のZ方向糸20の繊維束の繊維数を増加等させ
たり、繊維束数を増加させることにより、接合面方向の
繊維含有率を下げて、接合面方向の熱膨張率を増加さ
せ、接合する金属22の熱膨張率(例えば、Ni基超耐
熱合金:約14×10-6/K、銅合金:約15×10-6/
K)に合うように調整した炭素繊維の三次元織物を製作
し、これを用いてC/C材16を製造する。なお、強化
繊維としてセラミックス繊維を用いて三次元織物を製作
し、この三次元織物からセラミックス系複合材料(FR
C)を製造する場合も上記と同様である。また、強化繊
維として炭素繊維、セラミックス繊維以外の他の繊維を
用いることも勿論可能である。
As shown in FIG. 1, in the three-dimensional fiber reinforced heat-resistant composite material, the X / Y direction yarns in the plane direction (X direction or Y direction) in the surface where the C / C material 16 is bonded to the metal 22 and in the vicinity thereof. Either by removing several layers of the fibers 18 or the like to increase the spacing between the reinforcing fibers in the thickness direction, or by reducing the number of fibers in the fiber bundle of the X, Y-direction yarns 18, or
By increasing the number of fibers in the fiber bundle of the Z-direction yarn 20 in the thickness direction or by increasing the number of fiber bundles, the fiber content in the joint surface direction is reduced, and the coefficient of thermal expansion in the joint surface direction is increased. , The coefficient of thermal expansion of the metal 22 to be joined (for example, Ni-based super heat-resistant alloy: about 14 × 10 −6 / K, copper alloy: about 15 × 10 −6 /
A three-dimensional carbon fiber fabric adjusted to meet K) is manufactured, and the C / C material 16 is manufactured using the three-dimensional fabric. In addition, a three-dimensional fabric is manufactured using ceramic fibers as the reinforcing fibers, and a ceramic-based composite material (FR
The same applies to the case of producing C). It is of course possible to use other fibers other than carbon fibers and ceramic fibers as the reinforcing fibers.

【0013】炭素繊維を用いる場合は、ピッチ系、ポリ
アクリロニトリル系又はレーヨン系のいずれも使用でき
るが、ピッチ系炭素繊維が好ましい。ここでいうピッチ
系炭素繊維とは、炭素質ピッチを溶融紡糸し、これを不
融化、炭化及び必要に応じて黒鉛化することにより得ら
れる繊維である。また、セラミックス繊維とは、Si
C、TiCなどの炭化物セラミックス、Al23などの
酸化物セラミックス、Si34などの窒化物セラミック
スあるいはこれらの混合物からなる繊維である。さら
に、炭素繊維の表面に前記セラミックスを被覆したもの
も含む。これらの炭素繊維及びセラミックス繊維は、通
常直径5〜数十μm であり、この繊維を500〜10
0,000本の束にして、織物を製織する。
When carbon fibers are used, pitch-based, polyacrylonitrile-based or rayon-based fibers can be used, but pitch-based carbon fibers are preferred. The pitch-based carbon fiber referred to here is a fiber obtained by melt-spinning a carbonaceous pitch, making it infusible, carbonized and, if necessary, graphitized. In addition, the ceramic fiber is Si
Fibers made of carbide ceramics such as C and TiC, oxide ceramics such as Al 2 O 3 , nitride ceramics such as Si 3 N 4 or a mixture thereof. In addition, carbon fibers coated on the surface with the above ceramics are also included. These carbon fibers and ceramic fibers usually have a diameter of 5 to several tens of μm, and
The woven fabric is woven into a bundle of 0000 pieces.

【0014】上記のようにして製造されたC/C材16
は三次元繊維強化耐熱複合材料であり、金属22と接合
しない一面は比較的等方性の性質を示し熱膨張率は低い
(約1×10-6/K)が、他方の片面は面方向の熱膨張率
は高く(約10×10-6/K)、熱膨張率が同程度である
金属22とロウ材24を用いて接合することができる。
また、両面に金属を接合したい場合は、上述のような手
段で両接合面及びその近傍の繊維含有率を下げることに
より、両面側が一方向強化材に近い特性(熱膨張率が高
い)を有し、かつ、中央部が三次元繊維強化耐熱複合材
料の特性(高強度で熱膨張率が低い)を有する材料とす
ることもできる。なお、接合に用いるロウ材24として
は、主成分が銀、白金、銅、ニッケル、パラジウム等か
らなり、添加元素として錫、チタン、インジウム、ガリ
ウム、ゲルマニウム等を加えたものが挙げられる。ロウ
材の形態は粉末、箔、線状のものがあり、真空雰囲気
(好ましくは、10-5Torr程度)、不活性雰囲気(窒
素、ヘリウム、アルゴンガス雰囲気)又は大気中で、ロ
ウ材の融点以上の温度(例えば、700〜1100℃)
に加熱されて接合される。金属の酸化等を防止するため
には、真空雰囲気でロウ付けを行うことが好ましい。
The C / C material 16 manufactured as described above
Is a three-dimensional fiber-reinforced heat-resistant composite material. One surface not bonded to the metal 22 has a relatively isotropic property and a low coefficient of thermal expansion (about 1 × 10 −6 / K), while the other surface has a surface direction. Has a high coefficient of thermal expansion (approximately 10 × 10 −6 / K), and can be joined using a metal 22 and a brazing material 24 having similar thermal expansion coefficients.
When metal is to be bonded to both surfaces, the fiber content of both bonding surfaces and the vicinity thereof is reduced by the above-described means, so that both surfaces have characteristics close to unidirectional reinforcing material (high coefficient of thermal expansion). In addition, a material having the properties of a three-dimensional fiber-reinforced heat-resistant composite material (high strength and low coefficient of thermal expansion) at the center can also be used. The brazing material 24 used for bonding includes a material whose main component is silver, platinum, copper, nickel, palladium, or the like, and to which tin, titanium, indium, gallium, germanium, or the like is added as an additional element. The form of the brazing material may be powder, foil, or a wire. The melting point of the brazing material is determined in a vacuum atmosphere (preferably about 10 -5 Torr), an inert atmosphere (nitrogen, helium, argon gas atmosphere) or the atmosphere. Above temperature (for example, 700 to 1100 ° C)
Is heated and joined. In order to prevent metal oxidation and the like, it is preferable to perform brazing in a vacuum atmosphere.

【0015】図2は本発明の実施の第2形態による金属
接合用耐熱繊維強化複合材料の接合方法を実施した場合
を示している。本実施の形態は、三次元繊維強化耐熱複
合材料として金属と接合させる面に、接合面と垂直な方
向にスリットを設けて、接合面方向の繊維を切断するこ
とにより、三次元繊維強化耐熱複合材料の接合面方向に
おける熱膨張率及び空隙率を増加させる場合である。な
お、通常の三次元繊維強化耐熱複合材料にスリットを設
ける場合だけでなく、前記の金属接合面及びその近傍に
おける接合面方向の繊維含有率を下げた三次元繊維強化
耐熱複合材料にスリットを設ける場合もある。図2にお
いて、16は炭素繊維強化複合材料(C/C材)であ
り、金属接合面方向に縦方向(X方向)及び横方向(Y
方向)の強化繊維が直交して設けられ、このX,Y方向
糸18が接合面に対する厚さ方向(Z方向)の強化繊維
(Z方向糸20)と直交するように構成された直交三方
向強化三次元織物の構造を有している。22はC/C材
と接合される金属であり、24は接合に用いられるロウ
材、26は金属接合面に垂直に設けられたスリットであ
る。
FIG. 2 shows a case where a method for joining a heat-resistant fiber-reinforced composite material for metal joining according to a second embodiment of the present invention is carried out. In the present embodiment, a three-dimensional fiber-reinforced heat-resistant composite material is provided by providing a slit in a direction perpendicular to the bonding surface on a surface to be bonded to a metal as a three-dimensional fiber-reinforced heat-resistant composite material, and cutting fibers in a bonding surface direction. This is the case where the coefficient of thermal expansion and the porosity in the direction of the joining surface of the material are increased. In addition, not only the case where the slit is provided in the ordinary three-dimensional fiber reinforced heat-resistant composite material, but also the slit is provided in the three-dimensional fiber reinforced heat-resistant composite material in which the fiber content in the bonding surface direction in the metal bonding surface and the vicinity thereof is reduced. In some cases. In FIG. 2, reference numeral 16 denotes a carbon fiber reinforced composite material (C / C material), which has a longitudinal direction (X direction) and a lateral direction (Y
Directions), and the X, Y direction yarns 18 are orthogonal to the reinforcing fibers (Z direction yarns 20) in the thickness direction (Z direction) with respect to the joining surface. It has the structure of a reinforced three-dimensional fabric. Reference numeral 22 denotes a metal to be joined to the C / C material, reference numeral 24 denotes a brazing material used for joining, and reference numeral 26 denotes a slit provided perpendicular to the metal joining surface.

【0016】図2に示すように、前記の繊維含有率を調
整した三次元繊維強化耐熱複合材料あるいは通常の三次
元繊維強化耐熱複合材料において、C/C材16が金属
22と接合する面に、接合面と垂直なスリット26を設
け、面方向の繊維(X,Y方向糸18)を厚さ方向に何
層か切断することにより、接合面方向の熱膨張率を増加
させ、接合する金属22の熱膨張率に合うように調整す
るとともに、接合面及びその近傍の空隙の増加を図り、
このC/C材16をロウ材24を用いて金属22と接合
する。なお、スリットの幅は織物構造により異なるが、
1μm〜5mmであり、好ましくは10μm〜2mmである。
また、スリットの深さは、接合面方向の熱膨張率を増加
させる観点から、面方向の繊維を一層以上切断するよう
にする。スリットは、一例として、一方向又は碁盤状
(格子状)に入れるが、スリットを入れる場合は、接合
面方向の熱膨張率を増加させる観点から、面方向繊維を
なるべく細かく切断することが好ましい。なお、1束か
ら10束おきの切断でも十分効果がある。また、スリッ
トを設けることにより、前記の熱膨張率の調整だけでな
く、接合面近傍における空隙が増加することになり、ロ
ウ材が耐熱複合材料の接合面によく浸透し、アンカー効
果により金属との接合性が向上する。上記のようにして
製造されたC/C材16は三次元繊維強化耐熱複合材料
であり、金属22と接合しない一面は比較的等方性の性
質を示し熱膨張率は低く(約1×10-6/K)空隙率も小
さい(好ましくは、10%以下)が、他方の片面は面方
向の熱膨張率が高く(約10×10-6/K)空隙率も大き
い(好ましくは、15%以上)ので、熱膨張率が同程度
である金属22とロウ材24を用いて接合することがで
きる。
As shown in FIG. 2, in the three-dimensional fiber-reinforced heat-resistant composite material in which the fiber content is adjusted or in the ordinary three-dimensional fiber-reinforced heat-resistant composite material, the C / C material 16 By providing a slit 26 perpendicular to the joining surface and cutting several layers of the fibers (X, Y-direction yarns 18) in the thickness direction in the thickness direction, the coefficient of thermal expansion in the joining surface direction is increased, and the metal to be joined is cut. While adjusting so as to match the coefficient of thermal expansion of 22, the joint surface and the voids in the vicinity thereof are increased,
The C / C material 16 is joined to the metal 22 using the brazing material 24. The width of the slit depends on the fabric structure,
It is 1 μm to 5 mm, preferably 10 μm to 2 mm.
Further, the depth of the slit is such that the fibers in the surface direction are cut one or more times from the viewpoint of increasing the coefficient of thermal expansion in the bonding surface direction. As an example, the slits are placed in one direction or in a grid pattern (lattice shape). When the slits are placed, it is preferable to cut the surface direction fibers as finely as possible from the viewpoint of increasing the coefficient of thermal expansion in the bonding surface direction. It should be noted that cutting every 1 to 10 bundles is sufficiently effective. Further, by providing the slit, not only the adjustment of the coefficient of thermal expansion described above, but also increases the voids near the joining surface, the brazing material well penetrates the joining surface of the heat-resistant composite material, and with the metal by the anchor effect. Is improved. The C / C material 16 manufactured as described above is a three-dimensional fiber-reinforced heat-resistant composite material, and one surface not bonded to the metal 22 has a relatively isotropic property and a low coefficient of thermal expansion (about 1 × 10 -6 / K) porosity is small (preferably 10% or less), while the other side has a high thermal expansion coefficient in the plane direction (about 10 × 10 -6 / K) and a large porosity (preferably 15%). % Or more), the metal 22 and the brazing material 24 having similar thermal expansion coefficients can be joined.

【0017】[0017]

【実施例】つぎに、本発明の実施例及び比較例について
説明する。 実施例1 厚さ方向(Z方向)にX,Y方向糸の繊維束が6層ある
厚さ5mmの直交三方向強化三次元織物の金属との接合面
側の面方向糸(X,Y方向糸)を接合面側から3層分除
去して炭素繊維の厚さ方向の面間隔を拡大し、この後、
ピッチ含浸・1000℃、100MPa 加圧炭化及び17
00℃焼成の緻密化処理を6回繰り返して、高密度炭素
繊維強化耐熱複合材料を製作し、Ni基超耐熱合金(N
i 47.3wt%、Cr 22.0wt%、Co 1.5wt
%、Mo 9.0wt%、W 0.6wt%、Fe 18.5w
t%、Mn 0.5wt%、Si 0.5wt%、C 0.1wt
%)とのロウ付けによる接合試験を行った。ロウ材とし
ては、銀系(Ag 63wt%、Cu 35wt%、Ti 2w
t%)の厚さ100μmの箔状のものを用い、10-5Torr
の高真空下で5分間、850℃まで加熱し、C/C材と
金属との接合を行った。この断面状況を調べた結果、界
面(接合面)での剥離等もなく、良好な接合であること
が確認された。
Next, examples of the present invention and comparative examples will be described. Example 1 A surface direction yarn (X, Y direction) on the joining surface side of a 5 mm-thick orthogonal three-direction reinforced three-dimensional woven fabric having six layers of fiber bundles of X, Y direction yarns in the thickness direction (Z direction) with metal 3) from the bonding surface side to increase the surface spacing in the thickness direction of the carbon fiber.
Pitch impregnation, 1000 ° C, 100MPa pressure carbonization and 17
The densification treatment of sintering at 00 ° C. is repeated six times to produce a high-density carbon fiber reinforced heat-resistant composite material, and a Ni-based super heat-resistant alloy (N
i 47.3wt%, Cr 22.0wt%, Co 1.5wt
%, Mo 9.0 wt%, W 0.6 wt%, Fe 18.5 w
t%, Mn 0.5wt%, Si 0.5wt%, C 0.1wt
%) And a bonding test by brazing. As the brazing material, silver (Ag 63 wt%, Cu 35 wt%, Ti 2w
%) and a foil having a thickness of 100 μm and a thickness of 10 −5 Torr
Was heated to 850 ° C. for 5 minutes under a high vacuum to join the C / C material and the metal. As a result of examining the state of the cross section, it was confirmed that there was no separation at the interface (joining surface), and that the joining was good.

【0018】実施例2 厚さ方向(Z方向)にX,Y方向糸の繊維束が4層ある
厚さ3mmの直交三方向強化三次元織物を用い、ピッチ含
浸・1000℃、100MPa 加圧炭化及び1700℃焼
成の緻密化処理を6回繰り返して、高密度C/C材を製
作した。この後、C/C材の金属接合面に、2mm間隔で
深さ1.5mm、幅0.3mmのスリットを格子状に入れ
た。スリットを入れることにより、接合面近傍の空隙率
は約6%から30%程度に増加した。そして、このC/
C材とNi基超耐熱合金(Ni 47.3wt%、Cr 2
2.0wt%、Co 1.5wt%、Mo 9.0wt%、W
0.6wt%、Fe 18.5wt%、Mn 0.5wt%、S
i 0.5wt%、C 0.1wt%)との接合試験を行っ
た。接合方法は、ロウ材として、銀系(Ag 63wt
%、Cu 35wt%、Ti 2wt%)の厚さ100μmの
箔状のものを用い、10-5Torrの高真空下で5分間、8
50℃まで加熱し、C/C材と金属との接合を行うもの
であった。この断面状況を調べた結果、界面(接合面)
での剥離等もなく、良好な接合であることが確認され
た。
Example 2 A 3 mm-thick orthogonal three-way reinforced three-dimensional fabric having four layers of fiber bundles in the X and Y directions in the thickness direction (Z direction) was impregnated with pitch and carbonized under pressure at 1000 ° C. and 100 MPa. And a densification treatment of firing at 1700 ° C. was repeated six times to produce a high-density C / C material. Thereafter, slits having a depth of 1.5 mm and a width of 0.3 mm were formed at intervals of 2 mm on the metal bonding surface of the C / C material in a lattice shape. By providing slits, the porosity near the joint surface increased from about 6% to about 30%. And this C /
C material and Ni-base super heat resistant alloy (Ni 47.3wt%, Cr 2
2.0 wt%, Co 1.5 wt%, Mo 9.0 wt%, W
0.6 wt%, Fe 18.5 wt%, Mn 0.5 wt%, S
i 0.5 wt%, C 0.1 wt%). The joining method uses silver (Ag 63 wt.
%, Cu 35 wt%, and Ti 2 wt%) in a foil shape having a thickness of 100 μm under a high vacuum of 10 −5 Torr for 8 minutes.
It was heated to 50 ° C. to join the C / C material and the metal. As a result of examining the state of this cross section, the interface (joining surface)
, And it was confirmed that the bonding was good.

【0019】比較例1 厚さ方向(Z方向)にX,Y方向糸の繊維束が4層ある
厚さ3mmの直交三方向強化三次元織物を用い、ピッチ含
浸・1000℃、100MPa 加圧炭化及び1700℃焼
成の緻密化処理を6回繰り返して、高密度C/C材を製
作した。そして、このC/C材とNi基超耐熱合金(N
i 47.3wt%、Cr 22.0wt%、Co 1.5wt
%、Mo 9.0wt%、W 0.6wt%、Fe 18.5w
t%、Mn0.5wt%、Si 0.5wt%、C 0.1wt
%)との接合試験を行った。接合方法は、ロウ材とし
て、銀系(Ag 63wt%、Cu 35wt%、Ti 2wt
%)の厚さ100μmの箔状のものを用い、10-5Torr
の高真空下で5分間、850℃まで加熱し、C/C材と
金属との接合を行うものであった。この断面状況を調べ
た結果、C/C材と金属との界面(接合面)での剥離が
見られた。
Comparative Example 1 Pitch impregnation, 1000 ° C., 100 MPa pressure carbonization using a 3 mm-thick orthogonal three-way reinforced three-dimensional woven fabric having four layers of fiber bundles of X and Y directions in the thickness direction (Z direction). And a densification treatment of firing at 1700 ° C. was repeated six times to produce a high-density C / C material. Then, the C / C material and the Ni-based super heat-resistant alloy (N
i 47.3wt%, Cr 22.0wt%, Co 1.5wt
%, Mo 9.0 wt%, W 0.6 wt%, Fe 18.5 w
t%, Mn0.5wt%, Si 0.5wt%, C 0.1wt
%). The joining method is as follows: silver (Ag 63 wt%, Cu 35 wt%, Ti 2 wt
Used as foil having a thickness of 100μm in%), 10 -5 Torr
Was heated to 850 ° C. for 5 minutes under high vacuum to join the C / C material and the metal. As a result of examining the state of the cross section, peeling was observed at the interface (bonding surface) between the C / C material and the metal.

【0020】[0020]

【発明の効果】本発明は上記のように構成されているの
で、つぎのような効果を奏する。 (1) 三次元繊維強化耐熱複合材料として金属と接合
させる面及びその近傍における接合面方向の繊維含有率
を下げて、三次元繊維強化耐熱複合材料の接合面方向に
おける熱膨張率を増加させ、接合する金属の熱膨張率に
合うように調整することにより、三次元繊維強化耐熱複
合材料と接合する金属との熱膨張差が小さくなるので、
界面(接合面)での剥離や亀裂等が生じることなく、三
次元繊維強化耐熱複合材料を金属とをロウ付け接合する
ことができる。また、熱応力の緩和による接合強度の向
上も期待できる。 (2) 三次元繊維強化耐熱複合材料として金属と接合
させる面に、接合面と垂直な方向にスリットを設けて、
接合面方向の繊維を切断し、三次元繊維強化耐熱複合材
料の接合面方向における熱膨張率を増加させ、接合する
金属の熱膨張率に合うように調整するとともに、接合面
及びその近傍における空隙を増加させることにより、三
次元繊維強化耐熱複合材料と接合する金属との熱膨張差
が小さくなるだけでなく、空隙にロウ材がよく浸透する
ので、界面(接合面)での剥離や亀裂等が生じることな
く、三次元繊維強化耐熱複合材料を金属とをロウ付け接
合することができる。また、熱応力の緩和による接合強
度の向上も期待できる。 (3) 三次元繊維強化耐熱複合材料として、金属と接
合しない一面は比較的等方性の性質を示し高強度で熱膨
張率が低いが、金属と接合する面は面方向の熱膨張率が
高く、熱膨張率が同程度である金属とロウ材を用いて接
合することができる。 (4) 簡便な方法で三次元繊維強化耐熱複合材料と金
属とをロウ付け接合することができ、航空宇宙用エンジ
ンや汎用ガスタービン等への適用の拡大が期待できる。
As described above, the present invention has the following effects. (1) By lowering the fiber content in the direction of the bonding surface in the surface to be bonded to the metal as the three-dimensional fiber-reinforced heat-resistant composite material and in the vicinity thereof, increasing the coefficient of thermal expansion in the direction of the bonding surface of the three-dimensional fiber-reinforced heat-resistant composite material; By adjusting to the thermal expansion coefficient of the metal to be joined, the difference in thermal expansion between the three-dimensional fiber-reinforced heat-resistant composite material and the metal to be joined becomes smaller,
The three-dimensional fiber-reinforced heat-resistant composite material can be brazed to a metal without causing separation or cracking at the interface (bonding surface). Also, improvement in bonding strength due to relaxation of thermal stress can be expected. (2) A slit is provided on the surface to be bonded to the metal as a three-dimensional fiber-reinforced heat-resistant composite material in a direction perpendicular to the bonding surface,
Cutting the fiber in the direction of the joint surface, increasing the coefficient of thermal expansion in the direction of the joint surface of the three-dimensional fiber reinforced heat-resistant composite material, adjusting the coefficient of thermal expansion to match the coefficient of thermal expansion of the metal to be joined, and forming a gap in the joint surface and its vicinity Not only reduces the difference in thermal expansion between the three-dimensional fiber-reinforced heat-resistant composite material and the metal to be joined, but also allows the brazing material to penetrate well into the voids, resulting in separation or cracking at the interface (joining surface). The three-dimensional fiber reinforced heat-resistant composite material can be brazed to the metal without the occurrence of cracks. Also, improvement in bonding strength due to relaxation of thermal stress can be expected. (3) As a three-dimensional fiber reinforced heat-resistant composite material, one surface that is not bonded to metal exhibits relatively isotropic properties and has high strength and a low coefficient of thermal expansion. Bonding can be performed using a metal and a brazing material that are high and have similar thermal expansion coefficients. (4) The three-dimensional fiber-reinforced heat-resistant composite material and the metal can be brazed and joined by a simple method, and the application to an aerospace engine, a general-purpose gas turbine, and the like can be expected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の第1形態による金属接合用耐熱
繊維強化複合材料の接合方法を実施した場合を示す概略
断面構成図である。
FIG. 1 is a schematic cross-sectional configuration diagram showing a case where a method for joining a heat-resistant fiber-reinforced composite material for metal joining according to a first embodiment of the present invention is performed.

【図2】本発明の実施の第2形態による金属接合用耐熱
繊維強化複合材料の接合方法を実施した場合を示す概略
断面構成図である。
FIG. 2 is a schematic cross-sectional configuration diagram showing a case where a method of joining a heat-resistant fiber-reinforced composite material for metal joining according to a second embodiment of the present invention is performed.

【図3】従来の金属接合用耐熱繊維強化複合材料の接合
方法を実施した場合を示す概略断面構成図である。
FIG. 3 is a schematic cross-sectional configuration diagram showing a case where a conventional method for joining a heat-resistant fiber-reinforced composite material for metal joining is performed.

【符号の説明】[Explanation of symbols]

10、16 炭素繊維強化複合材料(C/C材) 12、24 ロウ材 14、22 金属 18 X,Y方向糸 20 Z方向糸 26 スリット 10, 16 Carbon fiber reinforced composite material (C / C material) 12, 24 Brazing material 14, 22 Metal 18 X, Y direction thread 20 Z direction thread 26 Slit

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特許2699443(JP,B2) (58)調査した分野(Int.Cl.6,DB名) D03D 13/00 C04B 35/83,37/02──────────────────────────────────────────────────続 き Continued on the front page (56) References Patent 2699443 (JP, B2) (58) Fields investigated (Int. Cl. 6 , DB name) D03D 13/00 C04B 35/83, 37/02

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 三次元繊維強化耐熱複合材料として金属
と接合させる面及びその近傍における接合面方向の繊維
含有率が下げられ、三次元繊維強化耐熱複合材料の接合
面方向における熱膨張率が増加・調整されていることを
特徴とする繊維含有率調整三次元織物。
1. The three-dimensional fiber-reinforced heat-resistant composite material has a reduced fiber content in a bonding surface direction at and near a surface to be bonded to a metal, and an increased coefficient of thermal expansion in the bonding surface direction of the three-dimensional fiber-reinforced heat-resistant composite material. A three-dimensional fiber content adjusted fabric characterized by being adjusted.
【請求項2】 接合面方向の繊維の接合面に対する厚さ
方向における間隔を拡大させること、及び接合面方向の
繊維における繊維束あたりの繊維本数を減少させるこ
と、の少なくともいずれかを行うことにより、接合面方
向の繊維含有率を下げるようにした請求項1記載の繊維
含有率調整三次元織物。
2. The method according to claim 1, wherein at least one of expanding a spacing in a thickness direction of the fiber with respect to the bonding surface in the bonding surface direction and reducing a number of fibers per fiber bundle in the bonding surface direction. The fiber content-adjusted three-dimensional woven fabric according to claim 1, wherein the fiber content in the joining surface direction is reduced.
【請求項3】 接合面に対する厚さ方向の繊維における
繊維束あたりの繊維本数を増加させること、及び繊維束
数を増加させること、の少なくともいずれかを行うこと
により、接合面方向の繊維含有率を下げるようにした請
求項2記載の繊維含有率調整三次元織物。
3. A fiber content ratio in a joining surface direction by performing at least one of increasing the number of fibers per fiber bundle in the thickness direction of the fibers with respect to the joining surface, and / or increasing the number of fiber bundles. The three-dimensional woven fabric according to claim 2, wherein the three-dimensional fiber content is adjusted.
【請求項4】 請求項1〜3のいずれかに記載の繊維含
有率調整三次元織物の構造を有する金属接合用耐熱繊維
強化複合材料。
4. A heat-resistant fiber-reinforced composite material for metal bonding, having a structure of the three-dimensional woven fabric having a controlled fiber content according to claim 1.
【請求項5】 三次元繊維強化耐熱複合材料として金属
と接合させる面に、接合面と垂直な方向にスリットが設
けられ、接合面方向の繊維が切断されて、三次元繊維強
化耐熱複合材料の接合面方向における熱膨張率が増加・
調整されるとともに、接合面及びその近傍における空隙
が増加していることを特徴とする金属接合用耐熱繊維強
化複合材料。
5. A three-dimensional fiber-reinforced heat-resistant composite material, wherein a surface to be bonded to a metal is provided with a slit in a direction perpendicular to the bonding surface, and the fiber in the bonding surface direction is cut to form a three-dimensional fiber-reinforced heat-resistant composite material. Increased coefficient of thermal expansion in the joint direction
A heat-resistant fiber-reinforced composite material for metal joining, which is adjusted and has an increased gap at and near a joining surface.
【請求項6】 請求項4記載の金属接合用耐熱繊維強化
複合材料の金属と接合させる面に、接合面と垂直な方向
にスリットが設けられ、接合面方向の繊維が切断され
て、金属接合用耐熱繊維強化複合材料の接合面方向にお
ける熱膨張率が増加・調整されるとともに、接合面及び
その近傍における空隙が増加している金属接合用耐熱繊
維強化複合材料。
6. A surface of the heat-resistant fiber-reinforced composite material for metal bonding according to claim 4, wherein a slit is provided in a direction perpendicular to the bonding surface to cut the fiber in the direction of the bonding surface, and the metal is bonded. A heat-resistant fiber-reinforced composite material for metal bonding, in which the coefficient of thermal expansion in the bonding surface direction of the heat-resistant fiber-reinforced composite material for use is increased and adjusted, and the voids at and near the bonding surface are increased.
【請求項7】 三次元繊維強化耐熱複合材料として金属
と接合させる面及びその近傍における接合面方向の繊維
含有率を下げて、三次元繊維強化耐熱複合材料の接合面
方向における熱膨張率を増加させ、接合する金属の熱膨
張率に合うように調整した繊維含有率調整三次元織物を
製作し、該織物を用いて製造した金属接合用耐熱繊維強
化複合材料を金属とロウ付けすることを特徴とする金属
接合用耐熱繊維強化複合材料の接合方法。
7. The three-dimensional fiber-reinforced heat-resistant composite material has a lower fiber content in a bonding surface direction at and near a surface to be bonded to a metal, and a thermal expansion coefficient in a bonding surface direction of the three-dimensional fiber-reinforced heat-resistant composite material increases. A fiber content adjusted three-dimensional fabric adjusted to match the coefficient of thermal expansion of the metal to be bonded is manufactured, and the heat-resistant fiber reinforced composite material for metal bonding manufactured using the fabric is brazed to the metal. Joining method of heat-resistant fiber reinforced composite material for metal joining.
【請求項8】 三次元繊維強化耐熱複合材料として金属
と接合させる面に、接合面と垂直な方向にスリットを設
けて、接合面方向の繊維を切断することにより、三次元
繊維強化耐熱複合材料の接合面方向における熱膨張率を
増加させ、接合する金属の熱膨張率に合うように調整す
るとともに接合面及びその近傍における空隙を増加させ
た繊維含有率調整三次元織物を製作し、該織物を用いて
製造した金属接合用耐熱繊維強化複合材料を金属とロウ
付けすることを特徴とする金属接合用耐熱繊維強化複合
材料の接合方法。
8. A three-dimensional fiber-reinforced heat-resistant composite material, which is provided with a slit in a direction perpendicular to the bonding surface on a surface to be bonded to a metal as the three-dimensional fiber-reinforced heat-resistant composite material, and cuts fibers in the direction of the bonding surface. A fiber content-adjusted three-dimensional woven fabric in which the coefficient of thermal expansion in the direction of the joint surface is increased and adjusted to match the coefficient of thermal expansion of the metal to be joined and the voids in the joint surface and the vicinity thereof are increased, and the woven fabric is manufactured. A method for joining a heat-resistant fiber-reinforced composite material for metal bonding, comprising brazing a heat-resistant fiber-reinforced composite material for metal bonding manufactured by using the method to a metal.
JP9029510A 1997-01-28 1997-01-28 Fiber content adjusted three-dimensional woven fabric, heat-resistant fiber reinforced composite material for metal joining using the woven fabric, and joining method thereof Expired - Fee Related JP2857870B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9029510A JP2857870B2 (en) 1997-01-28 1997-01-28 Fiber content adjusted three-dimensional woven fabric, heat-resistant fiber reinforced composite material for metal joining using the woven fabric, and joining method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9029510A JP2857870B2 (en) 1997-01-28 1997-01-28 Fiber content adjusted three-dimensional woven fabric, heat-resistant fiber reinforced composite material for metal joining using the woven fabric, and joining method thereof

Publications (2)

Publication Number Publication Date
JPH10212638A JPH10212638A (en) 1998-08-11
JP2857870B2 true JP2857870B2 (en) 1999-02-17

Family

ID=12278104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9029510A Expired - Fee Related JP2857870B2 (en) 1997-01-28 1997-01-28 Fiber content adjusted three-dimensional woven fabric, heat-resistant fiber reinforced composite material for metal joining using the woven fabric, and joining method thereof

Country Status (1)

Country Link
JP (1) JP2857870B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104388848B (en) * 2014-12-14 2016-08-24 机械科学研究总院先进制造技术研究中心 A kind of method that long fiber reinforcement metal-base composites is prepared in 3D printing

Also Published As

Publication number Publication date
JPH10212638A (en) 1998-08-11

Similar Documents

Publication Publication Date Title
EP1024121B1 (en) Ceramic-based composite member and its manufacturing method
JP4829465B2 (en) Carbon-substrate complexes and related compositions and methods
US6291058B1 (en) Composite material with ceramic matrix and SiC fiber reinforcement, method for making same
RU2668431C2 (en) Method of fabricating composite parts by low melting point impregnation
JP6301261B2 (en) CMC material parts
JP4173975B2 (en) Combustion chamber having inner liner formed of ceramic composite material and method for manufacturing the same
WO2002081405A1 (en) Method for producing sic fiber-reinforced sic composite material by means of hot press
JP3167738B2 (en) Method for producing carbon fiber reinforced ceramic composite material
US3796587A (en) Carbon fiber reinforced nickel matrix composite having an intermediate layer of metal carbide
CN113896558A (en) High-performance thermal dredging composite material and preparation method thereof
JP2857870B2 (en) Fiber content adjusted three-dimensional woven fabric, heat-resistant fiber reinforced composite material for metal joining using the woven fabric, and joining method thereof
JP3058335B2 (en) Method for producing ceramic fiber multidirectional reinforced product and product obtained from the method
JP4450919B2 (en) Carbon fiber composite material
Tanaka et al. Fabrication and evaluation of 3-dimensional tyranno fiber reinforced SiC composites by repeated infiltration of polycarbosilane
US20220250992A1 (en) Porous ceramic structure for part made of cmc material and method for obtaining same
Kim et al. Nicalon-fibre-reinforced silicon-carbide composites via polymer solution infiltration and chemical vapour infiltration
CN108191460A (en) The method for preparing C/SiC composite materials
CN116693311A (en) Preparation and application of high-heat-conductivity matrix and coating integrated design and ablation-resistant composite material
Lewinsohn et al. Silicon Carbide Based Joining Materials for Fusion Energy and Other High‐Temperature, Structural Applications
JPH09501135A (en) Directionally solidified eutectic reinforced fiber
JPH05186276A (en) Heat-receiving plate material produced by using carbon fiber-reinforced carbon composite material and its production
JPH10182256A (en) Fiber reinforced ceramic base composite material and its production
JP6799451B2 (en) Method for manufacturing SiC fiber / SiC composite material
JPH0881290A (en) Copper alloy-coated carbon material and its production and plasma counter material using copper alloy-coated carbon material
JP2006002240A (en) High thermal conduction-low thermal expansion composite body and its production method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees